CS $70 \quad$ Discrete Mathematics and Probability Theory

 Spring 2016 Rao and Walrand Discussion 9B1. A roulette of apples You bought 20 apples at your local farmer's market. Due to the organic nature of the apples, they are infested with worms. In particular, each apple contains a single worm with probability 0.3 (mutually independent). (leave answers unevaluated)
a) You pick up two apples a_{1} and a_{2}.
i) What is the probability that there are exactly 2 worms? What is the probability that there is exactly 1 worm? 0 worms?
ii) What is $P\left(a_{1}\right.$ has worm $\mid a_{2}$ has worm $)$?
iii) What is $P\left(a_{1}\right.$ has worm|there is exactly 1 worm among a_{1} and $\left.a_{2}\right)$?
b) You eat all 20 apples.
i) What is the probability that you end up eating no worms?
ii) what is the probability that you end up eating exactly 1 worm?
iii) what is the probability that you end up eating exactly 2 worms?
iv) How many apples can you eat if you want the probability of eating no worms to be at least 0.2 ?
c) You pick a single apple at random and slice it into 3 slices. If the apple has a worm, it will be hidden in one of the slices. You bravely eat the slices one by one. Let s_{1}, s_{2}, s_{3} denote the three slices.
i) What is $P\left(s_{1}\right.$ has no worm|apple has worm)
ii) What is $P\left(s_{1}\right.$ has no worm $)$?
iii) What is P (apple has no worm $\mid s_{1}$ has no worm). Compare your answer to P (apple has no worm).
iv) What is $P\left(s_{2}\right.$ has no worm $\mid s_{1}$ has no worm) Compare your answer to $P\left(s_{2}\right.$ has no worm).
v) Using your previous answer, what is the safest way to eat 2 slices of apples?

2. Independence in balls and bins

You have k balls and n bins labelled $1,2, \ldots, n$, where $n \geq 2$. You drop each ball uniformly at random into the bins.
a. What is the probability that bin n is empty?
b. What is the probability that bin 1 is non-empty?
c. What is the probability that both bin 1 and bin n are empty?
d. What is the probability that bin 1 is non-empty and bin n is empty?
e. What is the probability that bin 1 is non-empty given that bin n is empty?
f. What does this tell us about the independence of the two events, A : bin 1 is non-empty and B : bin n is non-empty?

3. Rain and Wind

The local weather channel just released a statistic for the months of November and December. It said that the probability that it would rain on a windy day is 0.3 and the probability that it would rain on a non-windy day is 0.8 . The probability of a day being windy is 0.2 . As a student in CS70, you are curious to play around with these numbers. Find the probability that
a. A given day is windy and rainy.
b. It rains on a given day.
c. Exactly one of two days is rainy. (Assume that the two days are independent.)
d. A non-rainy day is also non-windy.

