1. Covariance

We have a bag of 5 red and 5 blue balls. We take two balls from the bag without replacement. Let X_1 and X_2 be indicator random variables for the first and second ball being red. What is $Cov(X_1, X_2)$?

Solution:

We can use the formula $Cov(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2)$.

$$E(X_1) = \frac{5}{10} \times 1 + \frac{5}{10} \times 0 = \frac{1}{2}$$
$$E(X_2) = \frac{5}{10} \times 1 + \frac{5}{10} \times 0 = \frac{1}{2}$$
$$E(X_1X_2) = \frac{5}{10} \cdot \frac{4}{9} \times 1 + (1 - \frac{5}{10} \cdot \frac{4}{9}) \times 0 = \frac{2}{9}$$

Therefore,

$$E(X_1X_2) - E(X_1)(X_2) = \frac{2}{9} - \frac{1}{2} \times \frac{1}{2} = \frac{-1}{36}$$

2. LLSE

We have two bags of balls. The fractions of red balls and blue balls in bag A are $\frac{2}{3}$ and $\frac{1}{3}$ respectively. The fractions of red balls and blue balls in bag B are $\frac{1}{2}$ and $\frac{1}{2}$ respectively. Someone gives you one of the bags (unmarked) uniformly at random. Then we draw 6 balls from the same bag with replacement. Let X_i be the indicator random variable that ball *i* is red. Now, let us define $X = \sum_{1 \le i \le 3} X_i$ and $Y = \sum_{4 \le i \le 6} X_i$. Find LLSE(Y|X). [Hint: recall that $LLSE(Y|X) = E(Y) + \frac{Cov(X,Y)}{Var(X)}(X - E(X))$]

Solution:

$$E(X) = 3 \cdot E(X_1) = 3 \cdot P(X_1 = 1) = 3 \cdot (\frac{1}{2} \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{2}) = \frac{7}{4}$$

$$E(Y) = E(X) = \frac{7}{4}$$

$$Cov(X,Y) = Cov(\sum_{1 \le i \le 3} X_i, \sum_{4 \le j \le 6} X_j)$$

= 9 \cdot Cov(X_1, X_4)
= 9 \cdot (E(X_1X_4) - E(X_1) \cdot E(X_4))

$$E(X_1X_4) - E(X_1)E(X_4) = P(X_1 = 1, X_4 = 1) - P(X_1 = 1)^2$$

= $[\frac{1}{2} \cdot (\frac{2}{3})^2 + \frac{1}{2} \cdot (\frac{1}{2})^2] - [\frac{1}{2} \cdot (\frac{2}{3}) + \frac{1}{2} \cdot (\frac{1}{2})]^2$
= $\frac{1}{144}$

$$Var(X) = Cov(\sum_{1 \le i \le 3} X_i, \sum_{1 \le j \le 3} X_j)$$

= $3 \cdot Var(X_1) + 6 \cdot Cov(X_1, X_2)$
= $3(E(X_1^2) - E(X_1)^2) + 6 \cdot \frac{1}{144}$
= $3(\frac{7}{12} - (\frac{7}{12})^2) + 6 \cdot \frac{1}{144}$
= $\frac{111}{144}$

So, $LLSE(Y|X) = \frac{7}{4} + \frac{9}{111}(X - \frac{7}{4}) = \frac{3}{37}X + \frac{119}{74}$

3. Confidence interval

Let $\{X_i\}_{1 \le i \le n}$ be a sequence of iid Bernoulli random variables with parameter μ . Assume we have enough samples such that $P(|\frac{1}{n}\sum_{1 \le i \le n}X_i - \mu| > 0.1) = 0.05$.

Can you give 95% confidence interval for μ if you are given the outcomes of X_i ?

Solution:

 $\left[\frac{1}{n}\sum_{1\leq i\leq n}X_{i}-0.1,\frac{1}{n}\sum_{1\leq i\leq n}X_{i}+0.1\right]$