1. Covariance

We have a bag of 5 red and 5 blue balls. We take two balls from the bag without replacement. Let X_{1} and X_{2} be indicator random variables for the first and second ball being red. What is $\operatorname{Cov}\left(X_{1}, X_{2}\right)$?

Solution:

We can use the formula $\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left(X_{1} X_{2}\right)-E\left(X_{1}\right) E\left(X_{2}\right)$.

$$
\begin{gathered}
E\left(X_{1}\right)=\frac{5}{10} \times 1+\frac{5}{10} \times 0=\frac{1}{2} \\
E\left(X_{2}\right)=\frac{5}{10} \times 1+\frac{5}{10} \times 0=\frac{1}{2} \\
E\left(X_{1} X_{2}\right)=\frac{5}{10} \cdot \frac{4}{9} \times 1+\left(1-\frac{5}{10} \cdot \frac{4}{9}\right) \times 0=\frac{2}{9}
\end{gathered}
$$

Therefore,

$$
E\left(X_{1} X_{2}\right)-E\left(X_{1}\right)\left(X_{2}\right)=\frac{2}{9}-\frac{1}{2} \times \frac{1}{2}=\frac{-1}{36}
$$

2. LLSE

We have two bags of balls. The fractions of red balls and blue balls in bag A are $\frac{2}{3}$ and $\frac{1}{3}$ respectively. The fractions of red balls and blue balls in bag B are $\frac{1}{2}$ and $\frac{1}{2}$ respectively. Someone gives you one of the bags (unmarked) uniformly at random. Then we draw 6 balls from the same bag with replacement. Let X_{i} be the indicator random variable that ball i is red. Now, let us define $X=\sum_{1 \leq i \leq 3} X_{i}$ and $Y=\sum_{4 \leq i \leq 6} X_{i}$. Find $\operatorname{LLSE}(Y \mid X)$. [Hint: recall that $\left.\operatorname{LLSE}(Y \mid X)=E(Y)+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X-E(X))\right]$

Solution:

$$
\begin{aligned}
E(X) & =3 \cdot E\left(X_{1}\right) \\
& =3 \cdot P\left(X_{1}=1\right) \\
& =3 \cdot\left(\frac{1}{2} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{1}{2}\right) \\
& =\frac{7}{4}
\end{aligned}
$$

$$
E(Y)=E(X)=\frac{7}{4}
$$

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\operatorname{Cov}\left(\sum_{1 \leq i \leq 3} X_{i}, \sum_{4 \leq j \leq 6} X_{j}\right) \\
& =9 \cdot \operatorname{Cov}\left(X_{1}, X_{4}\right) \\
& =9 \cdot\left(E\left(X_{1} X_{4}\right)-E\left(X_{1}\right) \cdot E\left(X_{4}\right)\right)
\end{aligned}
$$

$$
E\left(X_{1} X_{4}\right)-E\left(X_{1}\right) E\left(X_{4}\right)=P\left(X_{1}=1, X_{4}=1\right)-P\left(X_{1}=1\right)^{2}
$$

$$
=\left[\frac{1}{2} \cdot\left(\frac{2}{3}\right)^{2}+\frac{1}{2} \cdot\left(\frac{1}{2}\right)^{2}\right]-\left[\frac{1}{2} \cdot\left(\frac{2}{3}\right)+\frac{1}{2} \cdot\left(\frac{1}{2}\right)\right]^{2}
$$

$$
=\frac{1}{144}
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =\operatorname{Cov}\left(\sum_{1 \leq i \leq 3} X_{i}, \sum_{1 \leq j \leq 3} X_{j}\right) \\
& =3 \cdot \operatorname{Var}\left(X_{1}\right)+6 \cdot \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
& =3\left(E\left(X_{1}^{2}\right)-E\left(X_{1}\right)^{2}\right)+6 \cdot \frac{1}{144} \\
& =3\left(\frac{7}{12}-\left(\frac{7}{12}\right)^{2}\right)+6 \cdot \frac{1}{144} \\
& =\frac{111}{144}
\end{aligned}
$$

So, $\operatorname{LLSE}(Y \mid X)=\frac{7}{4}+\frac{9}{111}\left(X-\frac{7}{4}\right)=\frac{3}{37} X+\frac{119}{74}$

3. Confidence interval

Let $\left\{X_{i}\right\}_{1 \leq i \leq n}$ be a sequence of iid Bernoulli random variables with parameter μ. Assume we have enough samples such that $P\left(\left|\frac{1}{n} \sum_{1 \leq i \leq n} X_{i}-\mu\right|>0.1\right)=0.05$.
Can you give 95% confidence interval for μ if you are given the outcomes of X_{i} ?

Solution:

$$
\left[\frac{1}{n} \sum_{1 \leq i \leq n} X_{i}-0.1, \frac{1}{n} \sum_{1 \leq i \leq n} X_{i}+0.1\right]
$$

