1. Markov Chain Terminology Test

For each of the following Markov chains, determine if it is (a) periodic and/or (b) reducible.

Solution: This chain is (a) periodic and (b) irreducible.
(b)

Solution: This chain is (a) aperiodic and (b) reducible.
(c)

Solution: This chain is (a) aperiodic and (b) irreducible.

2. Number of Ones

In this problem, we will revisit dice-rolling, except with conditional expectation.
(a) If we roll a die until we see a 6 , how many ones should we expect to see?

Solution: Let Y be the number of ones we see. Let X be the number of rolls we take until we get a 6 . We are, then, solving for $E[Y \mid X]$.
Let us first compute $E[Y \mid X]$. We know that since in each of our $k-1$ rolls before the k th, we necessarily roll a number in $\{1,2,3,4,5\}$. Thus, we have a $\frac{1}{5}$ chance of getting a one, meaning $E[Y \mid X=k]=\frac{1}{5}(k-1)$, so $E[Y \mid X]=\frac{1}{5}(X-1)$.
If this is confusing, write Y as a sum of indicator variables.

$$
Y=Y_{1}+Y_{2}+\ldots Y_{k}
$$

where Y_{i} is 1 if we see a one on the i th roll. This means

$$
E[Y \mid X=k]=E\left[Y_{1} \mid X=k\right]+E\left[Y_{2} \mid X=k\right]+\ldots E\left[Y_{k} \mid X=k\right]
$$

We know for a fact that on the k th roll, we roll a 6 , thus $E\left[Y_{k}\right]=0$. Thus, we actually consider

$$
\begin{gathered}
E\left[Y_{1} \mid X=k\right]+E\left[Y_{2} \mid X=k\right]+\ldots E\left[Y_{k-1} \mid X=k\right] \\
=(k-1) E\left[Y_{1} \mid X=k\right] \\
=(k-1) \operatorname{Pr}\left[Y_{1} \mid X=k\right] \\
\quad=(k-1) \frac{1}{5}
\end{gathered}
$$

Using the Law of Total Expectation, we know that

$$
\begin{aligned}
E[E[Y \mid X]] & =E[Y]=E\left[\frac{1}{5}(X-1)\right] \\
& =\frac{1}{5} E[X-1] \\
& =\frac{1}{5}(E[X]-1)
\end{aligned}
$$

Since, $\operatorname{XGeom}\left(\frac{1}{6}\right)$, the expected number of rolls until we roll a 6 is $E[X]=6$.

$$
\begin{gathered}
=\frac{1}{5}(6-1) \\
=1
\end{gathered}
$$

(b) If we roll a die until we see a number greater than 3 , how many ones should we expect to see?

Solution:

The first change from the previous part is the probability of rolling a 1 , given we have made k rolls to get to our first roll that satisfies the condition. This makes

$$
\begin{gathered}
E[E[Y \mid X]]=E[Y]=E\left[\frac{1}{3}(X-1)\right] \\
=\frac{1}{3}(E[X]-1)
\end{gathered}
$$

Since $X \operatorname{Geom}\left(\frac{1}{2}\right)$, we know that the expected number of rolls until we roll a number greater than 3 is $E[X]=2$. this makes $E[Y]=\frac{1}{3}$.
(c) We add r red marbles, b blue marbles and g green marbles to the same bag. If we sample balls, with replacement, until we get 3 red marbles (not necessarily consecutively), how many blue marbles should we expect to see?

Solution:

Let Y be the number of blue marbles we see. Let X be the samples we take until we get 3 red marbles. We are, then, solving for $E[Y \mid X]$.
Let us first compute $E[Y \mid X]$. Let Y_{i} be 1 if we see a blue marble on the i th roll and $Y=\sum_{i}^{k} Y_{i}$. This means

$$
\begin{gathered}
E[Y \mid X=k]=E\left[\sum_{i}^{k} Y_{i} \mid X=k\right] \\
=\sum_{i}^{k} E\left[Y_{i} \mid X=k\right]
\end{gathered}
$$

However, We also three Y_{i} have $E\left[Y_{i}\right]=0$, since there are necessarily 3 . This means the other $k-3$ marbles are necessarily blue or green.

$$
\begin{gathered}
=\sum_{i \neq a, b, c}^{k} \operatorname{Pr}\left[Y_{i} \mid X=k\right] \\
=\sum_{i \neq a, b, c}^{k} \frac{b}{b+g} \\
=(k-3) \frac{b}{b+g}
\end{gathered}
$$

This means $E[Y \mid X]=(X-3) \frac{b}{b+g}$.
Using the Law of Total Expectation, we know that

$$
\begin{aligned}
E[E[Y \mid X]] & =E[Y]=E\left[\frac{b}{b+g}(X-3)\right] \\
& =\frac{b}{b+g} E[X-3] \\
& =\frac{b}{b+g}(E[X]-3)
\end{aligned}
$$

We know that $E[X]=3 \frac{r+g+b}{r}$.

$$
E[Y]=\frac{b}{b+g}\left(3 \frac{r+g+b}{r}-3\right)
$$

