CS 70 Discrete Mathematics and Probability Theory Spring 2016 Walrand and Rao Discussion 13b

1. Markov Chain Terminology Test

For each of the following Markov chains, determine if it is (a) periodic and/or (b) reducible.

2. Number of Ones

In this problem, we will revisit dice-rolling, except with conditional expectation.

(a) If we roll a die until we see a 6, how many ones should we expect to see?

Solution: Let *Y* be the number of ones we see. Let *X* be the number of rolls we take until we get a 6. We are, then, solving for E[Y|X].

Let us first compute E[Y|X]. We know that since in each of our k-1 rolls before the *k*th, we necessarily roll a number in $\{1, 2, 3, 4, 5\}$. Thus, we have a $\frac{1}{5}$ chance of getting a one, meaning $E[Y|X = k] = \frac{1}{5}(k-1)$, so $E[Y|X] = \frac{1}{5}(X-1)$.

If this is confusing, write Y as a sum of indicator variables.

$$Y = Y_1 + Y_2 + \dots Y_k$$

where Y_i is 1 if we see a one on the *i*th roll. This means

$$E[Y|X = k] = E[Y_1|X = k] + E[Y_2|X = k] + \dots E[Y_k|X = k]$$

We know for a fact that on the *k*th roll, we roll a 6, thus $E[Y_k] = 0$. Thus, we actually consider

$$E[Y_1|X = k] + E[Y_2|X = k] + \dots E[Y_{k-1}|X = k]$$

= $(k-1)E[Y_1|X = k]$
= $(k-1)Pr[Y_1|X = k]$
= $(k-1)\frac{1}{5}$

Using the Law of Total Expectation, we know that

$$E[E[Y|X]] = E[Y] = E[\frac{1}{5}(X-1)]$$
$$= \frac{1}{5}E[X-1]$$
$$= \frac{1}{5}(E[X]-1)$$

Since, $XGeom(\frac{1}{6})$, the expected number of rolls until we roll a 6 is E[X] = 6.

$$=\frac{1}{5}(6-1)$$
$$=1$$

(b) If we roll a die until we see a number greater than 3, how many ones should we expect to see?

Solution:

The first change from the previous part is the probability of rolling a 1, given we have made k rolls to get to our first roll that satisfies the condition. This makes

$$E[E[Y|X]] = E[Y] = E[\frac{1}{3}(X-1)]$$
$$= \frac{1}{3}(E[X]-1)$$

Since $XGeom(\frac{1}{2})$, we know that the expected number of rolls until we roll a number greater than 3 is E[X] = 2.

this makes $E[Y] = \frac{1}{3}$.

(c) We add *r* red marbles, *b* blue marbles and *g* green marbles to the same bag. If we sample balls, with replacement, until we get 3 red marbles (not necessarily consecutively), how many blue marbles should we expect to see?

Solution:

Let *Y* be the number of blue marbles we see. Let *X* be the samples we take until we get 3 red marbles. We are, then, solving for E[Y|X].

Let us first compute E[Y|X]. Let Y_i be 1 if we see a blue marble on the *i*th roll and $Y = \sum_{i=1}^{k} Y_i$. This means

$$E[Y|X = k] = E[\sum_{i=1}^{k} Y_i|X = k]$$
$$= \sum_{i=1}^{k} E[Y_i|X = k]$$

However, We also three Y_i have $E[Y_i] = 0$, since there are necessarily 3. This means the other k - 3 marbles are necessarily blue or green.

$$= \sum_{i \neq a,b,c}^{k} Pr[Y_i|X = k]$$
$$= \sum_{i \neq a,b,c}^{k} \frac{b}{b+g}$$
$$= (k-3)\frac{b}{b+g}$$

This means $E[Y|X] = (X-3)\frac{b}{b+g}$. Using the Law of Total Expectation, we know that

$$E[E[Y|X]] = E[Y] = E[\frac{b}{b+g}(X-3)]$$
$$= \frac{b}{b+g}E[X-3]$$
$$= \frac{b}{b+g}(E[X]-3)$$

We know that $E[X] = 3\frac{r+g+b}{r}$.

$$E[Y] = \frac{b}{b+g}(3\frac{r+g+b}{r}-3)$$