CS 70 Discrete Mathematics and Pro]oalaility Theory
Spring 2016 Rao and Walrand Discussion 2A Sol

1. Power Inequality
Use induction to prove that for all integers n > 1, 2" +3" < 5",

We use induction on n. The base case n = 1 is true because 2+ 3 = 5. Assume the inequality holds for some
n> 1. For n+ 1, we can write:

(%)
2n+] +3I1+1 — 2'211_*_3_3}1 < 32?1_"_33}’! — 3(2n+3n) S 3'511 < 5'5n :5n+1’
where the inequality (*) follows from the induction hypothesis. This completes the induction.

2. Triangle Inequality

Recall the triangle inequality, which states that for real numbers x; and x;,
lxr 22| <oy | + [
Use induction to prove the generalized triangle inequality:

g o+ x| < x|+ x| 4 |

We use induction on n > 2. The base case n = 2 is the usual triangle inequality. Assume the inequality holds
for some n > 2 (this is the inductive hypothesis). For n+ 1, we can write:

|1 +x2+ - xn x| < JxpHxo 4 x|+ x| ( by the usual triangle inequality)
< foer | 4 o 4 A x| 1] ( by the induction hypothesis).

This completes the induction.

3. (Induction) Prove that, for any positive integer n, Y | i> = w.

s Base case: whenn=1,Y} i*=1= W.
k(k+1)(2k+1)

» Inductive hypothesis: assume for n =k > 1 that Y¥_, 2 = 3 .

s
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* Inductive step:

kfﬁ = (fﬂ)Jr (k+1)

= kErD@EETL) 1)6(2k+1)+(k+1)2 (by the inductive hypothesis)
k(k+1)(2k+1)+6(k+1)?
(k+1)(k(2k£1)+6(k+1))

(k+1)(2k2+2+6k+6)

(k+1)(2k246r7k+6)

(k+1)(k46—2)(2k+3)
(k+1)((ki1)+61)(2(k+1)+1).

By the principle of induction, the claim is proved.

. Convergence of Series

Use induction to prove that for all integers n > 1,

1
Hint: Strengthen the induction hypothesis to Z EYEE) <2-— %
We use induction on n. The base case n = 1 is true because 1/3 < 1. Assume the inequality holds for some
n > 1. For n+ 1, by the inductive hypothesis, we have that

ntl g noo 1 1 1

= <2
k;l 3k3/2 k;] 3k3/2 - 3(11—1— 1)3/2 - \/ﬁ - 3(11—1— 1)3/2

Thus, to prove our claim, it suffices to show that

1 1 1
<

Va3 02 S T gl

This is a purely arithmetic problem and there are multiple ways to proceed.

ey

Notice that to prove the inequality (1), it suffices to show that

vnt+l—yn 1 1 - 1 1

CUnvntl Vn VLl 34132 3mt )il

which is equivalent to showing that
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3(n+1)
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So we want to show
\/n+1> 1 +1_3n+4
v T 3(n+1) 3n+3’

and squaring both sides means this is equivalent to

ntl (3n+4)?
n — (3n+3)%

At this point we cross-multiply, so we just need to show that

(n+1)(3n+3)> > n(3n+4)>.
This is something that can be easily seen by expanding both sides and canceling terms, so we have shown
Equation (1).

This computation allows us to conclude that

(| noo 1 1 1 (1) 1

1 _ <o 12, 1
Ly~ Lsen P30 S v 3pa o =2 vt

where we have used equation (1) for the last inequality. This concludes the induction.

. Fibonacci: for home.

Recall, the Fibonacci numbers, defined recursively as F; =1, F; =1 and F,, = F,,_, + F,_1. Prove that every
third Fibonacci number is even. For example, F3 = 2 is even and Fg = 8 is even.

First, we should prove that all the fibonacci numbers are integer by induction: P(k) is “Fy is an integer.” This
follows from the fact that F; and F, are integer, and the induction step follows from F; = Fj_; + F;_», the
(strong) induction hypothesis that F;_; and F_, are integers and the fact that the integers are closed under
addition.

Now we prove that for all natural numbers k > 1, F3; is even. The base case, k = 1, is that F3 = 2 is even,
which is clear.

For the induction step, we have that F;, = F,_| + F,_» = 2F,,_> 4+ F,_3. Or that F3; 3 = 2F3;11 + F3.

By the induction hypothese F3; = 2¢ for some ¢, and we have that Fs; 3 = 2(F3;1 + ¢), which implies that
it is even. Thus, by induction we have that all F3; are even.
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