CS $70 \quad$ Discrete Mathematics and Probability Theory

 Spring 2016 Rao and Walrand Discussion 2A Sol
1. Power Inequality

Use induction to prove that for all integers $n \geq 1,2^{n}+3^{n} \leq 5^{n}$.
We use induction on n. The base case $n=1$ is true because $2+3=5$. Assume the inequality holds for some $n \geq 1$. For $n+1$, we can write:

$$
2^{n+1}+3^{n+1}=2 \cdot 2^{n}+3 \cdot 3^{n}<3 \cdot 2^{n}+3 \cdot 3^{n}=3\left(2^{n}+3^{n}\right) \stackrel{(*)}{\leq} 3 \cdot 5^{n}<5 \cdot 5^{n}=5^{n+1}
$$

where the inequality $\left({ }^{*}\right)$ follows from the induction hypothesis. This completes the induction.

2. Triangle Inequality

Recall the triangle inequality, which states that for real numbers x_{1} and x_{2},

$$
\left|x_{1}+x_{2}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|
$$

Use induction to prove the generalized triangle inequality:

$$
\left|x_{1}+x_{2}+\cdots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| .
$$

We use induction on $n \geq 2$. The base case $n=2$ is the usual triangle inequality. Assume the inequality holds for some $n \geq 2$ (this is the inductive hypothesis). For $n+1$, we can write:

$$
\begin{aligned}
\left|x_{1}+x_{2}+\cdots+x_{n}+x_{n+1}\right| & \leq\left|x_{1}+x_{2}+\cdots+x_{n}\right|+\left|x_{n+1}\right| \quad \quad(\text { by the usual triangle inequality) } \\
& \leq\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|+\left|x_{n+1}\right| \quad \quad \text { (by the induction hypothesis). }
\end{aligned}
$$

This completes the induction.
3. (Induction) Prove that, for any positive integer $n, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.

- Base case: when $n=1, \sum_{i=1}^{1} i^{2}=1=\frac{1(1+1)(2 \cdot 1+1)}{6}$.
- Inductive hypothesis: assume for $n=k \geq 1$ that $\sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}$.
- Inductive step:

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{2} & =\left(\sum_{i=1}^{k} i^{2}\right)+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \quad(\text { by the inductive hypothesis) } \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} \\
& =\frac{(k+1)(k(2 k+1)+6(k+1))}{6} \\
& =\frac{(k+1)\left(2 k^{2}+k+6 k+6\right)}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6} \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} .
\end{aligned}
$$

By the principle of induction, the claim is proved.

4. Convergence of Series

Use induction to prove that for all integers $n \geq 1$,

$$
\sum_{k=1}^{n} \frac{1}{3 k^{3 / 2}} \leq 2
$$

Hint: Strengthen the induction hypothesis to $\sum_{k=1}^{n} \frac{1}{3 k^{3 / 2}} \leq 2-\frac{1}{\sqrt{n}}$.
We use induction on n. The base case $n=1$ is true because $1 / 3<1$. Assume the inequality holds for some $n \geq 1$. For $n+1$, by the inductive hypothesis, we have that

$$
\sum_{k=1}^{n+1} \frac{1}{3 k^{3 / 2}}=\sum_{k=1}^{n} \frac{1}{3 k^{3 / 2}}+\frac{1}{3(n+1)^{3 / 2}} \leq 2-\frac{1}{\sqrt{n}}+\frac{1}{3(n+1)^{3 / 2}} .
$$

Thus, to prove our claim, it suffices to show that

$$
\begin{equation*}
-\frac{1}{\sqrt{n}}+\frac{1}{3(n+1)^{3 / 2}} \leq-\frac{1}{\sqrt{n+1}} . \tag{1}
\end{equation*}
$$

This is a purely arithmetic problem and there are multiple ways to proceed.
Notice that to prove the inequality (1), it suffices to show that

$$
\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n} \sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}} \geq \frac{1}{3(n+1)^{3 / 2}}=\frac{1}{3(n+1) \sqrt{n+1}},
$$

which is equivalent to showing that

$$
\frac{\sqrt{n+1}}{\sqrt{n}}-1=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}} \geq \frac{1}{3(n+1)} .
$$

So we want to show

$$
\frac{\sqrt{n+1}}{\sqrt{n}} \geq \frac{1}{3(n+1)}+1=\frac{3 n+4}{3 n+3}
$$

and squaring both sides means this is equivalent to

$$
\frac{n+1}{n} \geq \frac{(3 n+4)^{2}}{(3 n+3)^{2}}
$$

At this point we cross-multiply, so we just need to show that

$$
(n+1)(3 n+3)^{2} \geq n(3 n+4)^{2}
$$

This is something that can be easily seen by expanding both sides and canceling terms, so we have shown Equation (1).

This computation allows us to conclude that

$$
\sum_{k=1}^{n+1} \frac{1}{3 k^{3 / 2}}=\sum_{k=1}^{n} \frac{1}{3 k^{3 / 2}}+\frac{1}{3(n+1)^{3 / 2}} \leq 2-\frac{1}{\sqrt{n}}+\frac{1}{3(n+1)^{3 / 2}} \stackrel{(1)}{\leq} 2-\frac{1}{\sqrt{n+1}}
$$

where we have used equation (1) for the last inequality. This concludes the induction.

5. Fibonacci: for home.

Recall, the Fibonacci numbers, defined recursively as $F_{1}=1, F_{2}=1$ and $F_{n}=F_{n-2}+F_{n-1}$. Prove that every third Fibonacci number is even. For example, $F_{3}=2$ is even and $F_{6}=8$ is even.

First, we should prove that all the fibonacci numbers are integer by induction: $P(k)$ is " F_{k} is an integer." This follows from the fact that F_{1} and F_{2} are integer, and the induction step follows from $F_{k}=F_{k-1}+F_{k-2}$, the (strong) induction hypothesis that F_{k-1} and F_{k-2} are integers and the fact that the integers are closed under addition.
Now we prove that for all natural numbers $k \geq 1, F_{3 k}$ is even. The base case, $k=1$, is that $F_{3}=2$ is even, which is clear.
For the induction step, we have that $F_{n}=F_{n-1}+F_{n-2}=2 F_{n-2}+F_{n-3}$. Or that $F_{3 k+3}=2 F_{3 k+1}+F_{3 k}$.
By the induction hypothese $F_{3 k}=2 q$ for some q, and we have that $F_{3 k+3}=2\left(F_{3 k+1}+q\right)$, which implies that it is even. Thus, by induction we have that all $F_{3 k}$ are even.

