CS 70 Discrete Mathematics and Pro]oalaility Theory
Spring 2016  Rao and Walrand Discussion 3B

. Tournament

A tournament is defined to be a directed graph such that for every pair of distinct nodes v and w, exactly one
of (v,w) and (w,v) is an edge (representing which player beat the other in a round-robin tournament). Prove
that every tournament has a Hamiltonian path. In other words, you can always arrange the players in a line
so that each player beats the next player in the line.

Answer:

We provide two possible answers: one using simple induction, and the other using strong induction.
Answer 1: We will prove this with induction on the number of nodes/players.

Base Case n = 1: There is only one player, so the claim is trivially true.

Inductive Hypothesis: Suppose for some n > 1, we can find a Hamiltonian path in a tournament of n players.

Inductive Step: Consider a tournament of n+- 1 players. Arbitrarily pick one player p,. to “hold out." From
our inductive hypothesis, we can arrange the remaining n players in a line, say pi, pa, ..., pn, such that p;
beat p;i for1 <i<n-—1.

Let p, be the last player that beat p, ;. If there is no such p, (i.e., p,+1 beat everyone), then we can place
pn+1 before py, and we are done. Otherwise, reorder the players as follows:

P1,P2y---sPas Pn+1,Pa+1;-- -5 DPn-
We know that p,;; must have beaten p,. by definition (or else p,+; would be the last player that beat
Pn+1)- If it turns out that a = n, we simply place p,; after p,, and we still have a valid Hamiltonian path.
Therefore, for all n > 1, there exists a Hamiltonian path in a tournament of n players. O
Answer 2: We will prove this with strong induction on the number of nodes/players.
Base Case n = 1: There is only one player, so the claim is trivially true.

Inductive Hypothesis: Suppose for all 1 < k < n, we can find a Hamiltonian path in a tournament of k
players.

Inductive Step: Consider a tournament of n players.

Arbitrarily pick one player p to “hold out.” Let S be the set of players who beat p, and let T be the set of
players who p beat. From our inductive hypothesis, we can find a Hamiltonian path in S and in 7". Finally,
to obtain a Hamiltonian path on all n players, we connect the last person in S to p, and p to the first person
inT.

Therefore, for all n > 1, there exists a Hamiltonian path in a tournament of n players. O

. Leaves in a tree

A leafin a tree is a vertex with degree 1.

(a) Prove that every tree on n > 2 vertices has at least two leaves.
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(b) What is the maximum number of leaves in a tree with n > 3 vertices?

Answer:

(a) We give a direct proof. Consider the longest path {vo,vi },{vi,v2},...,{vi—1, vk} between two vertices
x =vp and y = v in the tree (here the length of a path is how many edges it uses, and if there are
multiple longest paths then we just pick one of them). We claim that x and y must be leaves. Suppose
the contrary that x is not a leaf, so it has degree at least two. This means x is adjacent to another vertex
z different from v;. Observe that z cannot appear in the path from x to y that we are considering, for
otherwise there would be a cycle in the tree. Therefore, we can add the edge {z,x} to our path to obtain
a longer path in the tree, contradicting our earlier choice of the longest path. Thus, we conclude that x
is a leaf. By the same argument, we conclude y is also a leaf.

The case when a tree has only two leaves is called the path graph, which is the graph on V =
{1,2,...,n} withedges E = {{1,2},{2,3},...,{n—1,n}}.

(b) We claim the maximum number of leaves is n — 1. This is achieved when there is one vertex that is
connected to all other vertices (this is called the star graph).

We now show that a tree on n > 3 vertices cannot have n leaves. Suppose the contrary that there is
a tree on n > 3 vertices such that all its n vertices are leaves. Pick an arbitrary vertex x, and let y be
its unique neighbor. Since x and y both have degree 1, the vertices x,y form a connected component
separate from the rest of the tree, contradicting the fact that a tree is connected.

3. Edge-disjoint paths in hypercube

Prove that between any two distinct vertices x,y in the n-dimensional hypercube graph, there are at least n
edge-disjoint paths from x to y (i.e., no two paths share an edge, though they may share vertices).

Answer: We use induction on n > 1. The base case n = 1 holds because in this case the graph only has two
vertices V = {0, 1}, and there is 1 path connecting them. Assume the claim holds for the (n — 1)-dimensional
hypercube. Letx =x1x,...x, and y=yjy2 ...y, be distinct vertices in the n-dimensional hypercube; we want
to show there are at least n edge-disjoint paths from x to y. To do that, we consider two cases:

1. Suppose x; = y; for some index i € {1,...,n}. Without loss of generality (and for ease of explanation),

we may assume I = 1, because the hypercube is symmetric with respect to the indices. Moreover, by
interchanging the bits 0 and 1 if necessary, we may also assume x; = y; = 0. This means x and y both lie
in the O-subcube, where recall the O-subcube (respectively, the 1-subcube) is the (n — 1)-dimensional
hypercube with vertices labeled 0z (respectively, 1z) for z € {0,1}" 1.
Applying the inductive hypothesis, we know there are at least n — 1 edge-disjoint paths from x to y, and
moreover, these paths all lie within the 0-subcube. Clearly these n — 1 paths will still be edge-disjoint
in the original n-dimensional hypercube. We have an additional path from x to y that goes through the
1-subcube as follows: go from x to X, then from x’ to y’ following any path in the 1-subcube, and finally
go from y’ back to y. Here ' = 1x;...x, and y = 1y;...y, are the corresponding points of x and y in
the 1-subcube. Since this last path does not use any edges in the 0-subcube, this path is edge-disjoint
to the n — 1 paths that we have found. Therefore, we conclude that there are at least n edge-disjoint
paths from x to y.

2. Suppose x; # y; forall i € {1,...,n}. This means x and y are two opposite vertices in the hypercube,
and without loss of generality, we may assume x = 00...0 and y = 11...1. We explicitly exhibit n
paths Pp,..., P, from x to y, and we claim they are edge-disjoint.

Fori € {1,...,n}, the i-th path P, is defined as follows: start from the vertex x (which is all zeros), flip
the i-th bit to a 1, then keep flipping the bits one by one moving rightward from position i + 1 to n,
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then from position 1 moving rightward to i — 1. For example, the path P is given by
000...0 — 100...0 — 110...0 — 111...0 —» --- — 111...1
while the path P is given by
000...0 — 010...0 — 011...0 —» --- — O011...1 — 111...1

Note that the paths Py, ..., P, don’t share vertices other thanx =00...0 and y=11...1, so in particular
they must be edge-disjoint.

4. Planarity

Consider graphs with the property 7: For every three distinct vertices vy, v, v3 of graph G, there are at least
two edges among them. Prove that if G is a graph on > 7 vertices, and G has property 7', then G is nonplanar.

Answer:

Assume G is planar. Take 5 vertices, they cannot form K5, so some pair v, v, have no edge between them.
The remaining five vertices of G cannot form Kj either, so there is a second pair v3,v4 that have no edge
between them. Now consider vi,v, and any other three vertices vs,vg,v7. Since viv; is not an edge, by
property T it must be that v;v and v,v where v € {vs,vg,v7} are edges. Similarly for v3,vs,v3v and vqv
where v € vs,vg,v7 are edges. So now vy,vo,v3 on one side and vs,vg,v7 on the other form an instance of
K3 3. Contradiction.

5. Graph Coloring

Prove that a graph with maximum degree at most k is (k + 1)-colorable.

Answer: The natural way to try to prove this theorem is to use induction on k. Unfortunately, this approach
leads to disaster. It is not that it is impossible, just that it is extremely painful and would ruin your week if
you tried it on an exam. When you encounter such a disaster when using induction on graphs, it is usually
best to change what you are inducting on. In graphs, typical good choices for the induction parameter are n,
the number of nodes, or e, the number of edges.

We use induction on the number of vertices in the graph, which we denote by n. Let P(n) be the proposition
that an n-vertex graph with maximum degree at most k is (k + 1)-colorable.

Base Case n = 1: A 1-vertex graph has maximum degree 0 and is 1-colorable, so P(1) is true.

Inductive Step: Now assume that P(n) is true, and let G be an (n+ 1)-vertex graph with maximum degree
at most k. Remove a vertex v (and all edges incident to it), leaving an n-vertex subgraph,H. The maximum
degree of H is at most k, and so H is (k+ 1)-colorable by our assumption P(n). Now add back vertex v. We
can assign v a color (from the set of K+ 1 colors) that is different from all its adjacent vertices, since there
are at most k vertices adjacent to v and so at least one of the k+ 1 colors is still available. Therefore, G is
(k+ 1)-colorable. This completes the inductive step, and the theorem follows by induction.

O]
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