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1. Repeated Squaring Compute 3383 (mod 7). (Via repeated squaring!)

Solution: Here we go...
Divide 383 repeatedly by 2, flooring every time. We get the sequence

383,191,95,47,23,11,5,2,1.

So, to compute 3383, we compute:

31 mod 7≡ 3

32 mod 7≡ 2

35 mod 7≡ (32)2×3≡ 22×3≡ 12≡ 5

311 mod 7≡ 5×5×3≡ 4×3≡ 5

323 mod 7≡ 5×5×3≡ 5

347 mod 7≡ . . .≡ 5

395 mod 7≡ . . .≡ 5

3191 mod 7≡ . . .≡ 5

3383 mod 7≡ . . .≡ 5

2. Modular Potpourri

(a) Evaluate 496 (mod 5)

Solution: One way: 4≡−1 (mod 5), and (−1)96 ≡ 1
Another: 42 ≡ 1 (mod 5), so 496 = (42)48 ≡ 1 (mod 5).
Mention that it is invalid to "apply the mod to the exponent": 496 6= 41(mod 5)

(b) Prove or Disprove: There exists some x ∈ Z such that x ≡ 3 (mod 16) and x ≡ 4 (mod
6).

Solution: Impossible, consider both mod 2 (why is it valid to do so?)

(c) Prove or Disprove: 2x≡ 4 (mod 12) ⇐⇒ x≡ 2 (mod 12)

Solution: False, consider x≡ 8.

3. Just a Little Proof
Suppose that p and q are distinct odd primes and a is an integer such that gcd(a, pq) = 1.
Prove that a(p−1)(q−1)+1 ≡ a (mod pq).
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Solution: Because gcd(a, pq) = 1, we have that a does not divide p and a does not divide q.
By Fermat’s Little Theorem,

a(p−1)(q−1)+1 = (a(p−1))(q−1) ·a≡ (1)q−1 ·a≡ a (mod p).

Similarly, by Fermat’s Little Theorem, we have

a(p−1)(q−1)+1 = (a(q−1))(p−1) ·a≡ (1)p−1 ·a≡ a (mod q).

Now, we want to use this information to conclude that a(p−1)(q−1)+1 ≡ a (mod pq). We will
first take a detour and show a more general result (you could write this out separately as a
lemma if you want).

Consider the system of congruences

x≡ a (mod p)

x≡ a (mod q).

Let’s run the CRT symbolically. First off, since p and q are relatively prime, we know there
exist integers g,h such that

g · p+h ·q = 1.

We could find these via Euclid’s algorithm. By the CRT, the solution to our system of con-
gruences will be

x≡ a · y1 ·q+a · y2 · p (mod pq).

To solve for y1 and y2, we must find y1 such that

x1 · p+ y1 ·q = 1

and y2 such that
x2 ·q+ y2 · p = 1.

This is easy since we already know g · p+h ·q= 1: the answers are y1 = h and y2 = g. Finally
we can plug in to the solution to get

x≡ a ·h ·q+a ·g · p≡ a(h ·q+g · p)≡ a(1)≡ a (mod pq).

Therefore by the CRT we know that the set of solutions that satisfy both x≡ a (mod p) and
x≡ a (mod q) is exactly the set of solutions that satisfy x≡ a (mod pq).

So since a(p−1)(q−1)+1 ≡ a (mod p) and a(p−1)(q−1)+1 ≡ a (mod q), then by the CRT we
know that a(p−1)(q−1)+1 satisfies a(p−1)(q−1)+1 ≡ a (mod pq).

4. Euler’s totient function
Euler’s totient function is defined as follows:

φ(n) =| {i : 1≤ i≤ n,gcd(n, i) = 1} |

In other words, φ(n) is the total number of positive integers less than n which are relatively
prime to it. Here is a property of Euler’s totient function that you can use without proof:

For m,n such that gcd(m,n) = 1, φ(mn) = φ(m) ·φ(n).
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(a) Let p be a prime number. What is φ(p)?

Solution:
Since p is prime, all the numbers from 1 to p−1 are relatively prime to p.
So, φ(p) = p−1.

(b) Let p be a prime number and k be some positive integer. What is φ(pk)?

Solution:
The only positive integers less than pk which are not relatively prime to pk are multiples
of p.
Why is this true? This is so because the only possible prime factor which can be shared
with pk is p. Hence, if any number is not relatively prime to pk, it has to have a prime
factor of p which means that it is a multiple of p.
The multiples of p which are ≤ pk are 1 · p,2 · p, . . . , pk−1 · p. There are pk−1 of these.
The total number of positive integers less than or equal to pk is, obviously, pk.
So φ(pk) = pk− pk−1 = pk−1 · (p−1).

(c) Let p be a prime number and a be a positive integer smaller than p. What is aφ(p)

(mod p)?
(Hint: use Fermat’s Little Theorem.)

Solution:
From Fermat’s Little Theorem, and part 1,
aφ(p) ≡ ap−1 ≡ 1 (mod p)

(d) Let b be a number whose prime factors are p1, p2, . . . , pk. We can write b = pα1
1 ·

pα2
2 . . . pαk

k .
Show that for any a relatively prime to b, the following holds:

∀i ∈ {1,2, . . . ,k}, aφ(b) ≡ 1 (mod pi)

Solution: From the property of the totient function and part 3:

φ(b) = φ(pα1
1 · p

α2
2 . . . pαk

k )

= φ(pα1
1 ) ·φ(pα2

2 ) . . .φ(pαk
k )

= pα1−1
1 (p1−1) · pα2−1

2 (p2−1) . . . pαk−1
k (pk−1)

This shows that, for every pi, which is a prime factor of b, we can write φ(b) = c · (pi−
1), where c is some constant. Since a and b are relatively prime, a is also relatively
prime with pi. From Fermat’s Little Theorem:
aφ(b) ≡ ac·(pi−1) ≡ (a(pi−1))c ≡ 1c ≡ 1 mod pi

Since we picked pi arbitrarily from the set of prime factors of b, this holds for all such pi.
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