
CS 70 Discrete Mathematics and Probability Theory
Spring 2016 Rao and Walrand Discussion 8A Solutions

1. Sock etiquette

In your second week of Charm School you learn that you should only wear matching pair of socks.
In each pair, both socks must be of the same color and pattern. But all of them are in one big basket
and now you have to take a pair out. Let’s say you own n pairs of socks which are all perfectly
distinguishable (no two pairs have the same color and pattern). You are now randomly picking one
sock after the other without looking at which one you pick.

(a) How many distinct subsets of k socks are there?

Answer: You could have interpreted the question to mean either that left and right socks are
distinguishable from each other, or they are indistinguishable from each other.

For distinguishable left and right socks: We are picking k socks from 2n distinguishable socks,
so there are

(2n
k

)
= 2n!

(2n−k)!k! distinct subsets of k socks.

For indistinguishable left and right socks: This is a bit trickier. One way is to say that, for
values i ∈ {0, . . . ,bk/2c}, first choose i pairs and take both socks from these pairs, and then
choose k−2i out of the remaining n− i pairs and take one sock from these pairs. This gives the
answer

bk/2c

∑
i=0

(
n
i

)(
n− i
k−2i

)
.

You could have also told a different story and come up with an equation that looks different, but
still gives you the same answer. For example, for i∈ {0, . . . ,bk/2c}, you take k− i distinct socks
(no two from the same pair), and then choose i out of those k− i and add their matching socks
to the subset. This gives the answer

bk/2c

∑
i=0

(
n

k− i

)(
k− i

i

)
,

which is the same as the previous formula.

(b) How many distinct subsets of k socks which do not contain a pair are there?

Answer:
When k > n, there are exactly 0 subsets of k distinct socks by the pigeonhole principle. Let’s
consider the case of interest when k ≤ n.

For distinguishable left and right socks: One can construct a subset of k ≤ n socks which
does not contain a pair by the following iterative process. Begin by picking any sock. While
the number of picked socks is less than k, pick a sock belonging to a pair which has not yet
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appeared. In this process, we have 2n choices for the first sock, then 2(n− 1) choices for the
second one (as we can not pick the first sock again, nor pick the sock matching the first one),
then 2(n−2) for the second sock, etc. Since we are counting subsets and the ordering does not
matter, we divide everything by the number of ways to permute these k distinct socks, namely
k!. Hence, there are

1
k!
× (2n×2(n−1)×2(n−2)×·· ·×2(n− k+1)) =

1
k!
× 2kn!

(n− k)!

= 2k
(

n
k

)
such subsets.

For indistinguishable left and right socks: In this case, the answer is just
(n

k

)
, since we can

just take 1 sock from each pair and count the ways to make subsets of size k from this set.

(c) What is the probability of forming at least one pair when picking k socks out of the basket?

Answer: For distinguishable left and right socks:
We have:

P(there exists one pair of socks in set of k) = 1−P(there is no pair of socks in the set of k)

= 1− |{k (distinct) all unpaired socks}|
|{k (distinct) socks}|

= 1−
2k
(n

k

)(2n
k

)
= 1− 2kn!(2n− k)!

(n− k)!(2n)!

You will notice that the k! terms simplify, so we could have counted the ordered versions of
questions a) and b) instead and obtained the same result.

For indistinguishable left and right socks: In this case, we can’t use a counting argument,
since different combinations are no longer equally likely, e.g., the probability you choose 1 of
sock type 1 and 1 of sock type 2 is not the same as the probability that you choose 2 of sock type
1. We can, however, still use an independence argument, just like we did for collisions of balls
in bins (recall Discussion 11M). In this case, let a “collision” mean that we pick two socks from
the same pair. We will pick socks one at a time.
The probability of having no collisions when we pick the first sock is 1. For the second sock,
the probability of no collisions is 2n−2

2n−1 , since we have 2n− 1 socks left to choose from and
(2n−1)−1 of them won’t result in a collision. For the third sock we pick, the probability of no
collisions is 2n−4

2n−2 , since we have 2n−2 socks left to choose from and (2n−2)−2 of them won’t
result in a collision (we can’t pick the two that we’ve already picked). Continuing this pattern,
we can see that the probability of picking k socks with no collisions, assuming k ≤ 2n, is

k−1

∏
i=0

2n−2i
2n− i

= 2k
k−1

∏
i=0

n− i
2n− i

= 2k n!/(n− k)!
(2n)!/(2n− k)!

=
2kn!(2n− k)!
(n− k)!(2n)!

,
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and therefore

P(there exists one pair of socks in set of k) = 1−P(there is no pair of socks in the set of k)

= 1− 2kn!(2n− k)!
(n− k)!(2n)!

,

which is the same answer we got if we considered left and right socks to be distinguishable. It
is important to recognize why, at an intuitive level, the probability is the same for both cases.
We can pretend that someone secretly marks the right and left socks differently. But the person
picking socks randomly can’t see the marks and doesn’t need to in order to pick a sock uniformly.
A pair is a pair. So the probability must be the same.

(d) Now, in a different experiment, suppose there is exactly one sock of each pair in the basket (so
there are n socks in the basket) and we sample (with replacement) k socks from the basket. What
is the probability that we pick the same sock at least twice in the course of the experiment?

Answer: This is basically the birthday problem with n days and k people. The number of
ways to sample k socks with replacement is nk. The number of ways to sample k socks with
replacement without repetition is n× (n−1)×·· ·× (n−k+1) = n!

(n−k)! . Hence, the probability
that we sample the same sock at least twice in the course of the experiment is:

1− n!
(n− k)!nk .

2. Company Selection

Company A produces a particular device consisting of 10 components. Company A can either buy all
the components from Company S or Company T, and then uses them to produce the devices without
testing every individual component. After that, each device will be tested before leaving the factory.
The device works only if every component works properly. Each working device can be sold for x
dollars, but each non-working device must be thrown away. Products from Company S have a failure
probability of q = 0.01 while Company T has a failure probability of q/2. However, every component
from Company S costs $10 while it costs $30 from Company T. Should Company A build the device
with components from Company S or Company T in order to maximize its expected profit per device?
(Your answer will depend on x.)

Answer:

Let W denote the event that a device works. Let R be the random variable denoting the profit.

E[R] = P(W )E[R|W ]+P(WC)E[R|WC].

Let’s first consider the case when we use products from Company S. In this case, a device works
with probability P[W ] = (1− q)10. The profit made on a working device is x− 100 dollars while a
nonworking device has a profit of −100 dollars. That is, E[R|W ] = x− 100 and E[R|WC] = −100.
Using RS to denote the profit using components from Company S, the expected profit is:

E[RS] = (1−q)10(x−100)+(1− (1−q)10)(−100) = (1−q)10x−100 = (0.99)10x−100.
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If we use products from Company T. The device works with probability P[W ] = (1− q/2)10. The
profit per working device is E[R|W ] = x− 300 dollars while the profit for a nonworking device is
E[R|WC] =−300 dollars. The expected profit is:

E[RT ] = (1−q/2)10(x−300)+(1− (1−q/2)10)(−300) = (1−q/2)10x−300 = (0.995)10x−300.

To determine which Company should we use, we answerve E[RT ]≥E[RS], yielding x≥ 200/[(0.995)10−
(0.99)10] = 4280.1. So for x< $4280.1 using products from Company S results in greater profit, while
for x > $4280.1 more profit will be generated by using products from Company T.

3. Dinner Time

Now let’s move on to the actual dinner. Each person has all sorts of plates, flatwares, and glasses in
front of them, as shown in figure 1.1 The basic rule is to start using utensils furthest from your plate
and end with the closest ones. Table 1 lists the menu and the corresponding utensils.

Menu Plates Flatwares Glasses
Water - - O

Red wine - - P
White wine - - Q

Bread K L -
Soup - J -
Salad E B -
Fish F C, I -
Meat G D, H -

Dessert - M, N -

Table 1: Courses and utensils

Figure 1: Formal dinner setting

1Source: http://damoneroberts.tumblr.com/post/51078389219/home-tip-of-the-day-proper-place-setting
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(a) Ron is confused what utensils to use (‘Wait, I think I’m at the wrong Charm School..’). Fortu-
nately, he can wait for his server to select the right plates and glasses. He just needs to pick
flatwares. All he sees are, 4 forks (B, C, D, and N), 3 knives (H, I, and L), and 2 spoons (J and
M). So, for each course served, he mimics what other people are using. For example, if other
people are using a fork and a knife, he picks one fork and one knife. (He can’t tell the difference
between each fork, but can separate forks from knives and spoons just fine.) What is the proba-
bility he uses all utensils correctly? Each utensil is collected after each course and can’t be used
twice.

Answer: The total number of ways to permute the forks, knives, and spoons is 4! ·3! ·2!. Since

there is only 1 right way, the probability is
1

4!3!2!
=

1
288

. 2 Answer:

We can think of this as Ron mentally making 3 separate orderings for forks, knives, and spoons.
For each plate he nds out what kind(s) of flatware to use, then pick them according to the orders
in his 3 lists. For example, let his lists be, forks: D, C, N, B, knives: I, H, L, and spoons: M, J,
then he picks I for bread, M for soup, D for salad, C and H for sh, N and L for meat, and B and
J for dessert. See Table 2 for illustration.

Menu Forks Knives Spoons
Bread - I -
Soup - - M
Salad D - -
Fish C H -
Meat N L -

Dessert B - J

Table 2: How Ron can use flatwares according to the example orderings (in columns).

There are 4! ways to order the forks, 3! ways to order the knives, and 2! ways to order the spoons.
So there are 4!3!2! ways to make these 3 lists. Since there is only one correct way to pick all the

flatwares, the probability he uses all utensils correctly is
1

4!3!2!
=

1
288

. 2

(b) Luna just doesn’t care. For each course she just picks one or two random flatwares so that all of
them are used at the end, and forces the server to serve on one random plate. For each drink she
picks a random glass. What is the probability she used at least two things wrong? (If a utensil
isn’t used in the course it is matched with, then it is used wrongly.)

Answer: Again, we can view choosing utensils for each meal as just virtually arranging and
using them in order. There are 4! and 3! ways to arrange plates and glasses. For flatwares, it is
trickier.

Luna can use 1 or 2 per dish. Since there are 9 of them and 6 dishes to use with, they must be
partitioned into 3 groups of one and 3 groups of two. First, we permute all flatwares and make
Luna use the first three individually, and the last 6 in pairs (or a partition of 111222). This gives

9!
2!2!2! ways to arrange them since we permute 9 flatware items but the order does not matter
for those grouped in pairs. Now, the partition 111222 can also be permuted (111222, 121122,
121212, . . . so on), with a total number of 6!

3!3! or
(6

3

)
ways. Therefore, the total number of ways

Luna can choose for all flatwares is

9!6!
2!2!2!3!3!

×4!×3! =
9!6!
2!

= 1.306×108.
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The probability of using at least two things wrong = 1 − probability of using at most one thing
wrong. There is only one way to use everything correctly. The only place Luna can use just one
thing wrong is with the flatwares where one of the paired flatwares is used with a flatware that
is supposed to be used alone, otherwise at least two things must be wrong (because the other
utensil whose place has been taken must also be wrong). For a pair of flatwares, there are 2
ways to pick just one of them, and 3 flatwares that it can be paired with (those that are supposed
to be used alone). There are 3 pairs of flatwares, so the total number of ways to use one thing
wrong = 2×3×3 = 18.

Therefore, the probability that Luna used at least two things wrong = 1− 1+18
9!6!/2

≈ 1. 2

(c) (Optional) What is the probability Hermione used all correct plates, flatwares, and glasses?

Answer: 1, duh. 2
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