CS 70 Spring 2016

1. A roulette of apples You bought 20 apples at your local farmer's market. Due to the organic nature of the apples, they are infested with worms. In particular, each apple contains a single worm with probability 0.3 (mutually independent). (leave answers unevaluated)
a) You pick up two apples a_{1} and a_{2}.
i) What is the probability that there are exactly 2 worms? What is the probability that there is exactly 1 worm? 0 worms?
$P(2$ worms $)=0.09, P(1$ worm $)=0.42, P(0$ worms $)=0.49$
ii) What is $P\left(a_{1}\right.$ has worm $\mid a_{2}$ has worm $)$?
0.3 by independence
iii) What is $P\left(a_{1}\right.$ has worm|there is exactly 1 worm among a_{1} and $\left.a_{2}\right)$?
$\frac{P\left(a_{1} \text { has worm, } a_{2} \text { has no worm }\right)}{P(\text { exactly } 1 \text { worm })}=\frac{0.3 * 0.7}{0.42}=0.5$
b) You eat all 20 apples.
i) What is the probability that you end up eating no worms?
$0.7^{20} \approx 0.0008$
ii) what is the probability that you end up eating exactly 1 worm?
$\binom{20}{1} * 0.7^{19} * 0.3 \approx 0.007$
iii) what is the probability that you end up eating exactly 2 worms?
$\binom{20}{2} * 0.7^{18} * 0.3^{2} \approx 0.028$
iv) How many apples can you eat if you want the probability of eating no worms to be at least 0.2 ?

Let k be the number of apples you eat. We want $0.7^{k}>0.2$ so $k<\frac{\log (0.2)}{\log (0.7)} \approx 4.5$, so you can eat at most 4 apples.
c) You pick a single apple at random and slice it into 3 slices. If the apple has a worm, it will be hidden in one of the slices. You bravely eat the slices one by one. Let s_{1}, s_{2}, s_{3} denote the three slices.
i) What is P (s_{1} has no worm|apple has worm)
$2 / 3$
ii) What is $P\left(s_{1}\right.$ has no worm $)$?

$$
\begin{array}{rlrl}
& P\left(s_{1} \text { has no worm }\right) & \\
\text { (by total probability) }= & P\left(s_{1} \text { has no worm } 1 \text { apple has no worm }\right) \times P(\text { apple has no worm }) \\
& +P\left(s_{1} \text { has no worm } 1 \text { apple has worm }\right) \\
= & \times P(\text { apple has worm }) \\
= & & \\
& 0.9 &
\end{array}
$$

iii) What is P (apple has no worm $\mid s_{1}$ has no worm). Compare your answer to P (apple has no worm). $\frac{P\left(\text { apple has no worm, } s_{1} \text { has no worm }\right)}{P\left(s_{1} \text { has no worm }\right)}=\frac{P(\text { apple has no worm })}{P\left(s_{1} \text { has no worm }\right)}=\frac{0.7}{0.9} \approx 0.778$

Why is the first equality true? Because if the apple has no worm means that the first slice has no worm. We can see this using a similar argument to ii)

$$
\begin{aligned}
& P\left(\text { apple has no worm }, s_{1} \text { has no worm }\right) \\
& =P(\text { apple has no worm }) * P\left(s_{1} \text { has no worm } \mid \text { apple has no worm }\right) \\
& =P(\text { apple has no worm }) * 1 \\
& =P(\text { apple has no worm })
\end{aligned}
$$

Note how it is higher than $P($ apple has no worm $)=0.7$
iv) What is $P\left(s_{2}\right.$ has no worm $\mid s_{1}$ has no worm) Compare your answer to $P\left(s_{2}\right.$ has no worm).
$P\left(s_{2}\right.$ has no worm, s_{1} has no worm $)=0.7+0.3 * 1 / 3=0.8$
note that $0.3 * 1 / 3$ came from P (apple has worm $) * P\left(s_{1}\right.$ has no worm, s_{2} has no worm I apple has worm) Using bayes rule, we get:
$P\left(s_{2}\right.$ has no worm, s_{1} has no worm $\mid s_{1}$ has no worm $)=\frac{P\left(s_{2} \text { has no worm, } s_{1} \text { has no worm }\right)}{P\left(s_{1} \text { has no worm }\right)}=\frac{0.8}{0.9} \approx 0.8888$ Interestingly, the probability got lower!
v) Using your previous answer, what is the safest way to eat 2 slices of apples?

Take 2 apples, slice each into 3 slices, eat one slice from each apple.

2. Independence in balls and bins

You have k balls and n bins labelled $1,2, \ldots, n$, where $n \geq 2$. You drop each ball uniformly at random into the bins.
a. What is the probability that bin n is empty?
$\left(\frac{n-1}{n}\right)^{k}$
b. What is the probability that bin 1 is non-empty?
$1-\left(\frac{n-1}{n}\right)^{k}$
c. What is the probability that both bin 1 and bin n are empty?
$\left(\frac{n-2}{n}\right)^{k}$
d. What is the probability that bin 1 is non-empty and bin n is empty?
$\operatorname{Pr}[$ bin 1 nonempty $\cap \operatorname{bin} n$ empty $]=\operatorname{Pr}[$ bin n empty $]-\operatorname{Pr}[$ bin 1 empty $\cap \operatorname{bin} n$ empty $]=\left(\frac{n-1}{n}\right)^{k}-\left(\frac{n-2}{n}\right)^{k}$
e. What is the probability that bin 1 is non-empty given that bin n is empty?
$\operatorname{Pr}[$ bin 1 nonempty $\mid \operatorname{bin} n$ empty $]=\frac{\operatorname{Pr}[\text { bin } 1 \text { nonempty } \cap \operatorname{bin} n \text { empty }]}{\operatorname{Pr}[\operatorname{bin} n \text { empty }]}=\frac{\left(\frac{n-1}{n}\right)^{k}-\left(\frac{n-2}{n}\right)^{k}}{\left(\frac{n-1}{n}\right)^{k}}=1-\left(\frac{n-2}{n-1}\right)^{k}$
f. What does this tell us about the independence of the two events, A : bin 1 is non-empty and B : bin n is non-empty?
If two events A and B are independent, we have $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$, which is equivalent to $\operatorname{Pr}[A]=$ $\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\operatorname{Pr}[A \mid B]$. Since $\operatorname{Pr}[A \mid B] \neq \operatorname{Pr}[A]$ in this case, it shows us that these two events are not independent.

