
CS 70 Discrete Mathematics and Probability Theory
Spring 2016 Rao and Walrand Note 9

Error Correcting Codes
We will consider two situations in which we wish to transmit information on an unreliable channel. The
first is exemplified by the internet, where the information (say a file) is broken up into packets, and the un-
reliability is manifest in the fact that some of the packets are lost (or erased) during transmission. Moreover
the packets are labeled so that the recipient knows exactly which packets were received and which were
dropped. We will refer to such errors as erasure errors. See the figure below:

In the second situation, some of the packets are corrupted during transmission due to channel noise. Now
the recipient has no idea which packets were corrupted and which were received unmodified:

In the above example, packets 1 and 4 are corrupted. These types of errors are called general errors. We will
discuss methods of encoding messages, called error correcting codes, which are capable of correcting both
erasure and general errors.

Assume that the information consists of n packets. We can assume without loss of generality that the contents
of each packet is a number modulo q (denoted by GF(q)), where q is a prime. For example, the contents of
the packet might be a 32-bit string and can therefore be regarded as a number between 0 and 232−1; then
we could choose q to be any prime larger than 232. The properties of polynomials over GF(q) (i.e., with
coefficients and values reduced modulo q) are the backbone of both error-correcting schemes. To see this,
let us denote the message to be sent by m1, . . . ,mn and make the following crucial observations:

1) There is a unique polynomial P(x) of degree n−1 such that P(i) = mi for 1 ≤ i ≤ n (i.e., P(x) contains
all of the information about the message, and evaluating P(i) gives the contents of the i-th packet).

2) The message to be sent is now m1 = P(1), . . . ,mn = P(n). We can generate additional packets by evaluat-
ing P(x) at additional points n+1,n+2, . . . ,n+ j (remember, our transmitted message must be redundant,
i.e., it must contain more packets than the original message to account for the lost or corrupted packets).
Thus the transmitted message is c1 = P(1),c2 = P(2), . . . ,cn+ j = P(n+ j). Since we are working modulo
q, we must make sure that n+ j ≤ q, but this condition does not impose a serious constraint since q is very
large.

Erasure Errors
Here we consider the setting of packets being transmitted over the internet. In this setting, the packets are
labeled and so the recipient knows exactly which packets were dropped during transmission. One additional
observation will be useful:

CS 70, Spring 2016, Note 9 1

3) By Property 2 in Note 8, we can uniquely reconstruct P(x) from its values at any n distinct points, since
it has degree n− 1. This means that P(x) can be reconstructed from any n of the transmitted packets.
Evaluating this reconstructed polynomial P(x) at x = 1, . . . ,n yields the original message m1, . . . ,mn.

Recall that in our scheme, the transmitted message is c1 = P(1),c2 = P(2), . . . ,cn+ j = P(n+ j). Thus, if we
hope to be able to correct k errors, we simply need to set j = k. The encoded message will then consist of
n+ k packets.

Example

Suppose Alice wants to send Bob a message of n = 4 packets and she wants to guard against k = 2 lost
packets. Then, assuming the packets can be coded up as integers between 0 and 6, Alice can work over
GF(7) (since 7 ≥ n+ k = 6). Suppose the message that Alice wants to send to Bob is m1 = 3, m2 = 1,
m3 = 5, and m4 = 0. She interpolates to find the unique polynomial of degree n−1 = 3 described by these
4 points: P(x) = x3 +4x2 +5 (verify that P(i) = mi for 1≤ i≤ 4).

Since k = 2, Alice must evaluate P(x) at 2 extra points: P(5) = 6 and P(6) = 1. Now, Alice can transmit
the encoded message which consists of n+k = 6 packets, where c j = P(j) for 1≤ j≤ 6. So c1 = P(1) = 3,
c2 = P(2) = 1, c3 = P(3) = 5, c4 = P(4) = 0, c5 = P(5) = 6, and c6 = P(6) = 1. Suppose packets 2 and 6
are dropped, in which case we have the following situation:

From the values that Bob received (3, 5, 0, and 6), he uses Lagrange interpolation and computes the follow-
ing delta functions:

∆1(x) =
(x−3)(x−4)(x−5)

−24

∆3(x) =
(x−1)(x−4)(x−5)

4

∆4(x) =
(x−1)(x−3)(x−5)

−3

∆5(x) =
(x−1)(x−3)(x−4)

8
.

He then reconstructs the polynomial P(x) = (3)∆1(x)+(5)∆3(x)+(0)∆4(x)+(6)∆5(x) = x3+4x2+5. Bob
then evaluates m2 = P(2) = 1, which is the packet that was lost from the original message. More generally,
no matter which two packets were dropped, following the same method Bob could still have reconstructed
P(x) and thus the original message.

Let us consider what would happen if Alice sent one fewer packet. If Alice only sent c j for 1 ≤ j ≤
n+ k−1, then with k erasures, Bob would only receive c j for n−1 distinct values j. Thus, Bob would not
be able to reconstruct P(x) (since there are exactly q polynomials of degree at most n− 1 that agree with
the n− 1 packets which Bob received). This error-correcting scheme is therefore optimal: it can recover
the n characters of the transmitted message from any n received characters, but recovery from any fewer
characters is impossible.

CS 70, Spring 2016, Note 9 2

Polynomial Interpolation
Let us take a brief digression to discuss another method of polynomial interpolation which will be useful in
handling general errors. The goal of the algorithm will be to take as input d+1 pairs (x1,y1), · · · ,(xd+1,yd+1),
and output the polynomial p(x) = adxd + · · ·+a1x+a0 such that p(xi) = yi for i = 1 to d +1.

The first step of the algorithm is to write a system of d+1 linear equations in d+1 variables: the coefficients
of the polynomial a0, . . . ,ad . Each equation is obtained by fixing x to be one of d +1 values: x1, · · · ,xd+1.
Note that in p(x), x is a variable and a0, . . . ,ad are fixed constants. In the equations below, these roles are
swapped: xi is a fixed constant and a0, . . . ,ad are variables. For example, the i-th equation is the result of
fixing x to be xi: adxd

i +ad−1xd−1
i + . . .+a0 = yi.

Now solving these equations gives the coefficients of the polynomial p(x). For example, given the 3 pairs
(−1,2), (0,1), and (2,5), we will construct the degree 2 polynomial p(x) which goes through these points.
The first equation says a2(−1)2 + a1(−1)+ a0 = 2. Simplifying, we get a2− a1 + a0 = 2. Similarly, the
second equation says a2(0)2+a1(0)+a0 = 1, or a0 = 1. And the third equation says a2(2)2+a1(2)+a0 = 5
So we get the following system of equations:

a2−a1 +a0 = 2

a0 = 1

4a2 +2a1 +a0 = 5

Substituting for a0 and multiplying the first equation by 2 we get:

2a2−2a1 = 2

4a2 +2a1 = 4

Then, adding the two equations we find that 6a2 = 6, so a2 = 1, and plugging back in we find that a1 = 0.
Thus, we have determined the polynomial p(x) = x2 + 1. To justify this method more carefully, we must
show that the equations always have a solution and that it is unique. This involves showing that a certain
determinant is non-zero, which we will leave as an exercise.

General Errors
Now let us return to general errors. General errors are much more challenging to correct than erasure errors.
This is because packets are corrupted, not erased and Bob no longer knows which packets are correct. As
we shall see shortly, Alice can still guard against k general errors, at the expense of transmitting only 2k
additional packets or characters (only twice as many as in the erasure case). Thus the encoded message
is c1, . . . ,cn+2k where c j = P(j) for 1 ≤ j ≤ n+ 2k. This means that at least n+ k of these characters are
received uncorrupted by Bob.

For example, if Alice wishes to send n = 4 characters to Bob via a modem in which k = 1 of the characters
is corrupted, she must redundantly send an encoded message consisting of 6 characters. Suppose she wants
to transmit the same message as above, and that c1 is corrupted and changed to r1 = 2. This scenario can be
visualized in the following figure:

CS 70, Spring 2016, Note 9 3

Bob’s goal is to reconstruct P(x) from the n+2k received characters r1, · · · ,rn+2k. He knows that P(i) must
equal ri on at least n+ k points (since only k points are corrupted), but he does not know which of the n+ k
values are correct. As an example, consider a possible scenario depicted in the picture below- the points
represent the message received from Alice, and the line represents P(x). In this example, n = 3, k = 1, and
the third packet is corrupted. Bob does not know the index at which the message and the polynomial deviate:

Bob attempts to construct P(x) by searching for a polynomial P′(x) with the following property: P′(i) = ri

for at least n+ k distinct values of i between 1 and n+2k. Of course, P(x) is one such polynomial. It turns
out that P(x) is actually the only polynomial with the desired property. Therefore, P′(x) must equal P(x).

Finding P(x) efficiently requires a remarkable idea, which is just about simple enough to be described here.
Suppose packets e1, . . . ,ek are corrupted. Define the degree k polynomial E(x) to be (x− e1) · · ·(x− ek).
Let us make a simple but crucial observation: P(i)E(i) = riE(i) for 1 ≤ i ≤ n+ 2k (this is true at points
i at which no error occurred since P(i) = ri, and trivially true at points i at which an error occurred since
E(i) = 0).

This observation forms the basis of a very clever algorithm invented by Berlekamp and Welch. Looking
more closely at these equalities, we will show that they are n+2k linear equations in n+2k unknowns. The
unknowns correspond to the coefficients of E(x) and Q(x) (where we define Q(x) = P(x)E(x)). Once Q(x)
and E(x) are known, we can divide Q(x) by E(x) to obtain P(x).

Since Q(x) is a polynomial of degree n+ k−1, it can be described by n+ k coefficients. E(x) is a degree k
polynomial, but its definition implies that its first coefficient must be 1. It can therefore be described by k
coefficients:

Q(x) = an+k−1xn+k−1 + · · ·+a1x+a0

E(x) = xk +bk−1xk−1 + · · ·+b1x+b0

As seen in the interpolation method above, once we fix a value i for x, Q(i) and E(i) are linear functions
of an+k−1, · · · ,a0 and bk−1, · · · ,b0 respectively. The received value ri is also fixed. Therefore the equation
Q(i) = riE(i) is a linear equation in the n+ 2k unknowns an+k−1, . . . ,a0 and bk−1, . . . ,b0. We thus have
n+2k linear equations, one for each value of i, and n+2k unknowns. We can solve these equations and get
E(x) and Q(x). We can then compute the ratio Q(x)

E(x) to obtain P(x).

CS 70, Spring 2016, Note 9 4

Example

Suppose we are working over GF(7) and Alice wants to send Bob the n = 3 characters “3,” “0,” and “6”
over a modem. Turning to the analogy of the English alphabet, this is equivalent to using only the first 7
letters of the alphabet, where a = 0,b = 1, . . . ,g = 6. So the message which Alice wishes for Bob to receive
is “dag”. Then Alice interpolates to find the polynomial

P(x) = x2 + x+1,

which is the unique polynomial of degree 2 such that P(1) = 3, P(2) = 0, and P(3) = 6.

Suppose that k = 1 character is corrupted, so she needs to transmit the n+ 2k = 5 characters P(1) = 3,
P(2) = 0, P(3) = 6, P(4) = 0, and P(5) = 3 to Bob. Suppose P(1) is corrupted, so he receives 2 instead of 3
(i.e., Alice sends the encoded message “dagad” but Bob instead receives “cagad”). Summarizing, we have
the following situation:

Let E(x) = x + b0 be the error-locator polynomial—remember, Bob doesn’t know what b0 is yet since
he doesn’t know where the error occurred. Let Q(x) = a3x3 + a2x2 + a1x+ a0. Now Bob just substitutes
x = 1,x = 2, · · · ,x = 5 into Q(x) = rxE(x) and simplifies to get five linear equations in five unknowns. Recall
that we are working modulo 7 and that ri = c′i is the value Bob received for the i-th character.

The first equation will be a3+a2+a1+a0 = 2(1+b0), which simplifies to a3+a2+a1+a0+5b0 = 2. Bob
can determine the remaining equations in the same manner, obtaining:

a3 +a2 +a1 +a0 +5b0 = 2

a3 +4a2 +2a1 +a0 = 0

6a3 +2a2 +3a1 +a0 +b0 = 4

a3 +2a2 +4a1 +a0 = 0

6a3 +4a2 +5a1 +a0 +4b0 = 1

Bob then solves this linear system and finds that a3 = 1, a2 = 0, a1 = 0, a0 = 6, and b0 = 6 (all mod 7). (As
a check, this implies that E(x) = x+6 = x−1, so the location of the error is position e1 = 1, which is correct
since the first character was corrupted from a “d” to a “c”.) This gives him the polynomials Q(x) = x3 +6
and E(x) = x− 1. He can then find P(x) by computing the quotient P(x) = Q(x)

E(x) =
x3+6
x−1 = x2 + x+ 1. Bob

notices that the first character was corrupted (since e1 = 1), so now that he has P(x), he just computes
P(1) = 3 = “d” and obtains the original, uncorrupted message “dag”.

Finer points

Two points need further discussion. How do we know that the n+2k equations are consistent? What if they
have no solution? This is simple. The equations must be consistent since Q(x) = P(x)E(x) together with the
error locator polynomial E(x) gives a solution.

CS 70, Spring 2016, Note 9 5

A more interesting question is this: how do we know that the n+2k equations are independent, i.e., how do
we know that there aren’t other spurious solutions in addition to the real solution that we are looking for?
Put more mathematically, how do we know that the solution Q′(x) and E ′(x) that we reconstruct satisfies the
property that E ′(x) divides Q′(x) and that Q′(x)

E ′(x) =
Q(x)
E(x) = P(x)?

We claim that Q(x)E ′(x) = Q′(x)E(x) for 1≤ x≤ n+2k. Since the degree of both Q(x)E ′(x) and Q′(x)E(x)
is n+2k−1 and they are equal at n+2k points, it follows from Property 2 of Note 7 that they are the same
polynomial. Rearranging, we get Q′(x)

E ′(x) =
Q(x)
E(x) = P(x).

Why is the claim above true? Based on our method of obtaining Q′(x) and E ′(x), we know that Q′(i) =
riE ′(i) and Q(i) = riE(i). Now assume E(i) is 0. Then Q(i) is also 0, so both Q(i)E ′(i) and Q′(i)E(i) are 0
and the claim holds. The same reasoning applies when E ′(i) is 0. If both E(i) and E ′(i) are not 0, we can
rearrange the above equality to obtain Q′(i)

E ′(i) =
Q(i)
E(i) , which implies the claim.

CS 70, Spring 2016, Note 9 6

