Programming Computers

 $Programming \ Computers \equiv Superpower!$

Programming Computers \equiv Superpower! What are your super powerful programs doing?

Programming Computers ≡ Superpower!

What are your super powerful programs doing?

Logic and Proofs!

Programming Computers

Superpower!

What are your super powerful programs doing?

Logic and Proofs!

Induction

Recursion.

 $Programming \ Computers \equiv Superpower!$

What are your super powerful programs doing? Logic and Proofs! Induction = Recursion.

What can computers do?

 $Programming \ Computers \equiv Superpower!$

What are your super powerful programs doing?
Logic and Proofs!
Induction = Recursion.

What can computers do?
Work with discrete objects.

Programming Computers \equiv Superpower!

What are your super powerful programs doing?
Logic and Proofs!
Induction = Recursion.

What can computers do?
Work with discrete objects.
Discrete Math

Programming Computers ≡ Superpower!

What are your super powerful programs doing?

Logic and Proofs!

 $Induction \equiv Recursion.$

What can computers do? Work with discrete objects.

 $Programming \ Computers \equiv Superpower!$

What are your super powerful programs doing?
Logic and Proofs!
Induction ≡ Recursion.

What can computers do?

Work with discrete objects.

Discrete Math \implies immense application.

Computers learn and interact with the world?

Programming Computers \equiv Superpower!

What are your super powerful programs doing?
Logic and Proofs!
Induction = Recursion.

What can computers do?
Work with discrete objects.
Discrete Math ⇒ immense application.

Computers learn and interact with the world? E.g. machine learning, data analysis.

Programming Computers ≡ Superpower!

What are your super powerful programs doing?
Logic and Proofs!
Induction = Recursion.

What can computers do?
Work with discrete objects.
Discrete Math ⇒ immense application.

Computers learn and interact with the world? E.g. machine learning, data analysis. Probability!

Programming Computers ≡ Superpower!

What are your super powerful programs doing?
Logic and Proofs!
Induction = Recursion.

What can computers do?
Work with discrete objects.
Discrete Math ⇒ immense application.

Computers learn and interact with the world? E.g. machine learning, data analysis. Probability!

See note 1, for more discussion.

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final.

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final. midterm 1 before drop date. (2/16)

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final. midterm 1 before drop date. (2/16) midterm 2 before grade option change. (3/29)

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final. midterm 1 before drop date. (2/16) midterm 2 before grade option change. (3/29)

Questions

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final. midterm 1 before drop date. (2/16) midterm 2 before grade option change. (3/29)

Questions \implies piazza:

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final. midterm 1 before drop date. (2/16) midterm 2 before grade option change. (3/29)

Questions \Longrightarrow piazza:

piazza.com/berkeley/spring2016/cs70

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final. midterm 1 before drop date. (2/16) midterm 2 before grade option change. (3/29)

Questions \implies piazza:

piazza.com/berkeley/spring2016/cs70

Also: Available after class.

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final. midterm 1 before drop date. (2/16) midterm 2 before grade option change. (3/29)

Questions \Longrightarrow piazza:

piazza.com/berkeley/spring2016/cs70

Also: Available after class.

Assessment:

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final. midterm 1 before drop date. (2/16) midterm 2 before grade option change. (3/29)

Questions \Longrightarrow piazza:

piazza.com/berkeley/spring2016/cs70

Also: Available after class. Assessment: Two options:

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final. midterm 1 before drop date. (2/16) midterm 2 before grade option change. (3/29)

Questions \Longrightarrow piazza:

piazza.com/berkeley/spring2016/cs70

Also: Available after class. Assessment: Two options:

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16 Explains policies, has homework, midterm dates, etc. Two midterms, final. midterm 1 before drop date. (2/16) midterm 2 before grade option change. (3/29) Questions \Longrightarrow piazza: piazza.com/berkeley/spring2016/cs70 Also: Available after class. Assessment: Two options: Test Only. Midterm 1: 25%

Midterm 2: 25% Final: 49% Sundry: 1%

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final.

midterm 1 before drop date. (2/16)

midterm 2 before grade option change. (3/29)

Questions \implies piazza:

piazza.com/berkeley/spring2016/cs70

Also: Available after class. Assessment: Two options:

Test Only.

Midterm 1: 25% Midterm 2: 25%

Final: 49%

Sundry: 1%

Test plus Homework.
Test Only Score: 85%
Homework Score: 15%

Instructors: Satish Rao and Jean Walrand.

Instructors: Satish Rao and Jean Walrand.

Both are available throughout the course.

Instructors: Satish Rao and Jean Walrand.

Both are available throughout the course.

Office hours or by email, technical and administrative.

Instructors: Satish Rao and Jean Walrand.

Both are available throughout the course.

Office hours or by email, technical and administrative.

Satish Rao: mostly discrete math.

Instructors: Satish Rao and Jean Walrand.

Both are available throughout the course.

Office hours or by email, technical and administrative.

Satish Rao: mostly discrete math.

Jean Walrand: mostly probability.

Jean Walrand – Prof. of EECS – UCB 257 Cory Hall – walrand@berkeley.edu

I was born in Belgium⁽¹⁾ and came to Berkeley for my PhD. I have been teaching at UCB since 1982.

My wife and I live in Berkeley. We have two daughters (UC alumni – Go Bears!). We like to ski and play tennis (both poorly). We enjoy classical music and jazz.

My research interests include stochastic systems, networks and game theory.

Satish Rao

17th year at Berkeley.

Satish Rao

17th year at Berkeley. PhD: Long time ago,

Satish Rao

17th year at Berkeley. PhD: Long time ago, far

17th year at Berkeley. PhD: Long time ago, far far away.

17th year at Berkeley. PhD: Long time ago, far far away. Research: Theory

17th year at Berkeley. PhD: Long time ago, far far away. Research: Theory (Algorithms)

17th year at Berkeley.

PhD: Long time ago, far far away.

Research: Theory (Algorithms)

Taught: 170, 174, 70, 270, 273, 294,

17th year at Berkeley.

PhD: Long time ago, far far away.

Research: Theory (Algorithms)

Taught: 170, 174, 70, 270, 273, 294, 375, ...

17th year at Berkeley.

PhD: Long time ago, far far away. Research: Theory (Algorithms)

Taught: 170, 174, 70, 270, 273, 294, 375, ...

Recovering Helicopter(ish) parent of 3 College(ish) kids.

17th year at Berkeley.

PhD: Long time ago, far far away. Research: Theory (Algorithms)

Taught: 170, 174, 70, 270, 273, 294, 375, ...

Recovering Helicopter(ish) parent of 3 College(ish) kids.

Suppose we have four cards on a table:

▶ 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.

- ▶ 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person's destination on one side, and mode of travel.

- ▶ 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person's destination on one side, and mode of travel.
- Consider the theory:

- ▶ 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person's destination on one side, and mode of travel.
- Consider the theory: "If a person travels to Chicago, he/she flies."

- ▶ 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person's destination on one side, and mode of travel.
- Consider the theory: "If a person travels to Chicago, he/she flies."

- ▶ 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person's destination on one side, and mode of travel.
- Consider the theory: "If a person travels to Chicago, he/she flies."
- Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Suppose we have four cards on a table:

- 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person's destination on one side, and mode of travel.
- Consider the theory: "If a person travels to Chicago, he/she flies."
- Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Suppose we have four cards on a table:

- 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person's destination on one side, and mode of travel.
- Consider the theory: "If a person travels to Chicago, he/she flies."
- Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Answer:

Suppose we have four cards on a table:

- 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person's destination on one side, and mode of travel.
- Consider the theory: "If a person travels to Chicago, he/she flies."
- Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Answer: Later.

Today: Note 1.

Today: Note 1. Note 0 is background.

Today: Note 1. Note 0 is background. Do read/skim it.

Today: Note 1. Note 0 is background. Do read/skim it.

The language of proofs!

Today: Note 1. Note 0 is background. Do read/skim it. The language of proofs!

- 1. Propositions.
- 2. Propositional Forms.
- 3. Implication.
- 4. Truth Tables
- Quantifiers
- 6. More De Morgan's Laws

```
\sqrt{2} is irrational

2+2=4

2+2=3

826th digit of pi is 4

Johny Depp is a good actor

All evens > 2 are sums of 2 primes

4+5

x+x

Alice travelled to Chicago
```

```
\sqrt{2} is irrational Proposition 2+2=4 2+2=3 826th digit of pi is 4 Johny Depp is a good actor All evens > 2 are sums of 2 primes 4+5 x+x Alice travelled to Chicago
```

```
\sqrt{2} is irrational Proposition True 2+2=4 2+2=3 826th digit of pi is 4 Johny Depp is a good actor All evens > 2 are sums of 2 primes 4+5 x+x Alice travelled to Chicago
```

True

 $\sqrt{2}$ is irrational Proposition 2+2 = 4 Proposition 2+2 = 3 826th digit of pi is 4 Johny Depp is a good actor All evens > 2 are sums of 2 primes 4+5 x+x Alice travelled to Chicago

```
\sqrt{2} is irrational Proposition True 2+2 = 4 Proposition True 2+2 = 3 826th digit of pi is 4 Johny Depp is a good actor All evens > 2 are sums of 2 primes 4+5 x+x Alice travelled to Chicago
```

 $\sqrt{2}$ is irrational 2+2 = 4 2+2 = 3 826th digit of pi is 4 Johny Depp is a good actor All evens > 2 are sums of 2 primes 4+5 x+xAlice travelled to Chicago Proposition Proposition Proposition

True True

 $\sqrt{2}$ is irrational 2+2=4 2+2=3826th digit of pi is 4 Johny Depp is a good actor All evens > 2 are sums of 2 primes 4+5 x+xAlice travelled to Chicago Proposition Proposition Proposition

True True False

 $\sqrt{2}$ is irrational 2+2 = 4 2+2 = 3 826th digit of pi is 4 Johny Depp is a good actor All evens > 2 are sums of 2 primes 4+5 x+xAlice travelled to Chicago Proposition Proposition Proposition Proposition True True False

 $\sqrt{2}$ is irrational 2+2=4 2+2=3826th digit of pi is 4 Johny Depp is a good actor All evens > 2 are sums of 2 primes 4+5 x+xAlice travelled to Chicago Proposition Proposition Proposition Proposition

True True False False

$\sqrt{2}$ is irrational	
2+2=4	
2+2=3	
826th digit of pi is 4	
Johny Depp is a good actor	Not
All evens > 2 are sums of 2 primes	
4+5	
X + X	
Alice travelled to Chicago	

Proposition True
Proposition True
Proposition False
Proposition False
t a Proposition

$\sqrt{2}$ is irrational
2+2 = 4
2+2=3
826th digit of pi is 4
Johny Depp is a good actor
All evens > 2 are sums of 2 primes
4+5
X + X
Alice travelled to Chicago

Proposition True
Proposition True
Proposition False
Proposition
Proposition

X + X

Alice travelled to Chicago

$\sqrt{2}$ is irrational	Proposition	True
2+2 = 4	Proposition	True
2+2 = 3	Proposition	False
826th digit of pi is 4	Proposition	False
Johny Depp is a good actor	Not a Proposition	
All evens > 2 are sums of 2 primes	Proposition	False
4 + 5	-	

$\sqrt{2}$ is irrational	Proposition	True
2+2 = 4	Proposition	True
2+2=3	Proposition	False
826th digit of pi is 4	Proposition	False
Johny Depp is a good actor	Not a Proposition	
All evens > 2 are sums of 2 primes	Proposition	False
4+5	Not a Proposition.	
X + X	-	
Alice travelled to Chicago		

$\sqrt{2}$ is irrational	Proposition	True
2+2 = 4	Proposition	True
2+2 = 3	Proposition	False
826th digit of pi is 4	Proposition	False
Johny Depp is a good actor	Not a Proposition	
All evens > 2 are sums of 2 primes	Proposition	False
4+5	Not a Proposition.	
X + X	Not a Proposition.	
Alice travelled to Chicago		

$\sqrt{2}$ is irrational	Proposition	True
2+2=4	Proposition	True
2+2=3	Proposition	False
826th digit of pi is 4	Proposition	False
Johny Depp is a good actor	Not a Proposition	
All evens > 2 are sums of 2 primes	Proposition	False
4+5	Not a Proposition.	
X + X	Not a Proposition.	
Alice travelled to Chicago	Proposition.	

Again: "value" of a proposition is ...

Propositions: Statements that are true or false.

$\sqrt{2}$ is irrational	Proposition	True
2+2=4	Proposition	True
2+2 = 3	Proposition	False
826th digit of pi is 4	Proposition	False
Johny Depp is a good actor	Not a Proposition	
All evens > 2 are sums of 2 primes	Proposition	False
4+5	Not a Proposition.	
X + X	Not a Proposition.	
Alice travelled to Chicago	Proposition.	False

Again: "value" of a proposition is ... True or False

Put propositions together to make another...

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \wedge Q$ " is True when both P and Q are True.

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \wedge Q$ " is True when both P and Q are True. Else False.

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \land Q$ " is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \wedge Q$ " is True when both P and Q are True. Else False.

Disjunction ("or"): P∨Q

" $P \lor Q$ " is True when at least one P or Q is True.

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \wedge Q$ " is True when both P and Q are True. Else False.

Disjunction ("or"): P∨Q

" $P \lor Q$ " is True when at least one P or Q is True . Else False .

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \wedge Q$ " is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

" $P \lor Q$ " is True when at least one P or Q is True . Else False .

Negation ("not"): $\neg P$

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \wedge Q$ " is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

" $P \lor Q$ " is True when at least one P or Q is True . Else False .

Negation ("not"): $\neg P$

" $\neg P$ " is True when P is False.

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \wedge Q$ " is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

" $P \lor Q$ " is True when at least one P or Q is True . Else False .

Negation ("not"): $\neg P$

" $\neg P$ " is True when P is False. Else False.

```
Put propositions together to make another...
```

Conjunction ("and"): $P \wedge Q$

" $P \land Q$ " is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

" $P \lor Q$ " is True when at least one P or Q is True . Else False .

Negation ("not"): $\neg P$

" $\neg P$ " is True when P is False. Else False.

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \wedge Q$ " is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

" $P \lor Q$ " is True when at least one P or Q is True . Else False .

Negation ("not"): $\neg P$

" $\neg P$ " is True when P is False. Else False.

$$\neg$$
 " $(2+2=4)$ " – a proposition that is ...

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \wedge Q$ " is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

" $P \lor Q$ " is True when at least one P or Q is True . Else False .

Negation ("not"): $\neg P$

" $\neg P$ " is True when P is False. Else False.

$$\neg$$
 " $(2+2=4)$ " – a proposition that is ... False

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \land Q$ " is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

" $P \lor Q$ " is True when at least one P or Q is True . Else False .

Negation ("not"): $\neg P$

" $\neg P$ " is True when P is False. Else False.

$$\neg$$
 " $(2+2=4)$ " – a proposition that is ... False

"
$$2+2=3$$
" \wedge " $2+2=4$ " – a proposition that is ...

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \land Q$ " is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

" $P \lor Q$ " is True when at least one P or Q is True . Else False .

Negation ("not"): $\neg P$

" $\neg P$ " is True when P is False. Else False.

$$\neg$$
 " $(2+2=4)$ " – a proposition that is ... False

"
$$2+2=3$$
" \wedge " $2+2=4$ " – a proposition that is ... False

Put propositions together to make another... Conjunction ("and"): $P \wedge Q$ " $P \wedge Q$ " is True when both P and Q are True . Else False . Disjunction ("or"): $P \vee Q$ " $P \vee Q$ " is True when at least one P or Q is True . Else False . Negation ("not"): $\neg P$

Examples:

" $\neg P$ " is True when P is False. Else False.

```
Put propositions together to make another...
Conjunction ("and"): P \wedge Q
   "P \wedge Q" is True when both P and Q are True. Else False.
Disjunction ("or"): P \vee Q
   "P \vee Q" is True when at least one P or Q is True. Else False.
Negation ("not"): \neg P
   "\neg P" is True when P is False. Else False.
Examples:
```

"2+2=4" – a proposition that is ... False
"2+2=3"
$$\wedge$$
 "2+2=4" – a proposition that is ... False
"2+2=3" \vee "2+2=4" – a proposition that is ... True

```
Put propositions together to make another...
Conjunction ("and"): P \wedge Q
   "P \wedge Q" is True when both P and Q are True. Else False.
Disjunction ("or"): P \vee Q
   "P \vee Q" is True when at least one P or Q is True. Else False.
Negation ("not"): \neg P
   "\neg P" is True when P is False. Else False.
Examples:
```

"2+2=4" – a proposition that is ... False
"2+2=3"
$$\wedge$$
 "2+2=4" – a proposition that is ... False
"2+2=3" \vee "2+2=4" – a proposition that is ... True

$$P = \sqrt[4]{2}$$
 is rational"

```
P = "\sqrt{2} is rational"

Q = "826th digit of pi is 2"
```

```
P = "\sqrt{2} is rational"

Q = "826th digit of pi is 2"
```

```
P = "\sqrt{2} is rational"

Q = "826th digit of pi is 2"

P is ...
```

```
P = "\sqrt{2} is rational"

Q = "826th digit of pi is 2"

P is ...False.
```

```
P = "\sqrt{2} is rational"

Q = "826th digit of pi is 2"

P is ...False .

Q is ...
```

```
P = "\sqrt{2} is rational"

Q = "826th digit of pi is 2"

P is ...False .

Q is ...True .
```

```
P = "\sqrt{2} is rational"

Q = "826th digit of pi is 2"

P is ...False .

Q is ...True .
```

 $P \wedge Q \dots$

```
P = "\sqrt{2} is rational"

Q = "826th digit of pi is 2"

P is ...False .

Q is ...True .
```

 $P \wedge Q \dots$ False

```
P = "\sqrt{2} is rational"

Q = "826th digit of pi is 2"

P is ...False .

Q is ...True .

P \wedge Q ... False

P \vee Q ...
```

```
P = "\sqrt{2} is rational"

Q = "826th digit of pi is 2"

P is ...False .

Q is ...True .
```

 $P \wedge Q \dots$ False

 $P \lor Q \dots$ True

```
P= "\sqrt{2} is rational"

Q= "826th digit of pi is 2"

P is ...False .

Q is ...True .

P \wedge Q ... False

P \vee Q ... True

\neg P ...
```

```
P= "\sqrt{2} is rational"

Q= "826th digit of pi is 2"

P is ...False .

Q is ...True .

P \wedge Q ... False

P \vee Q ... True
```

¬*P* ... True

Propositions:

 P_1 - Person 1 rides the bus.

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

....

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

. . . .

But we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn't.

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

....

But we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn't.

Propositional Form:

$$\neg (((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))$$

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

....

But we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn't.

Propositional Form:

$$\neg(((P_1\vee P_2)\wedge(P_3\vee P_4))\vee((P_2\vee P_3)\wedge(P_4\vee\neg P_5)))$$

Can person 3 ride the bus?

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

....

But we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn't.

Propositional Form:

$$\neg (((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))$$

Can person 3 ride the bus?

Can person 3 and person 4 ride the bus together?

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

....

But we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn't.

Propositional Form:

$$\neg (((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))$$

Can person 3 ride the bus?

Can person 3 and person 4 ride the bus together?

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

....

But we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn't.

Propositional Form:

$$\neg (((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))$$

Can person 3 ride the bus?

Can person 3 and person 4 ride the bus together?

This seems ...

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

....

But we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn't.

Propositional Form:

$$\neg (((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))$$

Can person 3 ride the bus?

Can person 3 and person 4 ride the bus together?

This seems ...complicated.

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

....

But we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn't.

Propositional Form:

$$\neg (((P_1 \vee P_2) \wedge (P_3 \vee P_4)) \vee ((P_2 \vee P_3) \wedge (P_4 \vee \neg P_5)))$$

Can person 3 ride the bus?

Can person 3 and person 4 ride the bus together?

This seems ...complicated.

We can program!!!!

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

. . . .

But we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn't.

Propositional Form:

$$\neg (((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))$$

Can person 3 ride the bus?

Can person 3 and person 4 ride the bus together?

This seems ...complicated.

We can program!!!!

We need a way to keep track!

Truth Tables for Propositional Forms.

P	Q	$P \wedge Q$
Т	Т	T
T	F	
F	Т	
F	F	

Notice: ∧ and ∨ are commutative.

Truth Tables for Propositional Forms.

P	Q	$P \wedge Q$
T	Т	T
T	F	F
F	Т	
F	F	

Truth Tables for Propositional Forms.

P	Q	$P \wedge Q$
Т	Т	Т
T	F	F
F	Т	F
F	F	

Truth Tables for Propositional Forms.

P	Q	$P \wedge Q$
T	Т	Т
T	F	F
F	Т	F
F	F	F

Notice: ∧ and ∨ are commutative.

	Ρ	Q	$P \wedge Q$
İ	Т	Т	Т
	Т	F	F
	F	Т	F
	F	F	F

aı ı	ULL	15.
P	Q	$P \lor Q$
Т	Т	
T	F	
F	Т	
F	F	

Q	$P \wedge Q$	
Т	Τ	
F	F	
Т	F	
F	F	
	T F T	T T F

aı ı	ULL	15.
Р	Q	$P \lor Q$
Т	Т	T
T	F	
F	Τ	
F	F	

Ρ	Q	$P \wedge Q$	
Т	Т	Τ	
Т	F	F	
F	Т	F	
F	F	F	
	, T T F	7 T T F F T	T T T T F F F T F

aii	ai i Oillis.			
P	Q	$P \lor Q$		
Т	Т	T		
T	F	Т		
F	Т			
F	F			

Ρ	Q	$P \wedge Q$	
Τ	Т	Τ	
Τ	F	F	
F	Т	F	
F	F	F	

ai i	ai i Oillio.				
P	Q	$P \lor Q$			
Т	Т	T			
T	F	T			
F	Т	T			
F	F				

P	Q	$P \wedge Q$	
Т	Т	Τ	
T	F	F	
F	Т	F	
F	F	F	

ai i	ai i Oillio.				
P	Q	$P \lor Q$			
Т	Т	T			
T	F	T			
F	Τ	T			
F	F	F			

P	Q	$P \wedge Q$
Т	Т	T
T	F	F
F	Т	F
F	F	F

P	Q	$P \lor Q$
Т	Т	Τ
T	F	Т
F	Т	Т
F	F	F

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

P	Q	$P \wedge Q$
T	Т	Т
T	F	F
F	Т	F
F	F	F

~	0111	101
P	Q	$P \lor Q$
Т	Т	T
T	F	Т
F	Τ	Т
F	F	F

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

P	Q	$P \wedge Q$
Т	Т	T
T	F	F
F	Т	F
F	F	F

~	•	.0.
P	Q	$P \lor Q$
Т	Т	T
T	F	Т
F	Τ	Т
F	F	F

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

P	Q	$P \wedge Q$
Т	Т	T
T	F	F
F	Т	F
F	F	F

<u>u </u>	OIII	10.
<i>P</i>	Q	$P \lor Q$
T	Т	T
T	F	Т
F	Т	Т
F	F	F

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

P	Q	$P \wedge Q$
Т	Т	T
T	F	F
F	Т	F
F	F	F

ai i oi i io.				
P	Q	$P \lor Q$		
Т	Т	T		
T	F	Т		
F	Τ	Т		
F	F	F		

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

P	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	Т	F	
T	F		
F	Т		
F	F		

P	Q	$P \wedge Q$
Т	Т	T
T	F	F
F	Т	F
F	F	F

ai i oi i io.			
P	Q	$P \lor Q$	
Т	Т	T	
T	F	Т	
F	Τ	Т	
F	F	F	

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

P	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	Т	F	F
T	F		
F	Т		
F	F		

P	Q	$P \wedge Q$
Т	Т	T
T	F	F
F	Т	F
F	F	F

,	ai i oi i io.		
	P	Q	$P \lor Q$
	Т	Т	T
	T	F	Т
	F	Τ	Т
	F	F	F

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

P	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	Т	F	F
T	F	F	
F	Т		
F	F		

P	Q	$P \wedge Q$
Т	Т	T
T	F	F
F	Т	F
F	F	F

ai i oi i io.			
P	Q	$P \lor Q$	
Т	Т	T	
T	F	Т	
F	Τ	Т	
F	F	F	

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

P	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	Т	F	F
T	F	F	F
F	Т		
F	F		

Р	Q	$P \wedge Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ai i oi i io.			
P	Q	$P \lor Q$	
Т	Т	T	
T	F	Т	
F	Τ	Т	
F	F	F	

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

P	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	Т	F	F
Т	F	F	F
F	Т	F	
F	F		

P	Q	$P \wedge Q$
Т	Т	Т
T	F	F
F	Т	F
F	F	F

.,	iai i oi i io.			
	P	Q	$P \lor Q$	
	Т	Т	T	
	T	F	Т	
	F	Τ	Т	
	F	F	F	

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

P	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	Т	F	F
T	F	F	F
F	Т	F	F
F	F		

P	Q	$P \wedge Q$
Т	Т	T
T	F	F
F	Т	F
F	F	F

.,	ai i oi i io.			
	P	Q	$P \lor Q$	
	Т	Т	T	
	T	F	Т	
	F	Τ	Т	
	F	F	F	

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

P	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	Т	F	F
T	F	F	F
F	Т	F	F
F	F	Т	

P	Q	$P \wedge Q$
Т	Т	T
T	F	F
F	Т	F
F	F	F

.,	ai i oi i io.			
	P	Q	$P \lor Q$	
	Т	Т	T	
	T	F	Т	
	F	Τ	Т	
	F	F	F	

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

Р	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	Т	F	F
T	F	F	F
F	Т	F	F
F	F	Т	Т

P	Q	$P \wedge Q$
Т	Т	Т
T	F	F
F	Т	F
F	F	F

ai i oi i ioi			
P	Q	$P \lor Q$	
Т	Т	T	
T	F	Т	
F	Т	Т	
F	F	F	

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

....Truth Table!

P	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	T	F	F
T	F	F	F
F	Т	F	F
F	F	Т	Т

$$\neg (P \land Q)$$

P	Q	$P \wedge Q$
T	Т	Т
T	F	F
F	Т	F
F	F	F

P	Q	$P \lor Q$
<u>'</u>	7	, , d
1	I	1
T	F	T
F	Т	Т
F	F	F
	•	•

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

....Truth Table!

Р	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	T	F	F
T	F	F	F
F	Т	F	F
F	F	Т	Т

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

P	Q	$P \wedge Q$
Т	Т	Т
T	F	F
F	Т	F
F	F	F

<u>ai i oi iiio.</u>			
P	Q	$P \lor Q$	
Т	Т	T	
T	F	Т	
F	Т	Т	
F	F	F	

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

....Truth Table!

P	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	Т	F	F
T	F	F	F
F	Т	F	F
F	F	Т	Т

$$\neg (P \land Q) \quad \equiv \quad \neg P \lor \neg Q \qquad \qquad \neg (P \lor Q)$$

P	Q	$P \wedge Q$
T	Т	Т
T	F	F
F	Т	F
F	F	F

-			
	Ρ	Q	$P \lor Q$
	Т	Т	Т
	Т	F	Т
	F	Т	Т
	F	F	F

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

....Truth Table!

P	Q	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	Т	F	F
T	F	F	F
F	Т	F	F
F	F	Т	Т

$$\neg (P \land Q) \quad \equiv \quad \neg P \lor \neg Q \qquad \qquad \neg (P \lor Q) \quad \equiv \quad \neg P \land \neg Q$$

Distributive?

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$
?

Distributive?

 $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$?

Simplify: $(T \wedge Q) \equiv Q$,

Distributive?

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$
?

Simplify: $(T \land Q) \equiv Q$, $(F \land Q) \equiv F$.

```
P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)?
Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.
Cases:
P \text{ is True}.
LHS: T \land (Q \lor R)
```

```
P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)?
Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.
Cases:
P is True .
LHS: T \land (Q \lor R) \equiv (Q \lor R).
```

```
P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)?
Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.
Cases:
P is True .
LHS: T \land (Q \lor R) \equiv (Q \lor R).
RHS: (T \land Q) \lor (T \land R)
```

```
P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)?
Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.
Cases:
P is True .
LHS: T \land (Q \lor R) \equiv (Q \lor R).
RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).
```

```
P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)?
Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.
Cases:
P is True .
LHS: T \land (Q \lor R) \equiv (Q \lor R).
RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).
P is False .
```

```
P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)?

Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.

Cases:

P is True .

LHS: T \land (Q \lor R) \equiv (Q \lor R).

RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).

P is False .

LHS: F \land (Q \lor R)
```

```
P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)?

Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.

Cases:

P is True .

LHS: T \land (Q \lor R) \equiv (Q \lor R).

RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).

P is False .

LHS: F \land (Q \lor R) \equiv F.
```

```
P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)?

Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.

Cases:

P is True .

LHS: T \land (Q \lor R) \equiv (Q \lor R).

RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).

P is False .

LHS: F \land (Q \lor R) \equiv F.

RHS: (F \land Q) \lor (F \land R)
```

```
P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)?

Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.

Cases:

P is True .

LHS: T \land (Q \lor R) \equiv (Q \lor R).

RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).

P is False .

LHS: F \land (Q \lor R) \equiv F.

RHS: (F \land Q) \lor (F \land R) \equiv (F \lor F)
```

```
P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)?

Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.

Cases:

P is True .

LHS: T \land (Q \lor R) \equiv (Q \lor R).

RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).

P is False .

LHS: F \land (Q \lor R) \equiv F.

RHS: (F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.
```

```
P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)?

Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.

Cases:

P is True .

LHS: T \land (Q \lor R) \equiv (Q \lor R).

RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).

P is False .

LHS: F \land (Q \lor R) \equiv F.

RHS: (F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.
```

```
P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)? Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.

Cases:
P \text{ is True }.
LHS: T \land (Q \lor R) \equiv (Q \lor R).
RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).
P \text{ is False }.
LHS: F \land (Q \lor R) \equiv F.
RHS: (F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.
P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)?
```

```
P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)?
Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.
  Cases:
    P is True.
       LHS: T \wedge (Q \vee R) \equiv (Q \vee R).
       RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).
    P is False.
       LHS: F \wedge (Q \vee R) \equiv F.
       RHS: (F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.
P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)?
  Simplify: T \vee Q \equiv T,
```

```
P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)?
Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.
  Cases:
    P is True.
       LHS: T \wedge (Q \vee R) \equiv (Q \vee R).
       RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).
    P is False.
       LHS: F \wedge (Q \vee R) \equiv F.
       RHS: (F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.
P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)?
  Simplify: T \lor Q \equiv T, F \lor Q \equiv Q.
```

```
P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)?
Simplify: (T \land Q) \equiv Q, (F \land Q) \equiv F.
  Cases:
    P is True.
       LHS: T \wedge (Q \vee R) \equiv (Q \vee R).
       RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).
    P is False.
       LHS: F \wedge (Q \vee R) \equiv F.
       RHS: (F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.
P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)?
  Simplify: T \lor Q \equiv T, F \lor Q \equiv Q.
Foil 1:
```

```
P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)?
Simplify: (T \wedge Q) \equiv Q, (F \wedge Q) \equiv F.
  Cases:
     P is True.
        LHS: T \wedge (Q \vee R) \equiv (Q \vee R).
        RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).
     P is False.
        LHS: F \wedge (Q \vee R) \equiv F.
        RHS: (F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.
P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)?
  Simplify: T \lor Q \equiv T, F \lor Q \equiv Q.
Foil 1:
    (A \lor B) \land (C \lor D) \equiv (A \land C) \lor (A \land D) \lor (B \land C) \lor (B \land D)?
```

```
P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)?
Simplify: (T \wedge Q) \equiv Q, (F \wedge Q) \equiv F.
  Cases:
     P is True.
        LHS: T \wedge (Q \vee R) \equiv (Q \vee R).
        RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).
     P is False.
        LHS: F \wedge (Q \vee R) \equiv F.
        RHS: (F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.
P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)?
  Simplify: T \lor Q \equiv T, F \lor Q \equiv Q.
Foil 1:
    (A \lor B) \land (C \lor D) \equiv (A \land C) \lor (A \land D) \lor (B \land C) \lor (B \land D)?
Foil 2:
```

```
P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)?
Simplify: (T \wedge Q) \equiv Q, (F \wedge Q) \equiv F.
  Cases:
     P is True.
        LHS: T \wedge (Q \vee R) \equiv (Q \vee R).
        RHS: (T \land Q) \lor (T \land R) \equiv (Q \lor R).
     P is False.
        LHS: F \wedge (Q \vee R) \equiv F.
        RHS: (F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.
P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)?
  Simplify: T \lor Q \equiv T, F \lor Q \equiv Q.
Foil 1:
    (A \lor B) \land (C \lor D) \equiv (A \land C) \lor (A \land D) \lor (B \land C) \lor (B \land D)?
Foil 2:
    (A \land B) \lor (C \land D) \equiv (A \lor C) \land (A \lor D) \land (B \lor C) \land (B \lor D)?
```

 $P \Longrightarrow Q$ interpreted as

 $P \Longrightarrow Q$ interpreted as If P, then Q.

 $P \Longrightarrow Q$ interpreted as If P, then Q.

 $P \Longrightarrow Q$ interpreted as If P, then Q.

True Statements: $P, P \Longrightarrow Q$.

 $P \Longrightarrow Q$ interpreted as If P, then Q.

True Statements: $P, P \Longrightarrow Q$. Conclude: Q is true.

 $P \Longrightarrow Q$ interpreted as If P, then Q.

True Statements: $P, P \Longrightarrow Q$.

Conclude: Q is true.

Examples:

 $P \Longrightarrow Q$ interpreted as If P, then Q.

True Statements: $P, P \Longrightarrow Q$.

Conclude: Q is true.

Examples:

Statement: If you stand in the rain, then you'll get wet.

 $P \Longrightarrow Q$ interpreted as If P, then Q.

True Statements: $P, P \Longrightarrow Q$.

Conclude: Q is true.

Examples:

Statement: If you stand in the rain, then you'll get wet.

P = "you stand in the rain"

 $P \Longrightarrow Q$ interpreted as If P, then Q.

True Statements: $P, P \Longrightarrow Q$.

Conclude: Q is true.

Examples:

Statement: If you stand in the rain, then you'll get wet.

P = "you stand in the rain"

Q = "you will get wet"

 $P \Longrightarrow Q$ interpreted as If P, then Q.

True Statements: $P, P \Longrightarrow Q$.

Conclude: Q is true.

Examples:

Statement: If you stand in the rain, then you'll get wet.

P = "you stand in the rain"

Q = "you will get wet"

Statement: "Stand in the rain"

 $P \Longrightarrow Q$ interpreted as If P, then Q.

True Statements: $P, P \Longrightarrow Q$.

Conclude: Q is true.

Examples:

Statement: If you stand in the rain, then you'll get wet.

P = "you stand in the rain"

Q = "you will get wet"

Statement: "Stand in the rain"

Can conclude: "you'll get wet."

 $P \Longrightarrow Q$ interpreted as If P, then Q.

True Statements: $P, P \Longrightarrow Q$.

Conclude: Q is true.

Examples:

Statement: If you stand in the rain, then you'll get wet.

P = "you stand in the rain"

Q = "you will get wet"

Statement: "Stand in the rain"

Can conclude: "you'll get wet."

Statement: If a right triangle has sidelengths $a \le b \le c$, then $a^2 + b^2 = c^2$.

 $P \Longrightarrow Q$ interpreted as If P, then Q.

True Statements: $P, P \Longrightarrow Q$.

Conclude: Q is true.

Examples:

Statement: If you stand in the rain, then you'll get wet.

P = "you stand in the rain"

Q = "you will get wet"

Statement: "Stand in the rain"

Can conclude: "you'll get wet."

Statement: If a right triangle has sidelengths $a \le b \le c$, then $a^2 + b^2 = c^2$.

P = "a right triangle has sidelengths $a \le b \le c$ ",

 $P \Longrightarrow Q$ interpreted as

If P, then Q.

True Statements: $P, P \Longrightarrow Q$.

Conclude: Q is true.

Examples:

Statement: If you stand in the rain, then you'll get wet.

P = "you stand in the rain"

Q = "you will get wet"

Statement: "Stand in the rain"

Can conclude: "you'll get wet."

Statement: If a right triangle has sidelengths $a \le b \le c$, then $a^2 + b^2 = c^2$.

P = "a right triangle has sidelengths $a \le b \le c$ ",

 $Q = a^2 + b^2 = c^2$.

The statement " $P \Longrightarrow Q$ "

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing P False means

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing
P False means Q can be True

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing
P False means Q can be True or False

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing P False means *Q* can be True or False Anything implies true.

The statement " $P \Longrightarrow Q$ "

only is False if P is True and Q is False.

False implies nothing
P False means *Q* can be True or False
Anything implies true.
P can be True or False when

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing
P False means *Q* can be True or False
Anything implies true.
P can be True or False when *Q* is True

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing P False means Q can be True or False Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant pollute river?

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant pollute river?

Not necessarily.

The statement " $P \Longrightarrow Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant pollute river?

Not necessarily.

 $P \Longrightarrow Q$ and Q are True does not mean P is True

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant pollute river?

Not necessarily.

 $P \Longrightarrow Q$ and Q are True does not mean P is True

Be careful!

The statement " $P \Longrightarrow Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant pollute river?

Not necessarily.

 $P \Longrightarrow Q$ and Q are True does not mean P is True

Be careful!

Instead we have:

The statement " $P \Longrightarrow Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant pollute river?

Not necessarily.

 $P \Longrightarrow Q$ and Q are True does not mean P is True

Be careful!

Instead we have:

 $P \Longrightarrow Q$ and P are True does mean Q is True.

The statement " $P \Longrightarrow Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant pollute river?

Not necessarily.

 $P \Longrightarrow Q$ and Q are True does not mean P is True

Be careful!

Instead we have:

 $P \Longrightarrow Q$ and P are True does mean Q is True.

The chemical plant pollutes river.

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant pollute river?

Not necessarily.

 $P \Longrightarrow Q$ and Q are True does not mean P is True

Be careful!

Instead we have:

 $P \Longrightarrow Q$ and P are True does mean Q is True.

The chemical plant pollutes river. Can we conclude fish die?

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant pollute river?

Not necessarily.

 $P \Longrightarrow Q$ and Q are True does not mean P is True

Be careful!

Instead we have:

 $P \Longrightarrow Q$ and P are True does mean Q is True.

The chemical plant pollutes river. Can we conclude fish die?

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant pollute river?

Not necessarily.

 $P \Longrightarrow Q$ and Q are True does not mean P is True

Be careful!

Instead we have:

 $P \Longrightarrow Q$ and P are True does mean Q is True.

The chemical plant pollutes river. Can we conclude fish die?

Some Fun: use propositional formulas to describe implication?

The statement " $P \Longrightarrow Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant pollute river?

Not necessarily.

 $P \Longrightarrow Q$ and Q are True does not mean P is True

Be careful!

Instead we have:

 $P \Longrightarrow Q$ and P are True does mean Q is True.

The chemical plant pollutes river. Can we conclude fish die?

Some Fun: use propositional formulas to describe implication? $((P \Longrightarrow Q) \land P) \Longrightarrow Q$.

$$P \Longrightarrow Q$$

▶ If *P*, then *Q*.

- ▶ If P, then Q.
- Q if P. Just reversing the order.

- ▶ If P, then Q.
- Q if P. Just reversing the order.

- ▶ If P, then Q.
- Q if P. Just reversing the order.
- P only if Q.
 Remember if P is true then Q must be true.
 this suggests that P can only be true if Q is true.
 since if Q is false P must have been false.

- ▶ If P, then Q.
- Q if P. Just reversing the order.
- P only if Q.
 Remember if P is true then Q must be true.
 this suggests that P can only be true if Q is true.
 since if Q is false P must have been false.
- P is sufficient for Q. This means that proving P allows you to conclude that Q is true.

- ▶ If P, then Q.
- Q if P. Just reversing the order.
- P only if Q.
 Remember if P is true then Q must be true.
 this suggests that P can only be true if Q is true.
 since if Q is false P must have been false.
- P is sufficient for Q. This means that proving P allows you to conclude that Q is true.
- Q is necessary for P.
 For P to be true it is necessary that Q is true.
 Or if Q is false then we know that P is false.

P	Q	$P \Longrightarrow Q$
Т	Т	Т
T	F	
F	Т	
F	F	

P	Q	$P \Longrightarrow Q$
Т	Т	Т
T	F	F
F	Т	
F	F	

P	Q	$P \Longrightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	

<i>P</i>	Q	$P \Longrightarrow Q$
Т	Т	T
Т	F	F
F	Т	Т
F	F	Т

Ρ	Q	$P \Longrightarrow Q$
Т	Т	T
Т	F	F
F	Т	Т
F	F	Т

Р	Q	$\neg P \lor Q$
Т	Т	
Т	F	
F	Т	
F	F	

Ρ	Q	$P \Longrightarrow Q$
Т	Т	T
Т	F	F
F	Т	Т
F	F	Т

Р	Q	$\neg P \lor Q$
Т	Т	T
Т	F	
F	Т	
F	F	

Ρ	Q	$P \Longrightarrow Q$
Т	Т	T
Т	F	F
F	Т	Т
F	F	Т

Р	Q	$\neg P \lor Q$
Т	Т	T
T	F	F
F	Τ	
F	F	

Ρ	Q	$P \Longrightarrow Q$
Т	Т	T
Τ	F	F
F	Т	Т
F	F	T

Р	Q	$\neg P \lor Q$
Т	Т	T
T	F	F
F	Т	Т
F	F	

Ρ	Q	$P \Longrightarrow Q$
Т	Т	Т
Τ	F	F
F	Т	Т
F	F	Т

Р	Q	$\neg P \lor Q$
Т	Т	T
T	F	F
F	Т	Т
F	F	Т

P	Q	$P \Longrightarrow Q$
Т	Т	Т
T	F	F
F	Т	Т
F	F	T

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

Р	Q	$\neg P \lor Q$
Т	Т	Т
Т	F	F
F	Т	T
F	F	Т

<i>P</i>	Q	$P \Longrightarrow Q$
T	Т	Т
T	F	F
F	Т	Т
F	F	Т

Р	Q	$\neg P \lor Q$
Т	Т	Т
Т	F	F
F	Т	T
F	F	Т

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

These two propositional forms are logically equivalent!

Contrapositive, Converse

▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.

Contrapositive, Converse

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute.

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)

- ▶ Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.

- ▶ Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

$$P \Longrightarrow Q$$

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

$$P \Longrightarrow Q \equiv \neg P \lor Q$$

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

$$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P$$

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

$$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.$$

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation: \equiv .

$$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.$$

▶ Converse of $P \Longrightarrow Q$ is $Q \Longrightarrow P$.

- ▶ Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation: \equiv .

$$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.$$

► Converse of $P \implies Q$ is $Q \implies P$. If fish die the plant pollutes.

- ▶ Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!) converse!
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation: \equiv .

$$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.$$

► Converse of $P \Longrightarrow Q$ is $Q \Longrightarrow P$. If fish die the plant pollutes.

- ▶ Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!) converse!
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation: \equiv .

$$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.$$

► Converse of $P \Longrightarrow Q$ is $Q \Longrightarrow P$. If fish die the plant pollutes.

Not logically equivalent!

- ▶ Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!) converse!
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation: \equiv .

$$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.$$

Converse of P ⇒ Q is Q ⇒ P. If fish die the plant pollutes. Not logically equivalent!

▶ **Definition:** If $P \implies Q$ and $Q \implies P$ is P if and only if Q or $P \iff Q$. (Logically Equivalent: \iff .)

Propositions?

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$
- $\rightarrow x > 2$

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $\rightarrow x > 2$
- n is even and the sum of two primes

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., Q(x) = x is even

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
."

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

- $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."
- ► R(x) = "x > 2"

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

- $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."
- ► R(x) = "x > 2"
- G(n) = "n is even and the sum of two primes"

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

- $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."
- P(x) = "x > 2"
- G(n) = "n is even and the sum of two primes"
- Remember Wason's experiment!
 F(x) = "Person x flew."

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

- $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."
- R(x) = x > 2
- G(n) = "n is even and the sum of two primes"
- ▶ Remember Wason's experiment!
 F(x) = "Person x flew."

$$C(x)$$
 = "Person x went to Chicago

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., Q(x) = "x is even" Same as boolean valued functions from 61A or 61AS!

- $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- P(x) = "x > 2"
- G(n) = "n is even and the sum of two primes"
- ► Remember Wason's experiment!
- F(x) = "Person x flew."

$$C(x) =$$
 "Person x went to Chicago

 $ightharpoonup C(x) \Longrightarrow F(x).$

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., Q(x) = "x is even" Same as boolean valued functions from 61A or 61AS!

- $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."
- P(x) = x > 2
- G(n) = "n is even and the sum of two primes"
- Remember Wason's experiment!

$$F(x) =$$
 "Person x flew."

$$C(x) =$$
 "Person x went to Chicago

▶ $C(x) \implies F(x)$. Theory from Wason's.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., Q(x) = "x is even" Same as boolean valued functions from 61A or 61AS!

- $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."
- ► R(x) = "x > 2"
- G(n) = "n is even and the sum of two primes"
- ► Remember Wason's experiment!

$$F(x) =$$
 "Person x flew."

$$C(x)$$
 = "Person x went to Chicago"

▶ $C(x) \implies F(x)$. Theory from Wason's. If person x goes to Chicago then person x flew.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., Q(x) = "x is even" Same as boolean valued functions from 61A or 61AS!

- $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."
- R(x) = x > 2
- G(n) = "n is even and the sum of two primes"
- ▶ Remember Wason's experiment!
 F(x) = "Person x flew."

$$C(x) =$$
 "Person x went to Chicago

▶ $C(x) \Longrightarrow F(x)$. Theory from Wason's. If person x goes to Chicago then person x flew.

Next:

Propositions?

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., Q(x) = "x is even" Same as boolean valued functions from 61A or 61AS!

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
."

►
$$R(x) = "x > 2"$$

- G(n) = "n is even and the sum of two primes"
- Domombor Woods's avacriment

$$F(x)$$
 = "Person x flew."
 $C(x)$ = "Person x went to Chicago

$$C(x) = \text{Ferson } x \text{ went to Chicago}$$

▶ $C(x) \Longrightarrow F(x)$. Theory from Wason's. If person x goes to Chicago then person x flew.

Next: Statements about boolean valued functions!!

Quantifiers...

There exists quantifier:

Quantifiers...

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

Quantifiers...

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to "(0 = 0)

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1)$

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0=0) \lor (1=1) \lor (2=4)$

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to "
$$(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$$
"

Much shorter to use a quantifier!

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to "
$$(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$$
"

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, we have P(x) is True ."

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor ...$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, we have P(x) is True ."

Examples:

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor ...$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, we have P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, we have P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in \mathbb{N}) (x+1 > x)$$

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor ...$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, we have P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in \mathbb{N}) (x+1 > x)$$

"the square of a number is always non-negative"

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, we have P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in \mathbb{N}) (x+1 > x)$$

"the square of a number is always non-negative"

$$(\forall x \in \mathbb{N})(x^2 >= 0)$$

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor ...$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, we have P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in \mathbb{N}) (x+1 > x)$$

"the square of a number is always non-negative"

$$(\forall x \in \mathbb{N})(x^2 >= 0)$$

Wait!

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor ...$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, we have P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in \mathbb{N}) (x+1 > x)$$

"the square of a number is always non-negative"

$$(\forall x \in \mathbb{N})(x^2 >= 0)$$

Wait! What is N?

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has universe:

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has **universe**: "the natural numbers".

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has **universe**: "the natural numbers".

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has **universe**: "the natural numbers".

Universe examples include..

 $ightharpoonup
begin{align*}
beg$

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has **universe**: "the natural numbers".

- $ightharpoonup
 vert
 vert = \{0,1,\ldots\}$ (natural numbers).
- $ightharpoonup \mathbb{Z} = \{\ldots, -1, 0, \ldots\}$ (integers)

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has **universe**: "the natural numbers".

- $ightharpoonup \mathbb{N} = \{0, 1, \ldots\}$ (natural numbers).
- $ightharpoonup \mathbb{Z} = \{\ldots, -1, 0, \ldots\}$ (integers)
- ▶ Z⁺ (positive integers)

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has **universe**: "the natural numbers".

- $ightharpoonup
 vert
 vert = \{0,1,\ldots\}$ (natural numbers).
- $ightharpoonup \mathbb{Z} = \{\ldots, -1, 0, \ldots\}$ (integers)
- ▶ Z⁺ (positive integers)
- R (real numbers)

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has **universe**: "the natural numbers".

- $ightharpoonup
 vert
 vert = \{0,1,\ldots\}$ (natural numbers).
- $ightharpoonup \mathbb{Z} = \{\ldots, -1, 0, \ldots\}$ (integers)
- ▶ Z⁺ (positive integers)
- ▶ ℝ (real numbers)
- ► Any set: *S* = {*Alice*, *Bob*, *Charlie*, *Donna*}.

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has **universe**: "the natural numbers".

- $ightharpoonup
 vert
 vert = \{0,1,\ldots\}$ (natural numbers).
- $ightharpoonup \mathbb{Z} = \{\ldots, -1, 0, \ldots\}$ (integers)
- ▶ Z⁺ (positive integers)
- ▶ ℝ (real numbers)
- ► Any set: *S* = {*Alice*, *Bob*, *Charlie*, *Donna*}.
- See note 0 for more!

Back to: Wason's experiment:1
Theory:

Theory:

"If a person travels to Chicago, he/she flies."

Theory:

"If a person travels to Chicago, he/she flies."

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

P(x) = "Person x went to Chicago."

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x)$

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

$$P(A) =$$
False .

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

$$P(A) =$$
False . Do we care about $Q(A)$?

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

P(A) =False . Do we care about Q(A)? No.

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

$$P(A) =$$
False . Do we care about $Q(A)$?
No. $P(A) \implies Q(A)$, when $P(A)$ is False , $Q(A)$ can be anything.

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False .

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False . Do we care about $P(B)$?

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False . Do we care about $P(B)$? Yes.

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False . Do we care about $P(B)$? Yes. $P(B) \implies Q(B)$

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False . Do we care about $P(B)$?
Yes. $P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$.

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False . Do we care about $P(B)$?
Yes. $P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$.
So $P(Bob)$ must be False .

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?
Yes. $P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$.

So P(Bob) must be False.

$$P(C) =$$
True .

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So P(Bob) must be False.

$$P(C)$$
 = True . Do we care about $P(C)$?

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So P(Bob) must be False.

$$P(C)$$
 = True . Do we care about $P(C)$? Yes.

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So P(Bob) must be False.

$$P(C) = \text{True}$$
. Do we care about $P(C)$?

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So P(Bob) must be False.

$$P(C) = \text{True}$$
. Do we care about $P(C)$?

$$Q(D) = \text{True}$$
.

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So P(Bob) must be False.

$$P(C) = \text{True}$$
. Do we care about $P(C)$?

$$Q(D) = \text{True}$$
. Do we care about $P(D)$?

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So P(Bob) must be False.

$$P(C) = \text{True}$$
. Do we care about $P(C)$?

$$Q(D)$$
 = True . Do we care about $P(D)$? No.

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So P(Bob) must be False.

$$P(C) = \text{True}$$
. Do we care about $P(C)$?

Yes. $P(C) \Longrightarrow Q(C)$ means Q(C) must be true.

$$Q(D) = \text{True}$$
. Do we care about $P(D)$?

No. $P(D) \Longrightarrow Q(D)$ holds whatever P(D) is when Q(D) is true.

Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

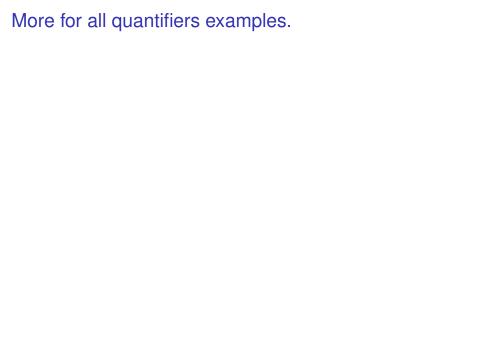
$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \Longrightarrow Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?
Yes. $P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$.


So P(Bob) must be False.

$$P(C)$$
 = True . Do we care about $P(C)$?
Yes. $P(C) \implies Q(C)$ means $Q(C)$ must be true.

$$Q(D) = \text{True}$$
. Do we care about $P(D)$?

No. $P(D) \Longrightarrow Q(D)$ holds whatever P(D) is when Q(D) is true.

Only have to turn over cards for Bob and Charlie.

$$(\forall x \in N) (2x > x)$$

$$(\forall x \in N) (2x > x)$$
 False

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

$$(\forall x \in N)$$

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

$$(\forall x \in N)(x > 5)$$

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

$$(\forall x \in N)(x > 5 \implies$$

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

$$(\forall x \in N)(x > 5 \implies x^2 > 25).$$

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in N)(x > 5 \implies x^2 > 25).$$

Idea alert:

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in N)(x > 5 \implies x^2 > 25).$$

Idea alert: Restrict domain using implication.

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in N)(x > 5 \implies x^2 > 25).$$

Idea alert: Restrict domain using implication.

Note that we may omit universe if clear from context.

$$(\exists y \in N) \ (\forall x \in N)$$

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

▶ In English: "the square of every natural number is a natural number."

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

▶ In English: "the square of every natural number is a natural number."

$$(\forall x \in N)$$

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

▶ In English: "the square of every natural number is a natural number."

$$(\forall x \in N)(\exists y \in N)$$

In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

In English: "the square of every natural number is a natural number."

$$(\forall x \in N)(\exists y \in N) (y = x^2)$$

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

In English: "the square of every natural number is a natural number."

$$(\forall x \in N)(\exists y \in N) (y = x^2)$$
 True

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

In English: "the square of every natural number is a natural number."

$$(\forall x \in N)(\exists y \in N) (y = x^2)$$
 True

Consider

$$\neg(\forall x \in S)(P(x)),$$

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False, find x, where $\neg P(x)$.

Counterexample.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Consider

$$\neg(\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

Consider

$$\neg(\forall x\in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

For True: prove claim.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

For True: prove claim. Next lectures...

Consider

Consider

$$\neg(\exists x \in S)(P(x))$$

Consider

$$\neg(\exists x \in S)(P(x))$$

English: means that for all x in S, P(x) does not hold.

Consider

$$\neg(\exists x \in S)(P(x))$$

English: means that for all x in S, P(x) does not hold.

That is,

$$\neg(\exists x \in S)(P(x)) \iff \forall (x \in S) \neg P(x).$$

Theorem: $(\forall n \in N) \neg (\exists a, b, c \in N) (n \ge 3 \implies a^n + b^n = c^n)$

Theorem: $(\forall n \in N) \neg (\exists a, b, c \in N) (n \ge 3 \implies a^n + b^n = c^n)$ Which Theorem?

Theorem: $(\forall n \in N) \neg (\exists a, b, c \in N) (n \ge 3 \implies a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Theorem: $(\forall n \in \mathbb{N}) \neg (\exists a, b, c \in \mathbb{N}) (n \ge 3 \implies a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles: for n = 2, we have 3,4,5 and 5,7, 12 and ...

Theorem: $(\forall n \in \mathbb{N}) \neg (\exists a, b, c \in \mathbb{N}) (n \ge 3 \implies a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles: for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

Theorem: $(\forall n \in \mathbb{N}) \neg (\exists a, b, c \in \mathbb{N}) (n \ge 3 \implies a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles: for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ...(based in part on Ribet's Theorem)

Theorem: $(\forall n \in \mathbb{N}) \neg (\exists a, b, c \in \mathbb{N}) (n \ge 3 \implies a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles: for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ...(based in part on Ribet's Theorem)

DeMorgan Restatement:

Theorem: $(\forall n \in \mathbb{N}) \neg (\exists a, b, c \in \mathbb{N}) (n \ge 3 \implies a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles: for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ...(based in part on Ribet's Theorem)

DeMorgan Restatement:

Theorem: $\neg(\exists n \in N) \ (\exists a,b,c \in N) \ (n \ge 3 \implies a^n + b^n = c^n)$

Propositions are statements that are true or false.

Propositions are statements that are true or false.

Proprositional forms use $\land, \lor, \lnot.$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems!

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

$$\neg (P \lor Q) \iff$$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$

$$\neg \forall x \ P(x) \iff$$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$

$$\neg \forall x \ P(x) \iff \exists x \ \neg P(x).$$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

DeMorgans Laws: "Flip and Distribute negation"

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$
$$\neg \forall x \ P(x) \iff \exists x \ \neg P(x).$$

Next Time: proofs!