
Today.

Polynomials.

Secret Sharing.

Today.

Polynomials.

Secret Sharing.

Secret Sharing.

Share secret among n people.

Secrecy: Any k −1 knows nothing.
Roubustness: Any k knows secret.
Efficient: minimize storage.

Secret Sharing.

Share secret among n people.

Secrecy: Any k −1 knows nothing.
Roubustness: Any k knows secret.
Efficient: minimize storage.

Secret Sharing.

Share secret among n people.

Secrecy: Any k −1 knows nothing.

Roubustness: Any k knows secret.
Efficient: minimize storage.

Secret Sharing.

Share secret among n people.

Secrecy: Any k −1 knows nothing.
Roubustness: Any k knows secret.

Efficient: minimize storage.

Secret Sharing.

Share secret among n people.

Secrecy: Any k −1 knows nothing.
Roubustness: Any k knows secret.
Efficient: minimize storage.

Secret Sharing.

Share secret among n people.

Secrecy: Any k −1 knows nothing.
Roubustness: Any k knows secret.
Efficient: minimize storage.

Polynomials

A polynomial

P(x) = ad xd + ad−1xd−1 · · ·+ a0.

is specified by coefficients ad , . . .a0.

P(x) contains point (a,b) if b = P(a).

Polynomials over reals: a1, . . . ,ad ∈ℜ, use x ∈ℜ.

Polynomials P(x) with arithmetic modulo p: 1 ai ∈ {0, . . . ,p−1}
and

P(x) = ad xd + ad−1xd−1 · · ·+ a0 (mod p),

for x ∈ {0, . . . ,p−1}.

1A field is a set of elements with addition and multiplication operations,
with inverses. GF (p) = ({0, . . . ,p−1},+ (mod p),∗ (mod p)).

Polynomials

A polynomial

P(x) = ad xd + ad−1xd−1 · · ·+ a0.

is specified by coefficients ad , . . .a0.

P(x) contains point (a,b) if b = P(a).

Polynomials over reals: a1, . . . ,ad ∈ℜ, use x ∈ℜ.

Polynomials P(x) with arithmetic modulo p: 1 ai ∈ {0, . . . ,p−1}
and

P(x) = ad xd + ad−1xd−1 · · ·+ a0 (mod p),

for x ∈ {0, . . . ,p−1}.

1A field is a set of elements with addition and multiplication operations,
with inverses. GF (p) = ({0, . . . ,p−1},+ (mod p),∗ (mod p)).

Polynomials

A polynomial

P(x) = ad xd + ad−1xd−1 · · ·+ a0.

is specified by coefficients ad , . . .a0.

P(x) contains point (a,b) if b = P(a).

Polynomials over reals: a1, . . . ,ad ∈ℜ, use x ∈ℜ.

Polynomials P(x) with arithmetic modulo p: 1 ai ∈ {0, . . . ,p−1}
and

P(x) = ad xd + ad−1xd−1 · · ·+ a0 (mod p),

for x ∈ {0, . . . ,p−1}.

1A field is a set of elements with addition and multiplication operations,
with inverses. GF (p) = ({0, . . . ,p−1},+ (mod p),∗ (mod p)).

Polynomials

A polynomial

P(x) = ad xd + ad−1xd−1 · · ·+ a0.

is specified by coefficients ad , . . .a0.

P(x) contains point (a,b) if b = P(a).

Polynomials over reals: a1, . . . ,ad ∈ℜ, use x ∈ℜ.

Polynomials P(x) with arithmetic modulo p: 1 ai ∈ {0, . . . ,p−1}
and

P(x) = ad xd + ad−1xd−1 · · ·+ a0 (mod p),

for x ∈ {0, . . . ,p−1}.

1A field is a set of elements with addition and multiplication operations,
with inverses. GF (p) = ({0, . . . ,p−1},+ (mod p),∗ (mod p)).

Polynomial: P(x) = adx4+ · · ·+a0

Line:P(x) = a1x + a0

= mx + b

x

P(x)

P(x) = .5x + 0

P(x) =−1x + 3

P(x) = 0.5x2−x + 0.1

P(x) =−.3x2 + 1x + .1

Parabola: P(x) = a2x2 + a1x + a0 = ax2 + bx + c

Polynomial: P(x) = adx4+ · · ·+a0

Line:P(x) = a1x + a0 = mx + b

x

P(x)

P(x) = .5x + 0

P(x) =−1x + 3

P(x) = 0.5x2−x + 0.1

P(x) =−.3x2 + 1x + .1

Parabola: P(x) = a2x2 + a1x + a0 = ax2 + bx + c

Polynomial: P(x) = adx4+ · · ·+a0

Line:P(x) = a1x + a0 = mx + b

x

P(x)

P(x) = .5x + 0

P(x) =−1x + 3

P(x) = 0.5x2−x + 0.1

P(x) =−.3x2 + 1x + .1

Parabola: P(x) = a2x2 + a1x + a0 = ax2 + bx + c

Polynomial: P(x) = adx4+ · · ·+a0

Line:P(x) = a1x + a0 = mx + b

x

P(x)

P(x) = .5x + 0

P(x) =−1x + 3

P(x) = 0.5x2−x + 0.1

P(x) =−.3x2 + 1x + .1

Parabola: P(x) = a2x2 + a1x + a0 = ax2 + bx + c

Polynomial: P(x) = adx4+ · · ·+a0

Line:P(x) = a1x + a0 = mx + b

x

P(x)

P(x) = .5x + 0

P(x) =−1x + 3

P(x) = 0.5x2−x + 0.1

P(x) =−.3x2 + 1x + .1

Parabola: P(x) = a2x2 + a1x + a0 = ax2 + bx + c

Polynomial: P(x) = adx4+ · · ·+a0

Line:P(x) = a1x + a0 = mx + b

x

P(x)

P(x) = .5x + 0

P(x) =−1x + 3

P(x) = 0.5x2−x + 0.1

P(x) =−.3x2 + 1x + .1

Parabola: P(x) = a2x2 + a1x + a0

= ax2 + bx + c

Polynomial: P(x) = adx4+ · · ·+a0

Line:P(x) = a1x + a0 = mx + b

x

P(x)

P(x) = .5x + 0

P(x) =−1x + 3

P(x) = 0.5x2−x + 0.1

P(x) =−.3x2 + 1x + .1

Parabola: P(x) = a2x2 + a1x + a0 = ax2 + bx + c

Polynomial: P(x) = adx4+ · · ·+a0

Line:P(x) = a1x + a0 = mx + b

x

P(x)

P(x) = .5x + 0

P(x) =−1x + 3

P(x) = 0.5x2−x + 0.1

P(x) =−.3x2 + 1x + .1

Parabola: P(x) = a2x2 + a1x + a0 = ax2 + bx + c

Polynomial: P(x) = adx4+ · · ·+a0

Line:P(x) = a1x + a0 = mx + b

x

P(x)

P(x) = .5x + 0

P(x) =−1x + 3

P(x) = 0.5x2−x + 0.1

P(x) =−.3x2 + 1x + .1

Parabola: P(x) = a2x2 + a1x + a0 = ax2 + bx + c

Polynomial: P(x) = adx4+ · · ·+a0 (mod p)

x

P(x)

3x + 1 (mod 5)

x + 2 (mod 5)

Finding an intersection.
x + 2≡ 3x + 1 (mod 5)
=⇒ 2x ≡ 1 (mod 5)

=⇒ x ≡ 3 (mod 5)

3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!

Polynomial: P(x) = adx4+ · · ·+a0 (mod p)

x

P(x)

3x + 1 (mod 5)

x + 2 (mod 5)

Finding an intersection.
x + 2≡ 3x + 1 (mod 5)
=⇒ 2x ≡ 1 (mod 5)

=⇒ x ≡ 3 (mod 5)

3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!

Polynomial: P(x) = adx4+ · · ·+a0 (mod p)

x

P(x)

3x + 1 (mod 5)

x + 2 (mod 5)

Finding an intersection.
x + 2≡ 3x + 1 (mod 5)
=⇒ 2x ≡ 1 (mod 5)

=⇒ x ≡ 3 (mod 5)
3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!

Polynomial: P(x) = adx4+ · · ·+a0 (mod p)

x

P(x)

3x + 1 (mod 5)

x + 2 (mod 5)

Finding an intersection.
x + 2≡ 3x + 1 (mod 5)
=⇒ 2x ≡ 1 (mod 5) =⇒ x ≡ 3 (mod 5)
3 is multiplicative inverse of 2 modulo 5.

Good when modulus is prime!!

Polynomial: P(x) = adx4+ · · ·+a0 (mod p)

x

P(x)

3x + 1 (mod 5)

x + 2 (mod 5)

Finding an intersection.
x + 2≡ 3x + 1 (mod 5)
=⇒ 2x ≡ 1 (mod 5) =⇒ x ≡ 3 (mod 5)
3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!

Two points make a line.

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 2

Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

2Points with different x values.

Two points make a line.

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 2

Two points specify a line.

Three points specify a parabola.

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

2Points with different x values.

Two points make a line.

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 2

Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

2Points with different x values.

Two points make a line.

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 2

Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

2Points with different x values.

3 points determine a parabola.

P(x) = 0.5x2−x + 1

P(x) =−.3x2 + 1x + .5

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 3

3Points with different x values.

3 points determine a parabola.

P(x) = 0.5x2−x + 1

P(x) =−.3x2 + 1x + .5

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 3

3Points with different x values.

3 points determine a parabola.

P(x) = 0.5x2−x + 1

P(x) =−.3x2 + 1x + .5

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 3

3Points with different x values.

3 points determine a parabola.

P(x) = 0.5x2−x + 1

P(x) =−.3x2 + 1x + .5

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 3

3Points with different x values.

3 points determine a parabola.

P(x) = 0.5x2−x + 1

P(x) =−.3x2 + 1x + .5

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 3

3Points with different x values.

3 points determine a parabola.

P(x) = 0.5x2−x + 1

P(x) =−.3x2 + 1x + .5

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 3

3Points with different x values.

3 points determine a parabola.

P(x) = 0.5x2−x + 1

P(x) =−.3x2 + 1x + .5

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 3

3Points with different x values.

3 points determine a parabola.

P(x) = 0.5x2−x + 1

P(x) =−.3x2 + 1x + .5

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 3

3Points with different x values.

3 points determine a parabola.

P(x) = 0.5x2−x + 1

P(x) =−.3x2 + 1x + .5

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 3

3Points with different x values.

2 points not enough.

P(x) =−.3x2 + 1x + .5

P(x) = .2x2− .5x + 1.5

P(x) =−.6x2 + 1.9x− .1

There is P(x) contains blue points and any (0,y)!

2 points not enough.

P(x) =−.3x2 + 1x + .5

P(x) = .2x2− .5x + 1.5

P(x) =−.6x2 + 1.9x− .1

There is P(x) contains blue points and any (0,y)!

2 points not enough.

P(x) =−.3x2 + 1x + .5

P(x) = .2x2− .5x + 1.5

P(x) =−.6x2 + 1.9x− .1

There is P(x) contains blue points and any (0,y)!

2 points not enough.

P(x) =−.3x2 + 1x + .5

P(x) = .2x2− .5x + 1.5

P(x) =−.6x2 + 1.9x− .1

There is P(x) contains blue points and any (0,y)!

2 points not enough.

P(x) =−.3x2 + 1x + .5

P(x) = .2x2− .5x + 1.5

P(x) =−.6x2 + 1.9x− .1

There is P(x) contains blue points and any (0,y)!

2 points not enough.

P(x) =−.3x2 + 1x + .5

P(x) = .2x2− .5x + 1.5

P(x) =−.6x2 + 1.9x− .1

There is P(x) contains blue points and any (0,y)!

2 points not enough.

P(x) =−.3x2 + 1x + .5

P(x) = .2x2− .5x + 1.5

P(x) =−.6x2 + 1.9x− .1

There is P(x) contains blue points and any (0,y)!

2 points not enough.

P(x) =−.3x2 + 1x + .5

P(x) = .2x2− .5x + 1.5

P(x) =−.6x2 + 1.9x− .1

There is P(x) contains blue points and any (0,y)!

2 points not enough.

P(x) =−.3x2 + 1x + .5

P(x) = .2x2− .5x + 1.5

P(x) =−.6x2 + 1.9x− .1

There is P(x) contains blue points and any (0,y)!

2 points not enough.

P(x) =−.3x2 + 1x + .5

P(x) = .2x2− .5x + 1.5

P(x) =−.6x2 + 1.9x− .1

There is P(x) contains blue points and any (0,y)!

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:

Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.

Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts

=⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x)

=⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).

Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.

Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts

=⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.

We will work with polynomials with arithmetic modulo p.

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .

?, otherwise.
(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?

(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain

(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)?

and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea?

Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x)

. . .+ yd+1∆d+1(x).

Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =

1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yd+1∆d+1(x).

hits points (x1,y1); (x2,y2) · · ·(xd+1,yd+1). Degree d polynomial!

Construction proves the existence of a polynomial!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yd+1∆d+1(x).

hits points (x1,y1); (x2,y2) · · ·(xd+1,yd+1). Degree d polynomial!

Construction proves the existence of a polynomial!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yd+1∆d+1(x).

hits points (x1,y1); (x2,y2) · · ·(xd+1,yd+1). Degree d polynomial!

Construction proves the existence of a polynomial!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yd+1∆d+1(x).

hits points (x1,y1); (x2,y2) · · ·(xd+1,yd+1). Degree d polynomial!

Construction proves the existence of a polynomial!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yd+1∆d+1(x).

hits points (x1,y1); (x2,y2) · · ·(xd+1,yd+1). Degree d polynomial!

Construction proves the existence of a polynomial!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yd+1∆d+1(x).

hits points (x1,y1); (x2,y2) · · ·(xd+1,yd+1). Degree d polynomial!

Construction proves the existence of a polynomial!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yd+1∆d+1(x).

hits points (x1,y1); (x2,y2) · · ·(xd+1,yd+1). Degree d polynomial!

Construction proves the existence of a polynomial!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yd+1∆d+1(x).

hits points (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

Degree d polynomial!

Construction proves the existence of a polynomial!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yd+1∆d+1(x).

hits points (x1,y1); (x2,y2) · · ·(xd+1,yd+1). Degree d polynomial!

Construction proves the existence of a polynomial!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yd+1∆d+1(x).

hits points (x1,y1); (x2,y2) · · ·(xd+1,yd+1). Degree d polynomial!

Construction proves the existence of a polynomial!

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2

= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3)

= 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6

= 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3)

= (x−2)(x−3)
2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2

= 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

Example.

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi−xj)
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.

From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) = m(1) + b ≡ m + b ≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x + 2 mod 5.

From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) =

m(1) + b ≡ m + b ≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x + 2 mod 5.

From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) = m(1) + b ≡ m + b

≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x + 2 mod 5.

From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) = m(1) + b ≡ m + b ≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x + 2 mod 5.

From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) = m(1) + b ≡ m + b ≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x + 2 mod 5.

From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) = m(1) + b ≡ m + b ≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x + 2 mod 5.

From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) = m(1) + b ≡ m + b ≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x + 2 mod 5.

From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) = m(1) + b ≡ m + b ≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x + 2 mod 5.

From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) = m(1) + b ≡ m + b ≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5).

Secret is 2.

And the line is...
x + 2 mod 5.

From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) = m(1) + b ≡ m + b ≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x + 2 mod 5.

From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) = m(1) + b ≡ m + b ≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x + 2 mod 5.

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).

Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.

a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1

= (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1)

= (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3)

= 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)

a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5)

.

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)

In general..

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk).

Solve...

ak−1xk−1
1 + · · ·+ a0 ≡ y1 (mod p)

ak−1xk−1
2 + · · ·+ a0 ≡ y2 (mod p)

·
·

ak−1xk−1
k + · · ·+ a0 ≡ yk (mod p)

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

In general..

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk).

Solve...

ak−1xk−1
1 + · · ·+ a0 ≡ y1 (mod p)

ak−1xk−1
2 + · · ·+ a0 ≡ y2 (mod p)

·
·

ak−1xk−1
k + · · ·+ a0 ≡ yk (mod p)

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

In general..

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk).

Solve...

ak−1xk−1
1 + · · ·+ a0 ≡ y1 (mod p)

ak−1xk−1
2 + · · ·+ a0 ≡ y2 (mod p)

·
·

ak−1xk−1
k + · · ·+ a0 ≡ yk (mod p)

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

In general..

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk).

Solve...

ak−1xk−1
1 + · · ·+ a0 ≡ y1 (mod p)

ak−1xk−1
2 + · · ·+ a0 ≡ y2 (mod p)

·
·

ak−1xk−1
k + · · ·+ a0 ≡ yk (mod p)

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

In general..

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk).

Solve...

ak−1xk−1
1 + · · ·+ a0 ≡ y1 (mod p)

ak−1xk−1
2 + · · ·+ a0 ≡ y2 (mod p)

·
·

ak−1xk−1
k + · · ·+ a0 ≡ yk (mod p)

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

In general..

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk).

Solve...

ak−1xk−1
1 + · · ·+ a0 ≡ y1 (mod p)

ak−1xk−1
2 + · · ·+ a0 ≡ y2 (mod p)

·
·

ak−1xk−1
k + · · ·+ a0 ≡ yk (mod p)

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3.

Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1.

Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5)

contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations...

P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!

In general.

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yk ∆k (x).

hits points (x1,y1); (x2,y2) · · ·(xk ,yk).

Construction proves the existence of the polynomial!

In general.

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yk ∆k (x).

hits points (x1,y1); (x2,y2) · · ·(xk ,yk).

Construction proves the existence of the polynomial!

In general.

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yk ∆k (x).

hits points (x1,y1); (x2,y2) · · ·(xk ,yk).

Construction proves the existence of the polynomial!

In general.

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yk ∆k (x).

hits points (x1,y1); (x2,y2) · · ·(xk ,yk).

Construction proves the existence of the polynomial!

In general.

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yk ∆k (x).

hits points (x1,y1); (x2,y2) · · ·(xk ,yk).

Construction proves the existence of the polynomial!

In general.

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk).

∆i (x) =
∏j 6=i (x−xj)

∏j 6=i (xi −xj)
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yk ∆k (x).

hits points (x1,y1); (x2,y2) · · ·(xk ,yk).

Construction proves the existence of the polynomial!

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d +1 points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x)−P(x) has d + 1 roots and is degree d .
Contradiction.

Must prove Roots fact.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d +1 points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x)−P(x) has d + 1 roots and is degree d .
Contradiction.

Must prove Roots fact.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d +1 points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x)−P(x) has d + 1 roots and is degree d .
Contradiction.

Must prove Roots fact.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d +1 points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x)−P(x) has d + 1 roots and is degree d .
Contradiction.

Must prove Roots fact.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d +1 points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x)−P(x) has d + 1 roots and is degree d .

Contradiction.

Must prove Roots fact.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d +1 points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x)−P(x) has d + 1 roots and is degree d .
Contradiction.

Must prove Roots fact.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d +1 points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x)−P(x) has d + 1 roots and is degree d .
Contradiction.

Must prove Roots fact.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d +1 points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x)−P(x) has d + 1 roots and is degree d .
Contradiction.

Must prove Roots fact.

Polynomial Division.
Divide 4x2−3x + 2 by (x−3) modulo 5.

4 x

+ 4 r 4

x - 3) 4xˆ2 - 3 x + 2

4xˆ2 - 2x

4x + 2
4x - 2

4

4x2−3x + 2≡ (x−3)(4x + 4) + 4 (mod 5)

In general, divide P(x) by (x−a) gives Q(x) and remainder r .

That is, P(x) = (x−a)Q(x) + r

Polynomial Division.
Divide 4x2−3x + 2 by (x−3) modulo 5.

4 x

+ 4 r 4

x - 3) 4xˆ2 - 3 x + 2

4xˆ2 - 2x

4x + 2
4x - 2

4

4x2−3x + 2≡ (x−3)(4x + 4) + 4 (mod 5)

In general, divide P(x) by (x−a) gives Q(x) and remainder r .

That is, P(x) = (x−a)Q(x) + r

Polynomial Division.
Divide 4x2−3x + 2 by (x−3) modulo 5.

4 x

+ 4 r 4

x - 3) 4xˆ2 - 3 x + 2

4xˆ2 - 2x

4x + 2
4x - 2

4

4x2−3x + 2≡ (x−3)(4x + 4) + 4 (mod 5)

In general, divide P(x) by (x−a) gives Q(x) and remainder r .

That is, P(x) = (x−a)Q(x) + r

Polynomial Division.
Divide 4x2−3x + 2 by (x−3) modulo 5.

4 x + 4

r 4

x - 3) 4xˆ2 - 3 x + 2

4xˆ2 - 2x

4x + 2

4x - 2

4

4x2−3x + 2≡ (x−3)(4x + 4) + 4 (mod 5)

In general, divide P(x) by (x−a) gives Q(x) and remainder r .

That is, P(x) = (x−a)Q(x) + r

Polynomial Division.
Divide 4x2−3x + 2 by (x−3) modulo 5.

4 x + 4

r 4

x - 3) 4xˆ2 - 3 x + 2

4xˆ2 - 2x

4x + 2
4x - 2

4

4x2−3x + 2≡ (x−3)(4x + 4) + 4 (mod 5)

In general, divide P(x) by (x−a) gives Q(x) and remainder r .

That is, P(x) = (x−a)Q(x) + r

Polynomial Division.
Divide 4x2−3x + 2 by (x−3) modulo 5.

4 x + 4

r 4

x - 3) 4xˆ2 - 3 x + 2

4xˆ2 - 2x

4x + 2
4x - 2

4

4x2−3x + 2≡ (x−3)(4x + 4) + 4 (mod 5)

In general, divide P(x) by (x−a) gives Q(x) and remainder r .

That is, P(x) = (x−a)Q(x) + r

Polynomial Division.
Divide 4x2−3x + 2 by (x−3) modulo 5.

4 x + 4 r 4

x - 3) 4xˆ2 - 3 x + 2
4xˆ2 - 2x

4x + 2
4x - 2

4

4x2−3x + 2≡ (x−3)(4x + 4) + 4 (mod 5)

In general, divide P(x) by (x−a) gives Q(x) and remainder r .

That is, P(x) = (x−a)Q(x) + r

Polynomial Division.
Divide 4x2−3x + 2 by (x−3) modulo 5.

4 x + 4 r 4

x - 3) 4xˆ2 - 3 x + 2
4xˆ2 - 2x

4x + 2
4x - 2

4

4x2−3x + 2≡ (x−3)(4x + 4) + 4 (mod 5)

In general, divide P(x) by (x−a) gives Q(x) and remainder r .

That is, P(x) = (x−a)Q(x) + r

Polynomial Division.
Divide 4x2−3x + 2 by (x−3) modulo 5.

4 x + 4 r 4

x - 3) 4xˆ2 - 3 x + 2
4xˆ2 - 2x

4x + 2
4x - 2

4

4x2−3x + 2≡ (x−3)(4x + 4) + 4 (mod 5)

In general, divide P(x) by (x−a) gives Q(x) and remainder r .

That is, P(x) = (x−a)Q(x) + r

Polynomial Division.
Divide 4x2−3x + 2 by (x−3) modulo 5.

4 x + 4 r 4

x - 3) 4xˆ2 - 3 x + 2
4xˆ2 - 2x

4x + 2
4x - 2

4

4x2−3x + 2≡ (x−3)(4x + 4) + 4 (mod 5)

In general, divide P(x) by (x−a) gives Q(x) and remainder r .

That is, P(x) = (x−a)Q(x) + r

Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x−a) has remainder 0:
P(x) = (x−a)Q(x).

Proof: P(x) = (x−a)Q(x) + r .
Plugin a: P(a) = r .
It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r1, . . . , rd then
P(x) = c(x− r1)(x− r2) · · ·(x− rd).
Proof Sketch: By induction.

Induction Step: P(x) = (x− r1)Q(x) by Lemma 1. Q(x) has smaller
degree so use the induction hypothesis.

d + 1 roots implies degree is at least d + 1.

Roots fact: Any degree d polynomial has at most d roots.

Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x−a) has remainder 0:
P(x) = (x−a)Q(x).

Proof: P(x) = (x−a)Q(x) + r .
Plugin a: P(a) = r .

It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r1, . . . , rd then
P(x) = c(x− r1)(x− r2) · · ·(x− rd).
Proof Sketch: By induction.

Induction Step: P(x) = (x− r1)Q(x) by Lemma 1. Q(x) has smaller
degree so use the induction hypothesis.

d + 1 roots implies degree is at least d + 1.

Roots fact: Any degree d polynomial has at most d roots.

Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x−a) has remainder 0:
P(x) = (x−a)Q(x).

Proof: P(x) = (x−a)Q(x) + r .
Plugin a: P(a) = r .
It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r1, . . . , rd then
P(x) = c(x− r1)(x− r2) · · ·(x− rd).
Proof Sketch: By induction.

Induction Step: P(x) = (x− r1)Q(x) by Lemma 1. Q(x) has smaller
degree so use the induction hypothesis.

d + 1 roots implies degree is at least d + 1.

Roots fact: Any degree d polynomial has at most d roots.

Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x−a) has remainder 0:
P(x) = (x−a)Q(x).

Proof: P(x) = (x−a)Q(x) + r .
Plugin a: P(a) = r .
It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r1, . . . , rd then
P(x) = c(x− r1)(x− r2) · · ·(x− rd).
Proof Sketch: By induction.

Induction Step: P(x) = (x− r1)Q(x) by Lemma 1. Q(x) has smaller
degree so use the induction hypothesis.

d + 1 roots implies degree is at least d + 1.

Roots fact: Any degree d polynomial has at most d roots.

Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x−a) has remainder 0:
P(x) = (x−a)Q(x).

Proof: P(x) = (x−a)Q(x) + r .
Plugin a: P(a) = r .
It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r1, . . . , rd then
P(x) = c(x− r1)(x− r2) · · ·(x− rd).
Proof Sketch: By induction.

Induction Step: P(x) = (x− r1)Q(x) by Lemma 1. Q(x) has smaller
degree so use the induction hypothesis.

d + 1 roots implies degree is at least d + 1.

Roots fact: Any degree d polynomial has at most d roots.

Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x−a) has remainder 0:
P(x) = (x−a)Q(x).

Proof: P(x) = (x−a)Q(x) + r .
Plugin a: P(a) = r .
It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r1, . . . , rd then
P(x) = c(x− r1)(x− r2) · · ·(x− rd).
Proof Sketch: By induction.

Induction Step: P(x) = (x− r1)Q(x) by Lemma 1. Q(x) has smaller
degree so use the induction hypothesis.

d + 1 roots implies degree is at least d + 1.

Roots fact: Any degree d polynomial has at most d roots.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:

Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.

Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.

Knowing ≤ k −1 pts, any P(0) is possible.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For an b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For an b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For an b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For an b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For an b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For an b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For an b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For an b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Runtime.

Runtime: polynomial in k , n, and logp.

1. Evaluate degree k −1 polynomial n times using logp-bit
numbers.

2. Reconstruct secret by solving system of k equations using
logp-bit arithmetic.

Runtime.

Runtime: polynomial in k , n, and logp.

1. Evaluate degree k −1 polynomial n times using logp-bit
numbers.

2. Reconstruct secret by solving system of k equations using
logp-bit arithmetic.

A bit more counting.

What is the number of degree d polynomials over GF (m)?

I md+1: d + 1 coefficients from {0, . . . ,m−1}.
I md+1: d + 1 points with y -values from {0, . . . ,m−1}

Infinite number for reals, rationals, complex numbers!

A bit more counting.

What is the number of degree d polynomials over GF (m)?

I md+1: d + 1 coefficients from {0, . . . ,m−1}.

I md+1: d + 1 points with y -values from {0, . . . ,m−1}

Infinite number for reals, rationals, complex numbers!

A bit more counting.

What is the number of degree d polynomials over GF (m)?

I md+1: d + 1 coefficients from {0, . . . ,m−1}.
I md+1: d + 1 points with y -values from {0, . . . ,m−1}

Infinite number for reals, rationals, complex numbers!

A bit more counting.

What is the number of degree d polynomials over GF (m)?

I md+1: d + 1 coefficients from {0, . . . ,m−1}.
I md+1: d + 1 points with y -values from {0, . . . ,m−1}

Infinite number for reals, rationals, complex numbers!

Erasure Codes.

Satellite

GPS device

3 packet message.

So send 6!

Lose 3 out 6 packets.

1 2 3

1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3. :(

Erasure Codes.

Satellite

GPS device

3 packet message.

So send 6!

Lose 3 out 6 packets.

1 2 3

1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3. :(

Erasure Codes.

Satellite

GPS device

3 packet message.

So send 6!

Lose 3 out 6 packets.

1 2 3

1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3. :(

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3. :(

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3. :(

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3. :(

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3. :(

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...

and message!

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Erasure Codes.

Satellite

GPS device

n packet message.

So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

Optimal!

Erasure Codes.

Satellite

GPS device

n packet message.

So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

Optimal!

Erasure Codes.

Satellite

GPS device

n packet message.

So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

Optimal!

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

Optimal!

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

Optimal!

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

Optimal!

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

Optimal!

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

Optimal!

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Next Time: Error Correction.

Noisy Channel: corrupts k packets. (rather than loses.)

Additional Challenge: Finding which packets are corrupt.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Next Time: Error Correction.

Noisy Channel: corrupts k packets. (rather than loses.)

Additional Challenge: Finding which packets are corrupt.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Next Time: Error Correction.

Noisy Channel: corrupts k packets. (rather than loses.)

Additional Challenge: Finding which packets are corrupt.

Erasure Codes.

Satellite

GPS device

3 packet message.

So send 6!

Lose 3 out 6 packets.

1 2 3

1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Erasure Codes.

Satellite

GPS device

3 packet message.

So send 6!

Lose 3 out 6 packets.

1 2 3

1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Erasure Codes.

Satellite

GPS device

3 packet message.

So send 6!

Lose 3 out 6 packets.

1 2 3

1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets

should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values

allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!

!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!

!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!

!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!

!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!

!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...

and message!

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Erasure Codes.

Satellite

GPS device

n packet message.

So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message.

So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message.

So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.

Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.

Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)

P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,

P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,

P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points.

Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why?

(0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7),

5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0.

a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7)

a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7)

a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1,

P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4,

and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send

Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)

Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai

...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message?

P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,

P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,

P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?

Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144

and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?

Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?

Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8

and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

Send n packets b-bit packets, with k errors.

Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Error Correction

Satellite

GPS device

3 packet message.

Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2

Error Correction

Satellite

GPS device

3 packet message.

Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2

Error Correction

Satellite

GPS device

3 packet message.

Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2

Error Correction

Satellite

GPS device

3 packet message. Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2

Error Correction

Satellite

GPS device

3 packet message. Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2

Error Correction

Satellite

GPS device

3 packet message. Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.

I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,

(2) P(x) is unique degree n−1 polynomial
that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Properties: proof.
P(x): degree n−1 polynomial.

Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)

Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)

At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,

(2) P(x) is unique degree n−1 polynomial
that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:

(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure.

Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.

(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.

P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.

Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k .

P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.

Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k .

H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.

Points contained by both : ≥ n. ≥ P−H Collisions.
=⇒ Q(i) = P(i) at n points.

=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n.

≥ P−H Collisions.
=⇒ Q(i) = P(i) at n points.

=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.

=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,

P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n + k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.

Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n + k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.

If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n + k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n + k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n + k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n + k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n + k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n + k points

=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n + k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n + k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

1p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

1p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

1p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

1p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong

and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

1p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..

no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

1p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!

Assume point 2 is wrong and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

1p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong

and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

1p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...

consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

1p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!!

.... Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???

Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!!

...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.

Runtime:
(n+2k

k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

Ditty...

Where oh where can my bad packets be ...

On Monday!!!!

Ditty...

Where oh where

can my bad packets be ...

On Monday!!!!

Ditty...

Where oh where can my bad packets be ...

On Monday!!!!

Ditty...

Where oh where can my bad packets be ...

On Monday!!!!

Ditty...

Where oh where can my bad packets be ...

On Monday!!!!

