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Polynomials

A polynomial

P(x) = ad xd + ad−1xd−1 · · ·+ a0.

is specified by coefficients ad , . . .a0.

P(x) contains point (a,b) if b = P(a).

Polynomials over reals: a1, . . . ,ad ∈ℜ, use x ∈ℜ.

Polynomials P(x) with arithmetic modulo p: 1 ai ∈ {0, . . . ,p−1}
and

P(x) = ad xd + ad−1xd−1 · · ·+ a0 (mod p),

for x ∈ {0, . . . ,p−1}.

1A field is a set of elements with addition and multiplication operations,
with inverses. GF (p) = ({0, . . . ,p−1},+ (mod p),∗ (mod p)).
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Polynomial: P(x) = adx4+ · · ·+a0

Line:P(x) = a1x + a0

= mx + b

x
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P(x) = .5x + 0

P(x) =−1x + 3

P(x) = 0.5x2−x + 0.1

P(x) =−.3x2 + 1x + .1

Parabola: P(x) = a2x2 + a1x + a0 = ax2 + bx + c
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3x + 1 (mod 5)

x + 2 (mod 5)

Finding an intersection.
x + 2≡ 3x + 1 (mod 5)
=⇒ 2x ≡ 1 (mod 5)

=⇒ x ≡ 3 (mod 5)

3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!



Polynomial: P(x) = adx4+ · · ·+a0 (mod p)

x

P(x)

3x + 1 (mod 5)

x + 2 (mod 5)

Finding an intersection.
x + 2≡ 3x + 1 (mod 5)
=⇒ 2x ≡ 1 (mod 5)

=⇒ x ≡ 3 (mod 5)

3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!



Polynomial: P(x) = adx4+ · · ·+a0 (mod p)

x

P(x)

3x + 1 (mod 5)

x + 2 (mod 5)

Finding an intersection.
x + 2≡ 3x + 1 (mod 5)
=⇒ 2x ≡ 1 (mod 5)

=⇒ x ≡ 3 (mod 5)
3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!



Polynomial: P(x) = adx4+ · · ·+a0 (mod p)

x

P(x)

3x + 1 (mod 5)

x + 2 (mod 5)

Finding an intersection.
x + 2≡ 3x + 1 (mod 5)
=⇒ 2x ≡ 1 (mod 5) =⇒ x ≡ 3 (mod 5)
3 is multiplicative inverse of 2 modulo 5.

Good when modulus is prime!!



Polynomial: P(x) = adx4+ · · ·+a0 (mod p)

x

P(x)

3x + 1 (mod 5)

x + 2 (mod 5)

Finding an intersection.
x + 2≡ 3x + 1 (mod 5)
=⇒ 2x ≡ 1 (mod 5) =⇒ x ≡ 3 (mod 5)
3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!



Two points make a line.

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 2
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Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

2Points with different x values.
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3 points determine a parabola.

P(x) = 0.5x2−x + 1

P(x) =−.3x2 + 1x + .5

Fact: Exactly 1 degree ≤ d polynomial contains d + 1 points. 3

3Points with different x values.
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2 points not enough.

P(x) =−.3x2 + 1x + .5

P(x) = .2x2− .5x + 1.5

P(x) =−.6x2 + 1.9x− .1

There is P(x) contains blue points and any (0,y)!
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Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.
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Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.



Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.
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We will work with polynomials with arithmetic modulo p.



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .

?, otherwise.
(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?

(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain

(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)?

and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea?

Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x)

. . .+ yd+1∆d+1(x).



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).



There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.

Proof of at least one polynomial:
Given points: (x1,y1); (x2,y2) · · ·(xd+1,yd+1).

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi −xj )
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yd+1∆d+1(x).

hits points (x1,y1); (x2,y2) · · ·(xd+1,yd+1). Degree d polynomial!

Construction proves the existence of a polynomial!
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Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2

= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3)

= 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6

= 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3)

= (x−2)(x−3)
2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2

= 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.



From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) = m(1) + b ≡ m + b ≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x + 2 mod 5.
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Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).

Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)
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a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)



Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).
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In general..

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk ).

Solve...

ak−1xk−1
1 + · · ·+ a0 ≡ y1 (mod p)

ak−1xk−1
2 + · · ·+ a0 ≡ y2 (mod p)

·
·

ak−1xk−1
k + · · ·+ a0 ≡ yk (mod p)

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree ≤ d polynomial with
arithmetic modulo prime p contains d + 1 pts.
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Another Construction: Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1 ).

But wanted to hit (1,3); (2,4); (3,0)!

P(x) = 3∆1(x) + 4∆2(x) + 0∆3(x) works.

Same as before?

...after a lot of calculations... P(x) = 2x2 + 1x + 4 mod 5.

The same as before!
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In general.

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk ).

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi −xj )
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..

P(x) = y1∆1(x) + y2∆2(x) + · · ·+ yk ∆k (x).

hits points (x1,y1); (x2,y2) · · ·(xk ,yk ).

Construction proves the existence of the polynomial!
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Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d +1 points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x)−P(x) has d + 1 roots and is degree d .
Contradiction.

Must prove Roots fact.
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Polynomial Division.
Divide 4x2−3x + 2 by (x−3) modulo 5.

4 x

+ 4 r 4

-----------------
x - 3 ) 4xˆ2 - 3 x + 2

4xˆ2 - 2x
----------

4x + 2
4x - 2
-------

4

4x2−3x + 2≡ (x−3)(4x + 4) + 4 (mod 5)

In general, divide P(x) by (x−a) gives Q(x) and remainder r .

That is, P(x) = (x−a)Q(x) + r
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Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x−a) has remainder 0:
P(x) = (x−a)Q(x).

Proof: P(x) = (x−a)Q(x) + r .
Plugin a: P(a) = r .
It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r1, . . . , rd then
P(x) = c(x− r1)(x− r2) · · ·(x− rd ).
Proof Sketch: By induction.

Induction Step: P(x) = (x− r1)Q(x) by Lemma 1. Q(x) has smaller
degree so use the induction hypothesis.

d + 1 roots implies degree is at least d + 1.

Roots fact: Any degree d polynomial has at most d roots.
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Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.
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Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.
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Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For an b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).
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Runtime.

Runtime: polynomial in k , n, and logp.

1. Evaluate degree k −1 polynomial n times using logp-bit
numbers.

2. Reconstruct secret by solving system of k equations using
logp-bit arithmetic.
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A bit more counting.

What is the number of degree d polynomials over GF (m)?

I md+1: d + 1 coefficients from {0, . . . ,m−1}.
I md+1: d + 1 points with y -values from {0, . . . ,m−1}

Infinite number for reals, rationals, complex numbers!
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Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m2, . . . ,mn−1.
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2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!
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Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.
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Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)
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Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)
Reconstruct?

Format: (i ,R(i).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.
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Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.
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Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.
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The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.
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Properties: proof.
P(x): degree n−1 polynomial.

Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).
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Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.
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Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n + k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!
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Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

1p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!
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In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! .... Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!
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