Reed-Solomon code.

Problem: Communicate *n* packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

```
    Make a polynomial, P(x) of degree n-1,
that encodes message: coefficients, p<sub>0</sub>,...,p<sub>n-1</sub>.
```

2. Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

(1) P(i) = R(i) for at least n+k points i,
(2) P(x) is unique degree n-1 polynomial that contains ≥ n+k received points.

Matrix view of encoding: modulo p.

 $\begin{bmatrix} P(1) \\ P(2) \\ \vdots \\ P(n+2k) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1^2 & \cdots & 1 \\ 1 & 2 & 2^2 & \cdots & 2^{n-1} \\ 1 & 3 & 3^2 & \cdots & 3^{n-1} \\ \vdots & \ddots & \vdots & \vdots \\ 1 & (n+2k) & (n+2k)^2 \cdots & (n+2k)^{n-1} \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ \vdots \\ P_{n-1} \end{bmatrix} \pmod{p}$

Solving for Q(x) and E(x)...and P(x)

For all points 1,...,*i*, *n*+2*k*, $Q(i) = R(i)E(i) \pmod{p}$ Gives *n*+2*k* linear equations. $a_{n+k-1} + \dots a_0 \equiv R(1)(1+b_{k-1}\cdots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1}\cdots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1}\cdots b_0) \pmod{p}$...and *n*+2*k* unknown coefficients of *Q*(*x*) and *E*(*x*)! Solve for coefficients of *Q*(*x*) and *E*(*x*). Find *P*(*x*) = *Q*(*x*)/*E*(*x*).

Berlekamp-Welsh Algorithm

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k *i*'s where $P(i) \neq R(i)$.

Idea:

E(x) is error locator polynomial. Root at each error point. Degree *k*. Q(x) = P(x)E(x) or degree n + k - 1 polynomial.

Set up system corresponding to Q(i) = R(i)E(i) where Q(x) is degree n + k - 1 polynomial. Coefficients: a_0, \ldots, a_{n+k-1} E(x) is degree k polynomial. Coefficients: $b_0, \ldots, b_{k-1}, 1$

Matrix equations: modulo *p*!

Solve. Then output P(x) = Q(x)/E(x).

Example.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ $E(x) = x - b_0$ Q(i) = R(i)E(i).

 $\begin{array}{rcl} a_3 + a_2 + a_1 + a_0 &\equiv& 3(1 - b_0) \pmod{7} \\ a_3 + 4a_2 + 2a_1 + a_0 &\equiv& 1(2 - b_0) \pmod{7} \\ 6a_3 + 2a_2 + 3a_1 + a_0 &\equiv& 6(3 - b_0) \pmod{7} \\ a_3 + 2a_2 + 4a_1 + a_0 &\equiv& 0(4 - b_0) \pmod{7} \\ 6a_3 + 4a_2 + 5a_1 + a_0 &\equiv& 3(5 - b_0) \pmod{7} \end{array}$

```
a_3 = 1, a_2 = 6, a_1 = 6, a_0 = 5 \text{ and } b_0 = 2.

Q(x) = x^3 + 6x^2 + 6x + 5.

E(x) = x - 2.
```

Finding Q(x) and E(x)?

► E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• Q(x) = P(x)E(x) has degree $n + k - 1 \dots$

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 \implies *n*+*k* (unknown) coefficients.

Total unknown coefficient: n+2k.

Example: finishing up.

```
Q(x) = x^3 + 6x^2 + 6x + 5.
E(x) = x - 2.
                  1 x^2 + 1 x + 1
           _____
    x - 2) x^3 + 6 x^2 + 6 x + 5
           x^3 - 2 x^2
             _____
                   1 x^2 + 6 x + 5
                    1 x^2 - 2 x
                               x + 5
                               x - 2
                               ____
                                   0
P(x) = x^2 + x + 1
Message is P(1) = 3, P(2) = 0, P(3) = 6.
What is \frac{x-2}{x-2}? 1 Except at x = 2? Hole there?
```

Error Correction: Berlekamp-Welsh	Check your undersanding.	Hmmm
Message: m_1, \ldots, m_n . Sender: 1. Form degree $n - 1$ polynomial $P(x)$ where $P(i) = m_i$. 2. Send $P(1), \ldots, P(n+2k)$. Receiver: 1. Receive $R(1), \ldots, R(n+2k)$. 2. Solve $n+2k$ equations, $Q(i) = E(i)R(i)$ to find $Q(x) = E(x)P(x)$ and $E(x)$. 3. Compute $P(x) = Q(x)/E(x)$. 4. Compute $P(1), \ldots, P(n)$.	You have error locator polynomial! Where oh where can my bad packets be? Factor? Sure. Check all values? Sure. Efficiency? Sure. Only $n + k$ values. See where it is 0.	Is there one and only one $P(x)$ from Berlekamp-Welsh procedure? Existence: there is a $P(x)$ and $E(x)$ that satisfy equations.
Unique solution for $P(x)$ Uniqueness: any solution $Q'(x)$ and $E'(x)$ have $\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). (1)$ Proof: We claim Q'(x)E(x) = Q(x)E'(x) on $n+2k$ values of $x. (2)Equation 2 implies 1:Q'(x)E(x)$ and $Q(x)E'(x)$ are degree $n+2k-1and agree on n+2k pointsE(x)$ and $E'(x)$ have at most k zeros each. Can cross divide at n points. $\Rightarrow \frac{Q'(x)}{E(x)} = \frac{Q(x)}{E(x)}$ equal on n points. Both degree $\leq n \Rightarrow$ Same polynomial!	Last bit. Fact: $Q'(x)E(x) = Q(x)E'(x)$ on $n + 2k$ values of x . Proof: Construction implies that Q(i) = R(i)E(i) Q'(i) = R(i)E'(i) for $i \in \{1,, n + 2k\}$. If $E(i) = 0$, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$. $\Rightarrow Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero. When $E'(i)$ and $E(i)$ are not zero $\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i)$. Cross multiplying gives equality in fact for these points.	Berlekamp-Welsh algorithm decodes correctly when <i>k</i> errors!

Summary: polynomials. Set of $d + 1$ points determines degree d polynomial.	Farewell to modular arithmetic	Next up: how big is infinity.
Encode secret using degree $k - 1$ polynomial: Can share with <i>n</i> people. Any <i>k</i> can recover!	Modular arithmetic modulo a prime. Add, subtract, commutative, associative, inverses! Allow for solving linear systems, discussing polynomials	
Encode message using degree $n-1$ polynomail: n packets of information.	Why not modular arithmetic all the time?	
Send $n + k$ packets (point values). Can recover from k losses: Still have n points!	4 > 3 ? Yes! 4 > 3 (mod 7)? Yesmaybe?	► Countable
Send $n+2k$ packets (point values). Can recover from k corruptionss. Only one polynomial contains $n+k$ Efficiency. Magic!!!! Error Locator Polynomial.	$-3 > 3 \pmod{7}$? Uh oh $-3 = 4 \pmod{7}$. Another problem.	Countably infinite.Enumeration
	4 is close to 3. But can you get closer? Sure. 3.5. Closer. Sure? 3.25, 3.1, 3.000001	
Relations: Linear code. Almost any coding matrix works. Vandermonde matrix (the one for Reed-Solomon) allows for efficiency. Magic of polynomials. Other Algebraic-Geometric codes.	For reals numbers we have the notion of limit, continuity, and derivative and Calculus. For modular arithmeticno Calculus. Sad face!	
How big are the reals or the integers?	Same size?	Isomorphism principle.
Infinite! Is one bigger or smaller?	Same number? Make a function f : Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue square f(circle with black border) = square with black border	Given a function, $f: D \rightarrow R$. One to One: For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$. or $\forall x, y \in D, f(x) = f(y) \implies x = y$. Onto: For all $y \in R, \exists x \in D, y = f(x)$.

f(circle with black border) = square with black border One to one. Each circle mapped to different square. One to One: For all $x, y \in D$, $x \neq y \implies f(x) \neq f(y)$. Onto. Each square mapped to from some circle . Onto: For all $s \in R$, $\exists c \in D$, s = f(c).

Isomorphism principle: If there is $f : D \to R$ that is one to one and onto, then, |D| = |R|.

 $f(\cdot)$ is a **bijection** if it is one to one and onto. **Isomorphism principle:** If there is a bijection $f: D \rightarrow R$ then |D| = |R|.

Countable.

How to count? 0, 1, 2, 3, ... The Counting numbers. The natural numbers! *N*Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*. If the subset of *N* is finite, *S* has finite **cardinality**. If the subset of *N* is infinite, *S* is **countably infinite**.

More large sets.

E - Even natural numbers?

 $f: N \to E.$ $f(n) \to 2n.$ Onto: $\forall e \in E, f(e/2) = e. e/2$ is natural since *e* is even One-to-one: $\forall x, y \in N, x \neq y \implies 2x \neq 2y. \equiv f(x) \neq f(y)$

Evens are countably infinite. Evens are same size as all natural numbers.

Where's 0?

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1, 2, 3, Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one! For any natural number n, for z = n + 1, f(z) = (n + 1) - 1 = n. Onto for \mathbb{N} Bijection! $\implies |\mathbb{Z}^+| = |\mathbb{N}|$. But.. but Where's zero? "Comes from 1."

All integers?

What about Integers, *Z*? Define $f: N \rightarrow Z$.

 $f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$ if x is even and y is even, then $x/2 \neq y/2 \implies f(x) \neq f(y)$

Onto: For any $z \in Z$, if $z \ge 0$, f(2z) = z and $2z \in N$. if z < 0, f(2|z|-1) = z and $2|z|+1 \in N$.

Integers and naturals have same size!

A bijection is a bijection. Notice that there is a bijection between *N* and Z^+ as well. $f(n) = n + 1.0 \rightarrow 1, 1 \rightarrow 2, ...$ Bijection from A to $B \implies$ a bijection from B to A. Inverse function! Can prove equivalence either way. Bijection to or from natural numbers implies countably infinite. Listings.. $f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$ Another View: $n \mid f(n)$ 0 0 1 -1 2 1 3 -2 4 2 Notice that: A listing "is" a bijection with a subset of natural numbers. Function \equiv "Position in list." If finite: bijection with $\{0, \ldots, |S| - 1\}$ If infinite: bijection with N.

Enumerability \equiv countability.	Countably infinite subsets.	Enumeration example.
Enumerating (listing) a set implies that it is countable. "Output element of <i>S</i> ", "Output next element of <i>S</i> " Any element <i>x</i> of <i>S</i> has <i>specific, finite</i> position in list. $Z = \{0, 1, -1, 2, -2,\}$ $Z = \{\{0, 1, 2,,\}$ and then $\{-1, -2,\}\}$ When do you get to -1 ? at infinity? Need to be careful. 61A — streams!	Enumerating a set implies countable. Corollary: Any subset <i>T</i> of a countable set <i>S</i> is countable. Enumerate <i>T</i> as follows: Get next element, <i>x</i> , of <i>S</i> , output only if $x \in T$. Implications: Z^+ is countable. It is infinite since the list goes on. There is a bijection with the natural numbers. So it is countably infinite. All countably infinite sets have the same cardinality.	All binary strings. $B = \{0, 1\}^*$. $B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011,\}$. ϕ is empty string. For any string, it appears at some position in the list. If <i>n</i> bits, it will appear before position 2^{n+1} . Should be careful here. $B = \{\phi; 0, 00, 000, 0000,\}$ Never get to 1.
More fractions?	Pairs of natural numbers.	Pairs of natural numbers.
Enumerate the rational numbers in order 0,,1/2, Where is 1/2 in list? After 1/3, which is after 1/4, which is after 1/5 A thing about fractions: any two fractions has another fraction between it. Can't even get to "next" fraction! Can't list in "order".	Consider pairs of natural numbers: $N \times N$ E.g.: (1,2), (100,30), etc. For finite sets S_1 and S_2 , then $S_1 \times S_2$ has size $ S_1 \times S_2 $. So, $N \times N$ is countably infinite squared ???	Enumerate in list: $(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),\dots$ 3 4 1 0 0 1 2 3 4 The pair (a,b) , is in first $(a+b+1)(a+b)/2$ elements of list! (i.e., "triangle"). Countably infinite. Same size as the natural numbers!!

Rationals?	Real numbers	The reals.
Positive rational number. Lowest terms: a/b $a, b \in N$ with $gcd(a, b) = 1$. Infinite subset of $N \times N$. Countably infinite! All rational numbers? Negative rationals are countable. (Same size as positive rationals.) Put all rational numbers in a list. First negative, then nonegative ??? No! Repeatedly and alternatively take one from each list. Interleave Streams in 61A The rationals are countably infinite.	Real numbers are same size as integers?	Are the set of reals countable? Lets consider the reals [0,1]. Each real has a decimal representation. .50000000 (1/2) .785398162 $\pi/4$.367879441 1/ <i>e</i> .632120558 1 – 1/ <i>e</i> .345212312 Some real number
Diagonalization.	All reals?	Diagonalization.
If countable, there a listing, <i>L</i> contains all reals. For example 0: .50000000 1: .785398162 2: .367879441 3: .632120558 4: .345212312 : Construct "diagonal" number: .77677 Diagonal Number: Digit <i>i</i> is 7 if number <i>i</i> 's <i>i</i> th digit is not 7 and 6 otherwise. Diagonal number for a list differs from every number in list! Diagonal number not in list. Diagonal number is real. Contradiction! Subset [0, 1] is not countable!!	Subset [0, 1] is not countable!! What about all reals? No. Any subset of a countable set is countable. If reals are countable then so is [0, 1].	 Assume that a set S can be enumerated. Consider an arbitrary list of all the elements of S. Use the diagonal from the list to construct a new element t. Show that t is different from all elements in the list ⇒ t is not in the list. Show that t is in S. Contradiction.

Another diagonalization.	Diagonalize Natural Number.	The Continuum hypothesis.
The set of all subsets of <i>N</i> . Example subsets of <i>N</i> : {0}, {0,,7}, evens, odds, primes, Assume is countable. There is a listing, <i>L</i> , that contains all subsets of <i>N</i> . Define a diagonal set, <i>D</i> : If <i>i</i> th set in <i>L</i> does not contain <i>i</i> , $i \in D$. otherwise $i \notin D$. <i>D</i> is different from <i>i</i> th set in <i>L</i> for every <i>i</i> . $\implies D$ is not in the listing. <i>D</i> is a subset of <i>N</i> . <i>L</i> does not contain all subsets of <i>N</i> . Contradiction. Theorem: The set of all subsets of <i>N</i> is not countable. (The set of all subsets of <i>S</i> , is the powerset of <i>N</i> .)	Natural numbers have a listing, <i>L</i> . Make a diagonal number, <i>D</i> : differ from <i>i</i> th element of <i>L</i> in <i>i</i> th digit. Differs from all elements of listing. <i>D</i> is a natural number Not. Any natural number has a finite number of digits. "Construction" requires an infinite number of digits.	There is no set with cardinality between the naturals and the reals. First of Hilbert's problems!
Cardinalities of uncountable sets? Cardinality of [0, 1] smaller than all the reals? $f: R^+ \rightarrow [0, 1].$ $f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$	Generalized Continuum hypothesis. There is no infinite set whose cardinality is between the cardinality of an infinite set and its power set.	Gödel. 1940. Can't use math! If math doesn't contain a contradiction. This statement is a lie.
One to one. $x \neq y$ If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$. If neither in $[0, 1/2]$ a division $\implies f(x) \neq f(y)$. If one is in $[0, 1/2]$ and one isn't, different ranges $\implies f(x) \neq f(y)$. Bijection! [0, 1] is same cardinality as nonnegative reals!	The powerset of a set is the set of all subsets.	Is the statement above true? The barber shaves every person who does not shave themselves. Who shaves the barber? Self reference.

More on	
Tuesday	