
Reed-Solomon code.
Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message: coefficients, p0, . . . ,pn−1.

2. Send P(1), . . . ,P(n+2k).

After noisy channel: Recieve values R(1), . . . ,R(n+2k).

Properties:
(1) P(i) = R(i) for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k received points.

Matrix view of encoding: modulo p.
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Berlekamp-Welsh Algorithm
P(x): degree n−1 polynomial.

Send P(1), . . . ,P(n+2k)
Receive R(1), . . . ,R(n+2k)
At most k i ’s where P(i) 6= R(i).

Idea:
E(x) is error locator polynomial.

Root at each error point. Degree k .
Q(x) = P(x)E(x) or degree n+k −1 polynomial.

Set up system corresponding to Q(i) = R(i)E(i) where
Q(x) is degree n+k −1 polynomial. Coefficients: a0, . . . ,an+k−1
E(x) is degree k polyonimal. Coefficients: b0, . . . ,bk−1,1

Matrix equations: modulo p!

1 1 · 1
1 2 · 2n+k−1

1 3 · 3n+k−1

.

.

. ·
.
.
.

.
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.
1 (n+2k) · (n+2k)n+k−1
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.
.
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an+k−1
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R(1) · 0

0 · 0
.
.
.

.

.

. 0
0 · R(n+2k)





1 · 1
1 · 2k

1 · 3k

.

.

.
.
.
.

.

.

.
1 · (n+2k)k





b0
b1
.
.
.

bk−1
1


Solve. Then output P(x) = Q(x)/E(x).
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Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk +bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n+k −1 ...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k (unknown) coefficients.

Total unknown coefficient: n+2k .
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Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n+2k ,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).
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Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)

6a3 +2a2 +3a1 +a0 ≡ 6(3−b0) (mod 7)
a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.
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Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

1 xˆ2

+ 1 x + 1

-----------------
x - 2 ) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2
----------

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x
---------------

x + 5
x - 2
-----

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1 Except at x = 2? Hole there?
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Error Correction: Berlekamp-Welsh

Message: m1, . . . ,mn.
Sender:

1. Form degree n−1 polynomial P(x) where P(i) = mi .

2. Send P(1), . . . ,P(n+2k).

Receiver:

1. Receive R(1), . . . ,R(n+2k).

2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x)
and E(x).

3. Compute P(x) = Q(x)/E(x).

4. Compute P(1), . . . ,P(n).



Check your undersanding.

You have error locator polynomial!

Where oh where can my bad packets be?...

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n+k values.
See where it is 0.
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Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure?

Existence: there is a P(x) and E(x) that satisfy equations.
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Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!
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Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!
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Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.
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Berlekamp-Welsh algorithm decodes correctly when k errors!



Summary: polynomials.
Set of d +1 points determines degree d polynomial.

Encode secret using degree k −1 polynomial:
Can share with n people. Any k can recover!

Encode message using degree n−1 polynomail:
n packets of information.

Send n+k packets (point values).
Can recover from k losses: Still have n points!

Send n+2k packets (point values).
Can recover from k corruptionss.

Only one polynomial contains n+k
Efficiency.
Magic!!!!
Error Locator Polynomial.

Relations:
Linear code.
Almost any coding matrix works.
Vandermonde matrix (the one for Reed-Solomon)..
allows for efficiency. Magic of polynomials.

Other Algebraic-Geometric codes.
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Farewell to modular arithmetic...
Modular arithmetic modulo a prime.

Add, subtract, commutative, associative, inverses!
Allow for solving linear systems, discussing polynomials...

Why not modular arithmetic all the time?

4 > 3 ? Yes!

4 > 3 (mod 7)? Yes...maybe?

−3 > 3 (mod 7)? Uh oh.. −3 = 4 (mod 7).

Another problem.

4 is close to 3.
But can you get closer? Sure. 3.5. Closer. Sure? 3.25, 3.1,
3.000001. . . .

For reals numbers we have the notion of limit, continuity, and
derivative.......

....and Calculus.

For modular arithmetic...no Calculus. Sad face!
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Infinite!
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Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.
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subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.
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Where’s 0?

Which is bigger?

The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3, . . . .

Positive integers. 1,2,3, . . . .

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”
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A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.
f (n) = n+1. 0→ 1,1→ 2, . . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.
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More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto: ∀e ∈ E , f (e/2) = e. e/2 is natural since e is even
One-to-one: ∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y . ≡ f (x) 6= f (y)

Evens are countably infinite.
Evens are same size as all natural numbers.
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All integers?

What about Integers, Z?

Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!
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Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0
1 −1
2 1
3 −2
4 2
. . . . . .

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.
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Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2, . . . ..}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!
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Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.
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Enumeration example.

All binary strings.

B = {0,1}∗.
B = {φ ,0,1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.
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More fractions?

Enumerate the rational numbers in order...

0, . . . ,1/2, ..

Where is 1/2 in list?

After 1/3, which is after 1/4, which is after 1/5...

A thing about fractions:
any two fractions has another fraction between it.

Can’t even get to “next” fraction!

Can’t list in “order”.
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Pairs of natural numbers.

Consider pairs of natural numbers: N×N

E.g.: (1,2), (100,30), etc.

For finite sets S1 and S2,
then S1×S2
has size |S1|× |S2|.
So, N×N is countably infinite squared ???



Pairs of natural numbers.

Consider pairs of natural numbers: N×N
E.g.: (1,2), (100,30), etc.

For finite sets S1 and S2,
then S1×S2
has size |S1|× |S2|.
So, N×N is countably infinite squared ???



Pairs of natural numbers.

Consider pairs of natural numbers: N×N
E.g.: (1,2), (100,30), etc.

For finite sets S1 and S2,

then S1×S2
has size |S1|× |S2|.
So, N×N is countably infinite squared ???



Pairs of natural numbers.

Consider pairs of natural numbers: N×N
E.g.: (1,2), (100,30), etc.

For finite sets S1 and S2,
then S1×S2

has size |S1|× |S2|.
So, N×N is countably infinite squared ???



Pairs of natural numbers.

Consider pairs of natural numbers: N×N
E.g.: (1,2), (100,30), etc.

For finite sets S1 and S2,
then S1×S2
has size |S1|× |S2|.

So, N×N is countably infinite squared ???



Pairs of natural numbers.

Consider pairs of natural numbers: N×N
E.g.: (1,2), (100,30), etc.

For finite sets S1 and S2,
then S1×S2
has size |S1|× |S2|.

So, N×N is countably infinite squared ???



Pairs of natural numbers.

Consider pairs of natural numbers: N×N
E.g.: (1,2), (100,30), etc.

For finite sets S1 and S2,
then S1×S2
has size |S1|× |S2|.
So, N×N is countably infinite

squared ???



Pairs of natural numbers.

Consider pairs of natural numbers: N×N
E.g.: (1,2), (100,30), etc.

For finite sets S1 and S2,
then S1×S2
has size |S1|× |S2|.
So, N×N is countably infinite squared

???



Pairs of natural numbers.

Consider pairs of natural numbers: N×N
E.g.: (1,2), (100,30), etc.

For finite sets S1 and S2,
then S1×S2
has size |S1|× |S2|.
So, N×N is countably infinite squared ???



Pairs of natural numbers.

Enumerate in list:

(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), . . . ...

0

1

2

3

0 1 2 3 4
· · · · ·
· · · · ·
· · · · ·
· · · · ·

The pair (a,b), is in first (a+b+1)(a+b)/2 elements of list!
(i.e., “triangle”).

Countably infinite.

Same size as the natural numbers!!
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Rationals?

Positive rational number.

Lowest terms: a/b
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with gcd(a,b) = 1.
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Put all rational numbers in a list.

First negative, then nonegative ??? No!

Repeatedly and alternatively take one from each list.
Interleave Streams in 61A

The rationals are countably infinite.
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Real numbers..

Real numbers are same size as integers?



The reals.

Are the set of reals countable?

Lets consider the reals [0,1].

Each real has a decimal representation.
.500000000... (1/2)
.785398162... π/4
.367879441... 1/e
.632120558... 1−1/e
.345212312... Some real number
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Diagonalization.

If countable, there a listing, L contains all reals.

For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...
...

Construct “diagonal” number: .77677 . . .

Diagonal Number: Digit i is 7 if number i ’s i th digit is not 7
and 6 otherwise.

Diagonal number for a list differs from every number in list!
Diagonal number not in list.

Diagonal number is real.

Contradiction!

Subset [0,1] is not countable!!
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Diagonalization.

1. Assume that a set S can be enumerated.

2. Consider an arbitrary list of all the elements of S.

3. Use the diagonal from the list to construct a new element t .

4. Show that t is different from all elements in the list
=⇒ t is not in the list.

5. Show that t is in S.

6. Contradiction.
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Another diagonalization.
The set of all subsets of N.

Example subsets of N: {0}, {0, . . . ,7},
evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If i th set in L does not contain i , i ∈ D.

otherwise i 6∈ D.

D is different from i th set in L for every i .
=⇒ D is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable.
(The set of all subsets of S, is the powerset of N.)
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Natural numbers have a listing, L.

Make a diagonal number, D:
differ from i th element of L in i th digit.

Differs from all elements of listing.

D is a natural number... Not.

Any natural number has a finite number of digits.

“Construction” requires an infinite number of digits.
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Cardinalities of uncountable sets?

Cardinality of [0,1] smaller than all the reals?

f : R+→ [0,1].

f (x) =
{

x + 1
2 0≤ x ≤ 1/2

1
4x x > 1/2

One to one. x 6= y
If both in [0,1/2], a shift =⇒ f (x) 6= f (y).
If neither in [0,1/2] a division =⇒ f (x) 6= f (y).
If one is in [0,1/2] and one isn’t, different ranges =⇒ f (x) 6= f (y).
Bijection!

[0,1] is same cardinality as nonnegative reals!
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Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.
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