Today.

Today.

- Finish Countability.
- ..or uncountaility.
- Undecidability.

Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

If the subset of *N* is finite, *S* has finite **cardinality**.

Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

If the subset of *N* is finite, *S* has finite **cardinality**.

If the subset of *N* is infinite, *S* is **countably infinite**.

Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

If the subset of *N* is finite, *S* has finite **cardinality**.

If the subset of *N* is infinite, *S* is **countably infinite**.

Bijection to or from natural numbers implies countably infinite.

Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

If the subset of *N* is finite, *S* has finite **cardinality**.

If the subset of *N* is infinite, *S* is **countably infinite**.

Bijection to or from natural numbers implies countably infinite.

Enumerable means countable.

Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

If the subset of *N* is finite, *S* has finite **cardinality**.

If the subset of *N* is infinite, *S* is **countably infinite**.

Bijection to or from natural numbers implies countably infinite.

Enumerable means countable.

Subset of countable set is countable.

Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

If the subset of *N* is finite, *S* has finite **cardinality**.

If the subset of *N* is infinite, *S* is **countably infinite**.

Bijection to or from natural numbers implies countably infinite.

Enumerable means countable.

Subset of countable set is countable.

All countably infinite sets are the same cardinality as each other.

Countably infinite (same cardinality as naturals)

► Z⁺ - positive integers

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers
 Where's 0?

Countably infinite (same cardinality as naturals)

► Z^+ - positive integers Where's 0? Bijection: f(z) = z - 1.

Countably infinite (same cardinality as naturals)

► Z^+ - positive integers Where's 0? Bijection: f(z) = z - 1. (Where's 0?

Countably infinite (same cardinality as naturals)

► Z^+ - positive integers Where's 0? Bijection: f(z) = z - 1. (Where's 0? 1

Countably infinite (same cardinality as naturals)

► Z^+ - positive integers Where's 0? Bijection: f(z) = z - 1. (Where's 0? 1 Where's 1?

Countably infinite (same cardinality as naturals)

► Z^+ - positive integers Where's 0? Bijection: f(z) = z - 1. (Where's 0? 1 Where's 1? 2

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

E even numbers.

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

E even numbers. Where are the odds?

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

E even numbers. Where are the odds? Half as big?

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

• *E* even numbers. Where are the odds? Half as big? Bijection: f(e) = e/2.

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

• *E* even numbers. Where are the odds? Half as big? Bijection: f(e) = e/2.

Z- all integers.

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

• *E* even numbers. Where are the odds? Half as big? Bijection: f(e) = e/2.

Z- all integers.
 Twice as big?

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

• *E* even numbers. Where are the odds? Half as big? Bijection: f(e) = e/2.

Z- all integers. Twice as big? Bijection: f(z) = 2|z| − sign(z).

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

• *E* even numbers. Where are the odds? Half as big? Bijection: f(e) = e/2.

```
► Z- all integers.
Twice as big?
Bijection: f(z) = 2|z| - sign(z).
Enumerate: 0,
```

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

• *E* even numbers. Where are the odds? Half as big? Bijection: f(e) = e/2.

► Z- all integers. Twice as big? Bijection: f(z) = 2|z| - sign(z). Enumerate: 0, -1,

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

• *E* even numbers. Where are the odds? Half as big? Bijection: f(e) = e/2.

► Z- all integers. Twice as big? Bijection: f(z) = 2|z| - sign(z). Enumerate: 0, -1, 1,

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

• *E* even numbers. Where are the odds? Half as big? Bijection: f(e) = e/2.

• Z- all integers.
Twice as big?
Bijection:
$$f(z) = 2|z| - sign(z)$$
.
Enumerate: $0, -1, 1, -2$,

Countably infinite (same cardinality as naturals)

Z⁺ - positive integers Where's 0?
 Bijection: *f*(*z*) = *z* − 1. (Where's 0? 1 Where's 1? 2 ...)

• *E* even numbers. Where are the odds? Half as big? Bijection: f(e) = e/2.

```
► Z- all integers.

Twice as big?

Bijection: f(z) = 2|z| - sign(z).

Enumerate: 0, -1, 1, -2, 2...

Where sign(z) = 1 if z > 0 and sign(z) = 0 otherwise.
```

• $N \times N$ - Pairs of integers.

N × N - Pairs of integers. Square of countably infinite?

N × N - Pairs of integers.
 Square of countably infinite?
 Enumerate: (0,0), (0,1), (0,2),...

N × N - Pairs of integers.
 Square of countably infinite?
 Enumerate: (0,0), (0,1), (0,2),... ???

 N×N - Pairs of integers. Square of countably infinite? Enumerate: (0,0), (0,1), (0,2),... ??? Never get to (1,1)!

 N×N - Pairs of integers. Square of countably infinite? Enumerate: (0,0), (0,1), (0,2),... ??? Never get to (1,1)! Enumerate: (0,0),

► $N \times N$ - Pairs of integers. Square of countably infinite? Enumerate: $(0,0), (0,1), (0,2), \dots$??? Never get to (1,1)!Enumerate: (0,0), (1,0),

► $N \times N$ - Pairs of integers. Square of countably infinite? Enumerate: $(0,0), (0,1), (0,2), \dots$??? Never get to (1,1)!Enumerate: (0,0), (1,0), (0,1),

► $N \times N$ - Pairs of integers. Square of countably infinite? Enumerate: $(0,0), (0,1), (0,2), \dots$??? Never get to (1,1)!Enumerate: (0,0), (1,0), (0,1), (2,0),

N×N - Pairs of integers.
 Square of countably infinite?
 Enumerate: (0,0), (0,1), (0,2),... ???
 Never get to (1,1)!
 Enumerate: (0,0), (1,0), (0,1), (2,0), (1,1),

N×N - Pairs of integers.
 Square of countably infinite?
 Enumerate: (0,0), (0,1), (0,2),... ???
 Never get to (1,1)!
 Enumerate: (0,0), (1,0), (0,1), (2,0), (1,1), (0,2)...

▶ $N \times N$ - Pairs of integers. Square of countably infinite? Enumerate: (0,0),(0,1),(0,2),...??? Never get to (1,1)! Enumerate: (0,0),(1,0),(0,1),(2,0),(1,1),(0,2)... (*a*,*b*) at position (*a*+*b*+1)(*a*+*b*)/2+*b* in this order.

▶ $N \times N$ - Pairs of integers. Square of countably infinite? Enumerate: (0,0),(0,1),(0,2),...??? Never get to (1,1)! Enumerate: (0,0),(1,0),(0,1),(2,0),(1,1),(0,2)... (*a*,*b*) at position (*a*+*b*+1)(*a*+*b*)/2+*b* in this order.

Positive Rational numbers.

▶ $N \times N$ - Pairs of integers. Square of countably infinite? Enumerate: (0,0), (0,1), (0,2),... ??? Never get to (1,1)! Enumerate: (0,0), (1,0), (0,1), (2,0), (1,1), (0,2)... (*a*,*b*) at position (*a*+*b*+1)(*a*+*b*)/2+*b* in this order.

Positive Rational numbers.
 Infinite Subset of pairs of natural numbers.

- ▶ $N \times N$ Pairs of integers. Square of countably infinite? Enumerate: (0,0),(0,1),(0,2),...??? Never get to (1,1)! Enumerate: (0,0),(1,0),(0,1),(2,0),(1,1),(0,2)... (*a*,*b*) at position (*a*+*b*+1)(*a*+*b*)/2+*b* in this order.
- Positive Rational numbers.
 Infinite Subset of pairs of natural numbers.
 Countably infinite.
- All rational numbers.

- ▶ $N \times N$ Pairs of integers. Square of countably infinite? Enumerate: (0,0), (0,1), (0,2),... ??? Never get to (1,1)! Enumerate: (0,0), (1,0), (0,1), (2,0), (1,1), (0,2)... (*a*,*b*) at position (*a*+*b*+1)(*a*+*b*)/2+*b* in this order.
- Positive Rational numbers. Infinite Subset of pairs of natural numbers. Countably infinite.
- All rational numbers.
 Enumerate: list 0, positive and negative.

- ▶ $N \times N$ Pairs of integers. Square of countably infinite? Enumerate: (0,0), (0,1), (0,2),... ??? Never get to (1,1)! Enumerate: (0,0), (1,0), (0,1), (2,0), (1,1), (0,2)... (*a*,*b*) at position (*a*+*b*+1)(*a*+*b*)/2+*b* in this order.
- Positive Rational numbers. Infinite Subset of pairs of natural numbers. Countably infinite.
- All rational numbers. Enumerate: list 0, positive and negative. How?

- ▶ $N \times N$ Pairs of integers. Square of countably infinite? Enumerate: (0,0), (0,1), (0,2),... ??? Never get to (1,1)! Enumerate: (0,0), (1,0), (0,1), (2,0), (1,1), (0,2)... (*a*,*b*) at position (*a*+*b*+1)(*a*+*b*)/2+*b* in this order.
- Positive Rational numbers. Infinite Subset of pairs of natural numbers. Countably infinite.
- All rational numbers.
 Enumerate: list 0, positive and negative. How?
 Enumerate: 0,

- ▶ $N \times N$ Pairs of integers. Square of countably infinite? Enumerate: (0,0), (0,1), (0,2),... ??? Never get to (1,1)! Enumerate: (0,0), (1,0), (0,1), (2,0), (1,1), (0,2)... (*a*,*b*) at position (*a*+*b*+1)(*a*+*b*)/2+*b* in this order.
- Positive Rational numbers. Infinite Subset of pairs of natural numbers. Countably infinite.
- All rational numbers.
 Enumerate: list 0, positive and negative. How?
 Enumerate: 0, first positive,

- ▶ $N \times N$ Pairs of integers. Square of countably infinite? Enumerate: (0,0), (0,1), (0,2),... ??? Never get to (1,1)! Enumerate: (0,0), (1,0), (0,1), (2,0), (1,1), (0,2)... (*a*,*b*) at position (*a*+*b*+1)(*a*+*b*)/2+*b* in this order.
- Positive Rational numbers. Infinite Subset of pairs of natural numbers. Countably infinite.
- All rational numbers.
 Enumerate: list 0, positive and negative. How?
 Enumerate: 0, first positive, first negative,

- ▶ $N \times N$ Pairs of integers. Square of countably infinite? Enumerate: (0,0), (0,1), (0,2),... ??? Never get to (1,1)! Enumerate: (0,0), (1,0), (0,1), (2,0), (1,1), (0,2)... (*a*,*b*) at position (*a*+*b*+1)(*a*+*b*)/2+*b* in this order.
- Positive Rational numbers. Infinite Subset of pairs of natural numbers. Countably infinite.
- All rational numbers.
 Enumerate: list 0, positive and negative. How?
 Enumerate: 0, first positive, first negative, second positive..

- ▶ $N \times N$ Pairs of integers. Square of countably infinite? Enumerate: (0,0),(0,1),(0,2),...??? Never get to (1,1)! Enumerate: (0,0),(1,0),(0,1),(2,0),(1,1),(0,2)... (*a*,*b*) at position (*a*+*b*+1)(*a*+*b*)/2+*b* in this order.
- Positive Rational numbers. Infinite Subset of pairs of natural numbers. Countably infinite.
- All rational numbers.
 Enumerate: list 0, positive and negative. How?
 Enumerate: 0, first positive, first negative, second positive..
 Will eventually get to any rational.

Real numbers..

Real numbers are same size as integers?

Are the set of reals countable?

Are the set of reals countable? Lets consider the reals [0, 1].

Are the set of reals countable?

Lets consider the reals [0, 1].

Each real has a decimal representation.

Are the set of reals countable?

Lets consider the reals [0, 1].

Each real has a decimal representation. .500000000...

Are the set of reals countable?

```
Lets consider the reals [0, 1].
```

Each real has a decimal representation. .500000000... (1/2)

Are the set of reals countable?

Lets consider the reals [0, 1].

Each real has a decimal representation. .500000000... (1/2) .785398162...

Are the set of reals countable?

Lets consider the reals [0, 1].

Each real has a decimal representation. .500000000... (1/2) .785398162... $\pi/4$

Are the set of reals countable?

Lets consider the reals [0, 1].

Each real has a decimal representation. .500000000... (1/2) .785398162... $\pi/4$.367879441...

Are the set of reals countable?

Lets consider the reals [0, 1].

Each real has a decimal representation. .50000000... (1/2) .785398162... $\pi/4$.367879441... 1/*e*

Are the set of reals countable?

Lets consider the reals [0, 1].

Each real has a decimal representation. .50000000... (1/2) .785398162... $\pi/4$.367879441... 1/*e* .632120558...

Are the set of reals countable?

Lets consider the reals [0, 1].

Each real has a decimal representation. .50000000... (1/2) .785398162... $\pi/4$.367879441... 1/e .632120558... 1 - 1/e

Are the set of reals countable?

Lets consider the reals [0, 1].

Each real has a decimal representation. .50000000... (1/2) .785398162... $\pi/4$.367879441... 1/*e* .632120558... 1 - 1/e.345212312...

Are the set of reals countable?

Lets consider the reals [0,1].

Each real has a decimal representation. .50000000... (1/2) .785398162... $\pi/4$.367879441... 1/*e* .632120558... 1 - 1/e.345212312... Some real number

Are the set of reals countable?

Lets consider the reals [0,1].

Each real has a decimal representation. .50000000... (1/2) .785398162... $\pi/4$.367879441... 1/*e* .632120558... 1 - 1/e.345212312... Some real number

If countable, there a listing, *L* contains all reals.

If countable, there a listing, L contains all reals. For example

If countable, there a listing, *L* contains all reals. For example 0: .500000000...

If countable, there a listing, L contains all reals. For example

- 0:.50000000...
- 1: .785398162...

If countable, there a listing, L contains all reals. For example

- 0:.50000000...
- 1:.785398162...
- 2:.367879441...

If countable, there a listing, L contains all reals. For example

- 0:.50000000...
- 1:.785398162...
- 2: .367879441...
- 3: .632120558...

If countable, there a listing, L contains all reals. For example

- 0:.50000000...
- 1:.785398162...
- 2: .367879441...
- 3: .632120558...
- 4: .345212312...

If countable, there a listing, L contains all reals. For example

- 0:.50000000...
- 1:.785398162...
- 2: .367879441...
- 3: .632120558...
- 4: .345212312...
- ÷

If countable, there a listing, L contains all reals. For example

- 0: .500000000... 1: .785398162... 2: .367879441... 3: .632120558... 4: .345212312...
- :

.

If countable, there a listing, L contains all reals. For example

- 0: .500000000... 1: .785398162... 2: .367879441... 3: .632120558... 4: 345212312
- 4: .345212312...

:

If countable, there a listing, L contains all reals. For example

- 0: .500000000... 1: .785398162...
- 2: .367879441...
- 3: .632120558...
- 4: .345212312...

:

If countable, there a listing, L contains all reals. For example

- 0:.50000000... 1:.785398162...
- 2:.367879441...
- 3: .632120558...
- 4:.345212312...

. .

If countable, there a listing, L contains all reals. For example

- 0: .50000000... 1: .785398162... 2: .367879441... 3: .632120558...
- 4: .345212312...

:

If countable, there a listing, L contains all reals. For example

- 0: .500000000... 1: .785398162... 2: .367879441... 3: .632120558...
- 4: .3452<mark>1</mark>2312...

:

If countable, there a listing, L contains all reals. For example

- 0: .500000000... 1: .785398162... 2: .367879441... 3: .632120558...
- 4: .3452<mark>1</mark>2312...

:

Construct "diagonal" number: .77677...

If countable, there a listing, L contains all reals. For example

0: .500000000... 1: .785398162... 2: .367879441... 3: .632120558... 4: .345212312...

.

Construct "diagonal" number: .77677...

Diagonal Number:

If countable, there a listing, L contains all reals. For example

0: .50000000... 1: .785398162... 2: .367879441... 3: .632120558... 4: .345212312... :

Construct "diagonal" number: .77677...

Diagonal Number: Digit *i* is 7 if number *i*'s *i*th digit is not 7

If countable, there a listing, L contains all reals. For example

```
0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...
```

.

Construct "diagonal" number: .77677...

Diagonal Number: Digit *i* is 7 if number *i*'s *i*th digit is not 7 and 6 otherwise.

If countable, there a listing, L contains all reals. For example

```
0: .50000000...

1: .785398162...

2: .367879441...

3: .632120558...

4: .345212312...

:
```

Construct "diagonal" number: .77677...

Diagonal Number: Digit *i* is 7 if number *i*'s *i*th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list!

If countable, there a listing, L contains all reals. For example

```
0: .50000000...

1: .785398162...

2: .367879441...

3: .632120558...

4: .345212312...

:
```

Construct "diagonal" number: .77677...

Diagonal Number: Digit *i* is 7 if number *i*'s *i*th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list! Diagonal number not in list.

If countable, there a listing, L contains all reals. For example

```
0: .50000000...

1: .785398162...

2: .367879441...

3: .632120558...

4: .345212312...

:
```

Construct "diagonal" number: .77677...

Diagonal Number: Digit *i* is 7 if number *i*'s *i*th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list! Diagonal number not in list.

Diagonal number is real.

If countable, there a listing, L contains all reals. For example

```
0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...
```

.

Construct "diagonal" number: .77677...

Diagonal Number: Digit *i* is 7 if number *i*'s *i*th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list! Diagonal number not in list.

Diagonal number is real.

Contradiction!

If countable, there a listing, L contains all reals. For example

```
0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...
```

.

Construct "diagonal" number: .77677...

Diagonal Number: Digit *i* is 7 if number *i*'s *i*th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list! Diagonal number not in list.

Diagonal number is real.

Contradiction!

Subset [0,1] is not countable!!

Subset [0, 1] is not countable!!

Subset [0,1] is not countable!! What about all reals?

Subset [0, 1] is not countable!! What about all reals? No.

Subset [0,1] is not countable!!

What about all reals? No.

Any subset of a countable set is countable.

Subset [0, 1] is not countable!!

What about all reals? No.

Any subset of a countable set is countable.

If reals are countable then so is [0, 1].

1. Assume that a set *S* can be enumerated.

- 1. Assume that a set *S* can be enumerated.
- 2. Consider an arbitrary list of all the elements of *S*.

- 1. Assume that a set *S* can be enumerated.
- 2. Consider an arbitrary list of all the elements of *S*.
- 3. Use the diagonal from the list to construct a new element t.

- 1. Assume that a set *S* can be enumerated.
- 2. Consider an arbitrary list of all the elements of *S*.
- 3. Use the diagonal from the list to construct a new element t.
- 4. Show that t is different from all elements in the list

- 1. Assume that a set *S* can be enumerated.
- 2. Consider an arbitrary list of all the elements of *S*.
- 3. Use the diagonal from the list to construct a new element t.
- 4. Show that *t* is different from all elements in the list $\implies t$ is not in the list.

- 1. Assume that a set *S* can be enumerated.
- 2. Consider an arbitrary list of all the elements of *S*.
- 3. Use the diagonal from the list to construct a new element t.
- 4. Show that *t* is different from all elements in the list $\implies t$ is not in the list.
- 5. Show that *t* is in *S*.

- 1. Assume that a set *S* can be enumerated.
- 2. Consider an arbitrary list of all the elements of *S*.
- 3. Use the diagonal from the list to construct a new element t.
- 4. Show that *t* is different from all elements in the list $\implies t$ is not in the list.
- 5. Show that *t* is in *S*.
- 6. Contradiction.

The set of all subsets of N.

The set of all subsets of N.

Example subsets of N: {0},

The set of all subsets of N.

Example subsets of *N*: $\{0\}, \{0, ..., 7\},$

The set of all subsets of N.

Example subsets of *N*: $\{0\}, \{0, ..., 7\},$

The set of all subsets of N.

```
Example subsets of N: {0}, {0,...,7}, evens,
```

The set of all subsets of N.

Example subsets of N: {0}, {0,...,7}, evens, odds,

The set of all subsets of N.

Example subsets of *N*: $\{0\}, \{0, ..., 7\},$ evens, odds, primes,

The set of all subsets of N.

Example subsets of *N*: $\{0\}, \{0, ..., 7\},$ evens, odds, primes,

The set of all subsets of N.

Example subsets of *N*: $\{0\}, \{0, ..., 7\},$ evens, odds, primes,

Assume is countable.

The set of all subsets of N.

Example subsets of N: {0}, {0,...,7}, evens, odds, primes,

Assume is countable.

There is a listing, *L*, that contains all subsets of *N*.

The set of all subsets of N.

Example subsets of *N*: $\{0\}, \{0, \dots, 7\},\$ evens, odds, primes,

Assume is countable.

There is a listing, *L*, that contains all subsets of *N*.

Define a diagonal set, D:

The set of all subsets of N.

Example subsets of *N*: $\{0\}, \{0, \dots, 7\},$ evens, odds, primes,

Assume is countable.

There is a listing, *L*, that contains all subsets of *N*.

Define a diagonal set, *D*: If *i*th set in *L* does not contain *i*, $i \in D$.

The set of all subsets of N.

```
Example subsets of N: \{0\}, \{0, \dots, 7\}, evens, odds, primes,
```

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, *D*: If *i*th set in *L* does not contain *i*, $i \in D$. otherwise $i \notin D$.

The set of all subsets of N.

```
Example subsets of N: \{0\}, \{0, \dots, 7\}, evens, odds, primes,
```

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, *D*: If *i*th set in *L* does not contain *i*, $i \in D$. otherwise $i \notin D$.

The set of all subsets of N.

```
Example subsets of N: \{0\}, \{0, \dots, 7\}, evens, odds, primes,
```

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, *D*: If *i*th set in *L* does not contain *i*, $i \in D$. otherwise $i \notin D$.

D is different from *i*th set in L for every *i*.

The set of all subsets of N.

Example subsets of *N*: $\{0\}, \{0, \dots, 7\},$ evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, *D*: If *i*th set in *L* does not contain *i*, $i \in D$. otherwise $i \notin D$.

D is different from *i*th set in L for every *i*.

 \implies *D* is not in the listing.

The set of all subsets of N.

Example subsets of *N*: $\{0\}, \{0, \dots, 7\},$ evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, *D*: If *i*th set in *L* does not contain *i*, $i \in D$. otherwise $i \notin D$.

D is different from *i*th set in L for every *i*.

 \implies *D* is not in the listing.

D is a subset of N.

The set of all subsets of N.

Example subsets of *N*: $\{0\}, \{0, \dots, 7\},$ evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, *D*: If *i*th set in *L* does not contain *i*, $i \in D$. otherwise $i \notin D$.

D is different from *i*th set in L for every *i*.

 \implies *D* is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

The set of all subsets of N.

```
Example subsets of N: \{0\}, \{0, \dots, 7\}, evens, odds, primes,
```

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, *D*: If *i*th set in *L* does not contain *i*, $i \in D$. otherwise $i \notin D$.

D is different from *i*th set in L for every *i*.

 \implies *D* is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

The set of all subsets of N.

```
Example subsets of N: \{0\}, \{0, \dots, 7\}, evens, odds, primes,
```

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, *D*: If *i*th set in *L* does not contain *i*, $i \in D$. otherwise $i \notin D$.

D is different from *i*th set in L for every *i*.

 \implies *D* is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of *N* is not countable.

The set of all subsets of N.

Example subsets of *N*: $\{0\}, \{0, \dots, 7\},$ evens, odds, primes,

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, *D*: If *i*th set in *L* does not contain *i*, $i \in D$. otherwise $i \notin D$.

D is different from *i*th set in L for every *i*.

 \implies *D* is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable. (The set of all subsets of S, is the **powerset** of N.)

Natural numbers have a listing, L.

Natural numbers have a listing, L.

Make a diagonal number, *D*: differ from *i*th element of *L* in *i*th digit.

Natural numbers have a listing, L.

Make a diagonal number, *D*: differ from *i*th element of *L* in *i*th digit.

Differs from all elements of listing.

Natural numbers have a listing, L.

Make a diagonal number, *D*: differ from *i*th element of *L* in *i*th digit.

Differs from all elements of listing.

D is a natural number...

Natural numbers have a listing, L.

Make a diagonal number, *D*: differ from *i*th element of *L* in *i*th digit.

Differs from all elements of listing.

D is a natural number... Not.

Natural numbers have a listing, L.

Make a diagonal number, *D*: differ from *i*th element of *L* in *i*th digit.

Differs from all elements of listing.

D is a natural number... Not.

Any natural number has a finite number of digits.

Natural numbers have a listing, L.

Make a diagonal number, *D*: differ from *i*th element of *L* in *i*th digit.

Differs from all elements of listing.

D is a natural number... Not.

Any natural number has a finite number of digits.

"Construction" requires an infinite number of digits.

The Continuum hypothesis.

There is no set with cardinality between the naturals and the reals.

The Continuum hypothesis.

There is no set with cardinality between the naturals and the reals. First of Hilbert's problems!

Cardinality of [0,1] smaller than all the reals?

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \to [0, 1].$

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \to [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one.

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \to [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \to [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2],

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \to [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \to [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$.

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \to [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0, 1/2]

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \to [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0, 1/2] scale/reciprocate

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0, 1/2] scale/reciprocate $\implies f(x) \neq f(y)$.

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0, 1/2] scale/reciprocate $\implies f(x) \neq f(y)$. If one is in [0, 1/2] and one isn't,

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0, 1/2] scale/reciprocate $\implies f(x) \neq f(y)$. If one is in [0, 1/2] and one isn't, different ranges

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0,1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0,1/2] scale/reciprocate $\implies f(x) \neq f(y)$. If one is in [0,1/2] and one isn't, different ranges $\implies f(x) \neq f(y)$.

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0,1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0,1/2] scale/reciprocate $\implies f(x) \neq f(y)$. If one is in [0,1/2] and one isn't, different ranges $\implies f(x) \neq f(y)$.

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0, 1/2] scale/reciprocate $\implies f(x) \neq f(y)$. If one is in [0, 1/2] and one isn't, different ranges $\implies f(x) \neq f(y)$. Map into [0, 1].

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0, 1/2] scale/reciprocate $\implies f(x) \neq f(y)$. If one is in [0, 1/2] and one isn't, different ranges $\implies f(x) \neq f(y)$. Map into [0, 1]. Bijection into (possible) subset.

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0, 1/2] scale/reciprocate $\implies f(x) \neq f(y)$. If one is in [0, 1/2] and one isn't, different ranges $\implies f(x) \neq f(y)$. Map into [0, 1]. Bijection into (possible) subset.

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0, 1/2] scale/reciprocate $\implies f(x) \neq f(y)$. If one is in [0, 1/2] and one isn't, different ranges $\implies f(x) \neq f(y)$. Map into [0, 1]. Bijection into (possible) subset.

Postive reals are not bigger than [0, 1].

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0, 1/2] scale/reciprocate $\implies f(x) \neq f(y)$. If one is in [0, 1/2] and one isn't, different ranges $\implies f(x) \neq f(y)$. Map into [0, 1]. Bijection into (possible) subset.

Postive reals are not bigger than [0,1].

Vice Versa.

Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0, 1/2] scale/reciprocate $\implies f(x) \neq f(y)$. If one is in [0, 1/2] and one isn't, different ranges $\implies f(x) \neq f(y)$.

Map into [0,1]. Bijection into (possible) subset.

Postive reals are not bigger than [0, 1].

Vice Versa.

[0,1] has same cardinality as nonnegative reals!

Generalized Continuum hypothesis.

There is no infinite set whose cardinality is between the cardinality of an infinite set and its power set.

Generalized Continuum hypothesis.

There is no infinite set whose cardinality is between the cardinality of an infinite set and its power set.

The powerset of a set is the set of all subsets.

Gödel. 1940. Can't use math!

Gödel. 1940. Can't use math! If math doesn't contain a contradiction.

Gödel. 1940. Can't use math! If math doesn't contain a contradiction.

This statement is a lie.

Gödel. 1940. Can't use math! If math doesn't contain a contradiction.

This statement is a lie.

Is the statement above true?

Gödel. 1940. Can't use math! If math doesn't contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Gödel. 1940. Can't use math! If math doesn't contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Gödel. 1940. Can't use math! If math doesn't contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.

Next Topic: Undecidability.

Undecidability.

Barber announces:

Barber announces:

"The barber shaves every person who does not shave themselves."

Barber announces:

"The barber shaves every person who does not shave themselves."

Who shaves the barber?

Barber announces:

"The barber shaves every person who does not shave themselves."

Who shaves the barber?

Get around paradox?

Barber announces:

"The barber shaves every person who does not shave themselves."

Who shaves the barber?

Get around paradox? The barber lies.

Naive Set Theory: Any definable collection is a set.

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x)) \tag{1}$$

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x)) \tag{1}$$

y is the set of elements that satifies the proposition P(x).

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x)) \tag{1}$$

y is the set of elements that satifies the proposition P(x). $P(x) = x \notin x$.

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x)) \tag{1}$$

y is the set of elements that satifies the proposition P(x). $P(x) = x \notin x$.

There exists a *y* that satisfies statement 1 for $P(\cdot)$.

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x)) \tag{1}$$

y is the set of elements that satifies the proposition P(x). $P(x) = x \notin x$. There exists a *y* that satisfies statement 1 for $P(\cdot)$.

Take x = y.

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x)) \tag{1}$$

y is the set of elements that satifies the proposition P(x). $P(x) = x \notin x$. There exists a *y* that satisfies statement 1 for $P(\cdot)$. Take x = y.

$$y \in y \iff y \notin y$$
.

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x)) \tag{1}$$

y is the set of elements that satifies the proposition P(x). $P(x) = x \notin x$. There exists a *y* that satisfies statement 1 for $P(\cdot)$. Take x = y.

$$y \in y \iff y \notin y$$
.

Oops!

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x)) \tag{1}$$

y is the set of elements that satifies the proposition P(x). $P(x) = x \notin x$. There exists a *y* that satisfies statement 1 for $P(\cdot)$. Take x = y.

$$y \in y \iff y \notin y$$
.

Oops!

What type of object is a set that contain sets?

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x)) \tag{1}$$

y is the set of elements that satifies the proposition P(x). $P(x) = x \notin x$. There exists a *y* that satisfies statement 1 for $P(\cdot)$. Take x = y.

$$y \in y \iff y \notin y$$
.

Oops!

What type of object is a set that contain sets?

Axioms changed.

Goedel: Any set of axioms is either

Goedel: Any set of axioms is either inconsistent (can prove false statements) or

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:

Cantor

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:

Cantor .. bipolar disorder..

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW: Cantor ..bipolar disorder.. Goedel

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:

Cantor .. bipolar disorder..

Goedel ...starved himself out of fear of being poisoned..

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:

Cantor .. bipolar disorder..

Goedel ...starved himself out of fear of being poisoned..

Russell

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:

Cantor .. bipolar disorder..

Goedel ...starved himself out of fear of being poisoned..

Russell .. was fine ...

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:

Cantor .. bipolar disorder..

Goedel ...starved himself out of fear of being poisoned..

Russell .. was fine but for ...

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:

Cantor .. bipolar disorder..

Goedel ..starved himself out of fear of being poisoned..

Russell .. was fine.....but for ...two schizophrenic children..

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:

Cantor .. bipolar disorder..

Goedel ...starved himself out of fear of being poisoned..

Russell .. was fine.....but for ...two schizophrenic children.. Dangerous work?

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:

Cantor .. bipolar disorder..

Goedel ...starved himself out of fear of being poisoned..

Russell .. was fine.....but for ...two schizophrenic children.. Dangerous work?

See Logicomix by Doxiaidis, Papadimitriou (professor here), Papadatos, Di Donna.

Write me a program checker!

Write me a program checker! Check that the compiler works!

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input. HALT(P, I)

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT(P, I)P - program

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

```
HALT(P, I)
P - program
I - input.
```

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Notice:

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Notice: Need a computer

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Notice: Need a computer ...with the notion of a stored program!!!!

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Notice: Need a computer ...with the notion of a stored program!!!! (not an adding machine!

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Notice: Need a computer ...with the notion of a stored program!!!! (not an adding machine! not a person and an adding machine.)

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Notice: Need a computer ...with the notion of a stored program!!!! (not an adding machine! not a person and an adding machine.)

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Notice: Need a computer ...with the notion of a stored program!!!! (not an adding machine! not a person and an adding machine.)

Program is a text string.

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Notice: Need a computer ...with the notion of a stored program!!!! (not an adding machine! not a person and an adding machine.)

Program is a text string.

Text string can be an input to a program.

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Notice: Need a computer ...with the notion of a stored program!!!! (not an adding machine! not a person and an adding machine.)

Program is a text string. Text string can be an input to a program. Program can be an input to a program.

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Notice: Need a computer ...with the notion of a stored program!!!! (not an adding machine! not a person and an adding machine.)

Program is a text string. Text string can be an input to a program. Program can be an input to a program.

Implementing HALT.

Implementing HALT.

HALT(P, I)

Implementing HALT.

HALT(P, I) P - program

HALT(P, I) P - program I - input.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Run P on I and check!

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Run P on I and check!

How long do you wait?

HALT(P,I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Run P on I and check!

How long do you wait?

Something about infinity here, maybe?

HALT(P, I)

HALT(P, I) P - program

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Theorem: There is no program HALT.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes!

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No!

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes!

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No!

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No!

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes!

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No!

HALT(P, I) P - program I - input.

Determines if P(I) (P run on I) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes!

HALT(P, I) P - program I - input.

Determines if P(I) (P run on I) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! Yes! No! Yes! ...

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ...

Proof:

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

1. If HALT(P,P) = "halts", then go into an infinite loop.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Does Turing(Turing) halt?

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts

 \implies then HALTS(Turing, Turing) = halts

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts

- \implies then HALTS(Turing, Turing) = halts
- \implies Turing(Turing) loops forever.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts

- \implies then HALTS(Turing, Turing) = halts
- \implies Turing(Turing) loops forever.

Turing(Turing) loops forever

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts

- \implies then HALTS(Turing, Turing) = halts
- \implies Turing(Turing) loops forever.

Turing(Turing) loops forever

 \implies then HALTS(Turing, Turing) \neq halts

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts

- \implies then HALTS(Turing, Turing) = halts
- \implies Turing(Turing) loops forever.

Turing(Turing) loops forever

- \implies then HALTS(Turing, Turing) \neq halts
- \implies Turing(Turing) halts.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts

- \implies then HALTS(Turing, Turing) = halts
- \implies Turing(Turing) loops forever.

Turing(Turing) loops forever

- \implies then HALTS(Turing, Turing) \neq halts
- \implies Turing(Turing) halts.

Contradiction.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts

- \implies then HALTS(Turing, Turing) = halts
- \implies Turing(Turing) loops forever.

Turing(Turing) loops forever

- \implies then HALTS(Turing, Turing) \neq halts
- \implies Turing(Turing) halts.

Contradiction. Program HALT does not exist!

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts

- \implies then HALTS(Turing, Turing) = halts
- \implies Turing(Turing) loops forever.

Turing(Turing) loops forever

- \implies then HALTS(Turing, Turing) \neq halts
- \implies Turing(Turing) halts.

Contradiction. Program HALT does not exist!

Any program is a fixed length string.

Any program is a fixed length string. Fixed length strings are enumerable.

	<i>P</i> ₁	P_2	P_3	
P ₁ P ₂ P ₃	H L L	H L H	L H H	
÷	÷	÷	÷	·

	<i>P</i> ₁	P_2	P_3				
P ₁ P ₂ P ₃	HL	H	L H	 			
P_3	L	Н	Н				
÷	÷	÷	÷	·			
Halt - diagonal.							

	<i>P</i> ₁	P_2	P_3				
P_1	H	Н	L	•••			
P ₁ P ₂ P ₃	L	L	Н				
P_3	L	Н	Н				
÷	÷	÷	÷	۰.			
Halt - diagonal.							
Turing	g - is	not H	alt.				

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

	<i>P</i> ₁	P_2	P_3		_	-	
P_1	н	н	L				
P_2 P_3	L	L	Н				
P_3	L	Н	Н				
÷	:	÷	÷	·			
Halt - diagonal.							
Turing - is not Halt.							

and is different from every P_i on the diagonal.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

	<i>P</i> ₁	P_2	P_3	
P_1 P_2 P_3	H L L	H L H	L H H	···· ···
: Halt - Turin	∣∶ ∙ diag∙ g - is	: onal. <mark>not</mark> H	: alt.	\cdot . every <i>P_i</i> on the diagonal.

Turing is not on list.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

	<i>P</i> ₁	P_2	P_3	
P₁	н	н	L	
P ₁ P ₂ P ₃	L	L	H	
P_3	L	Н	Н	•••
÷	:	÷	÷	·
1.1.11	11	1		

Halt - diagonal. Turing - is not Halt. and is different from every P_i on the diagonal. Turing is not on list. Turing is not a program.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

Ũ	<i>P</i> ₁	P_2	P_3	
P ₁ P ₂ P ₃	H L L	H L H	L H H	
÷	÷	÷	÷	·

Halt - diagonal.

Turing - is not Halt.

and is different from every P_i on the diagonal. Turing is not on list. Turing is not a program. Turing can be constructed from Halt.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

Ũ	<i>P</i> ₁	P_2	P_3	
P ₁ P ₂ P ₃	H L L	H L H	L H H	
÷	÷	÷	÷	·

Halt - diagonal.

Turing - is not Halt. and is different from every P_i on the diagonal.

Turing is not on list. Turing is not a program.

Turing can be constructed from Halt.

Halt does not exist!

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

Ũ	<i>P</i> ₁	P_2	P_3	
P ₁ P ₂ P ₃	H L L	H L H	L H H	
÷	÷	÷	÷	·

Halt - diagonal.

Turing - is not Halt. and is different from every P_i on the diagonal.

Turing is not on list. Turing is not a program.

Turing can be constructed from Halt.

Halt does not exist!

Wow, that was easy!

Wow, that was easy! We should be famous!

In Turing's time.

In Turing's time. No computers.

In Turing's time.

No computers.

Adding machines.

In Turing's time.

No computers.

Adding machines.

e.g., Babbage (from table of logarithms) 1812.

In Turing's time.

No computers.

Adding machines.

e.g., Babbage (from table of logarithms) 1812.

Concept of program as data wasn't really there.

A Turing machine.

- an (infinite) tape with characters

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- -where the tape could be a description of a ...

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- -where the tape could be a description of a ... Turing machine!

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- -where the tape could be a description of a ... Turing machine!

Now that's a computer!

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- -where the tape could be a description of a ... Turing machine!

Now that's a computer!

Turing: AI,

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- -where the tape could be a description of a ... Turing machine!

Now that's a computer!

Turing: AI, self modifying code,

A Turing machine.

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- -where the tape could be a description of a ... Turing machine!

Now that's a computer!

Turing: AI, self modifying code, learning...

Turing and computing.

Just a mathematician?

Just a mathematician?

"Wrote" a chess program.

Just a mathematician?

- "Wrote" a chess program.
- Simulated the program by hand to play chess.

Just a mathematician?

- "Wrote" a chess program.
- Simulated the program by hand to play chess.

It won!

Just a mathematician?

- "Wrote" a chess program.
- Simulated the program by hand to play chess.

It won! Once anyway.

Just a mathematician?

- "Wrote" a chess program.
- Simulated the program by hand to play chess.
- It won! Once anyway.
- Involved with computing labs through the 40s.

Church proved an equivalent theorem. (Previously.)

Church proved an equivalent theorem. (Previously.) Used λ calculus....

Church proved an equivalent theorem. (Previously.) Used λ calculus....which is...

Church proved an equivalent theorem. (Previously.) Used λ calculus....which is... Lisp (Scheme)!!!

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!! .. functional part. Scheme's lambda is calculus's λ !

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!! .. functional part. Scheme's lambda is calculus's λ !

Programming languages!

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven. Incomplete: There is no proof for some sentence in the system.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven. Incomplete: There is no proof for some sentence in the system.

Along the way: "built" computers out of arithmetic.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven. Incomplete: There is no proof for some sentence in the system.

Along the way: "built" computers out of arithmetic. Showed that every mathematical statement corresponds to an

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven. Incomplete: There is no proof for some sentence in the system.

Along the way: "built" computers out of arithmetic. Showed that every mathematical statement corresponds to annatural number!

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven. Incomplete: There is no proof for some sentence in the system.

Along the way: "built" computers out of arithmetic. Showed that every mathematical statement corresponds to annatural number! !

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven. Incomplete: There is no proof for some sentence in the system.

Along the way: "built" computers out of arithmetic. Showed that every mathematical statement corresponds to annatural number! ! !

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven. Incomplete: There is no proof for some sentence in the system.

Along the way: "built" computers out of arithmetic. Showed that every mathematical statement corresponds to annatural number! !!!

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven. Incomplete: There is no proof for some sentence in the system.

Along the way: "built" computers out of arithmetic.

Showed that every mathematical statement corresponds to annatural number! !!!

Today:

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven. Incomplete: There is no proof for some sentence in the system.

Along the way: "built" computers out of arithmetic.

Showed that every mathematical statement corresponds to annatural number! !!!

Today:Programs can be written in

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven. Incomplete: There is no proof for some sentence in the system.

Along the way: "built" computers out of arithmetic.

Showed that every mathematical statement corresponds to annatural number! !!!

Today: Programs can be written in ascii.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!

.. functional part. Scheme's lambda is calculus's λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven. Incomplete: There is no proof for some sentence in the system.

Along the way: "built" computers out of arithmetic.

Showed that every mathematical statement corresponds to annatural number! !!!

Today: Programs can be written in ascii.

Does a program print "Hello World"?

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane?

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: " $x^n + y^n = 1$?"

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: " $x^n + y^n = 1$?" Problem is undecidable.

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: " $x^n + y^n = 1$?" Problem is undecidable.

Be careful!

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: " $x^n + y^n = 1$?" Problem is undecidable.

Be careful!

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: " $x^n + y^n = 1$?" Problem is undecidable.

Be careful!

Is there an integer solution to $x^n + y^n = 1$?

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: " $x^n + y^n = 1$?" Problem is undecidable.

Be careful!

Is there an integer solution to $x^n + y^n = 1$? (Diophantine equation.)

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: " $x^n + y^n = 1$?" Problem is undecidable.

Be careful!

Is there an integer solution to $x^n + y^n = 1$? (Diophantine equation.)

The answer is yes or no.

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: " $x^n + y^n = 1$?" Problem is undecidable.

Be careful!

Is there an integer solution to $x^n + y^n = 1$? (Diophantine equation.)

The answer is yes or no. This "problem" is not undecidable.

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: " $x^n + y^n = 1$?" Problem is undecidable.

Be careful!

Is there an integer solution to $x^n + y^n = 1$? (Diophantine equation.)

The answer is yes or no. This "problem" is not undecidable.

Undecidability for Diophantine set of equations

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: " $x^n + y^n = 1$?" Problem is undecidable.

Be careful!

Is there an integer solution to $x^n + y^n = 1$? (Diophantine equation.)

The answer is yes or no. This "problem" is not undecidable.

Undecidability for Diophantine set of equations

 \implies no program can take any set of integer equations

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: " $x^n + y^n = 1$?" Problem is undecidable.

Be careful!

Is there an integer solution to $x^n + y^n = 1$? (Diophantine equation.)

The answer is yes or no. This "problem" is not undecidable.

Undecidability for Diophantine set of equations

 \implies no program can take any set of integer equations and always correctly output whether it has an integer solution.

 Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis:

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work. Almost dependent matrices.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work. Almost dependent matrices.
- Seminal paper in mathematical biology.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work. Almost dependent matrices.
- Seminal paper in mathematical biology. Person:

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work. Almost dependent matrices.
- Seminal paper in mathematical biology. Person: embryo is blob.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work. Almost dependent matrices.
- Seminal paper in mathematical biology. Person: embryo is blob. Legs,

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work. Almost dependent matrices.
- Seminal paper in mathematical biology. Person: embryo is blob. Legs, arms,

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work. Almost dependent matrices.
- Seminal paper in mathematical biology.
 Person: embryo is blob. Legs, arms, head....

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work. Almost dependent matrices.
- Seminal paper in mathematical biology. Person: embryo is blob. Legs, arms, head.... How?

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work. Almost dependent matrices.
- Seminal paper in mathematical biology.
 Person: embryo is blob. Legs, arms, head.... How?
 Fly:

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work. Almost dependent matrices.
- Seminal paper in mathematical biology.
 Person: embryo is blob. Legs, arms, head.... How?
 Fly: blob.

- Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).
- Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work. Almost dependent matrices.
- Seminal paper in mathematical biology.
 Person: embryo is blob. Legs, arms, head.... How?
 Fly: blob. Torso becomes striped.

 Brilliant codebreaker during WWII, helped break German Enigma Code (which probably shortened war by 1 year).

 Seminal paper in numerical analysis: Condition number. Math 54 doesn't really work. Almost dependent matrices.

Seminal paper in mathematical biology.
 Person: embryo is blob. Legs, arms, head.... How?
 Fly: blob. Torso becomes striped.
 Developed chemical reaction-diffusion networks that break symmetry.

Tragic ending...

Arrested as a homosexual, (not particularly closeted)

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- Iost security clearance...

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- Iost security clearance...
- suffered from depression;

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- Iost security clearance...
- suffered from depression;
- suicided with cyanide at age 42.

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- Iost security clearance...
- suffered from depression;
- suicided with cyanide at age 42.
 (A bite from the apple....)

- Arrested as a homosexual, (not particularly closeted)
- given choice of prison or (quackish) injections to eliminate sex drive;
- took injections.
- Iost security clearance...
- suffered from depression;
- suicided with cyanide at age 42. (A bite from the apple...) accident?

British Apology.

Gordon Brown. 2009.

British Apology.

Gordon Brown. 2009. "Thousands of people have come together to demand justice for Alan Turing and recognition of the appalling way he was treated.

Gordon Brown. 2009. "Thousands of people have come together to demand justice for Alan Turing and recognition of the appalling way he was treated. While Turing was dealt with under the law of the time and we can't put the clock back,

Gordon Brown. 2009. "Thousands of people have come together to demand justice for Alan Turing and recognition of the appalling way he was treated. While Turing was dealt with under the law of the time and we can't put the clock back, his treatment was of course utterly unfair and I am pleased to have the chance to say how deeply sorry I and we all are for what happened to him.

Gordon Brown. 2009. "Thousands of people have come together to demand justice for Alan Turing and recognition of the appalling way he was treated. While Turing was dealt with under the law of the time and we can't put the clock back, his treatment was of course utterly unfair and I am pleased to have the chance to say how deeply sorry I and we all are for what happened to him. Alan and the many thousands of other gay men who were convicted as he was convicted under homophobic laws were treated terribly.

Gordon Brown. 2009. "Thousands of people have come together to demand justice for Alan Turing and recognition of the appalling way he was treated. While Turing was dealt with under the law of the time and we can't put the clock back, his treatment was of course utterly unfair and I am pleased to have the chance to say how deeply sorry I and we all are for what happened to him. Alan and the many thousands of other gay men who were convicted as he was convicted under homophobic laws were treated terribly. Over the years millions more lived in fear of conviction.

Gordon Brown. 2009. "Thousands of people have come together to demand justice for Alan Turing and recognition of the appalling way he was treated. While Turing was dealt with under the law of the time and we can't put the clock back, his treatment was of course utterly unfair and I am pleased to have the chance to say how deeply sorry I and we all are for what happened to him. Alan and the many thousands of other gay men who were convicted as he was convicted under homophobic laws were treated terribly. Over the years millions more lived in fear of conviction.

Gordon Brown. 2009. "Thousands of people have come together to demand justice for Alan Turing and recognition of the appalling way he was treated. While Turing was dealt with under the law of the time and we can't put the clock back, his treatment was of course utterly unfair and I am pleased to have the chance to say how deeply sorry I and we all are for what happened to him. Alan and the many thousands of other gay men who were convicted as he was convicted under homophobic laws were treated terribly. Over the years millions more lived in fear of conviction.

So on behalf of the British government, and all those who live freely thanks to Alan's work I am very proud to say: we're sorry, you deserved so much better."

Gordon Brown. 2009. "Thousands of people have come together to demand justice for Alan Turing and recognition of the appalling way he was treated. While Turing was dealt with under the law of the time and we can't put the clock back, his treatment was of course utterly unfair and I am pleased to have the chance to say how deeply sorry I and we all are for what happened to him. Alan and the many thousands of other gay men who were convicted as he was convicted under homophobic laws were treated terribly. Over the years millions more lived in fear of conviction.

So on behalf of the British government, and all those who live freely thanks to Alan's work I am very proud to say: we're sorry, you deserved so much better."

2013. Granted Royal pardon.

Computer Programs are an interesting thing.

Computer Programs are an interesting thing. Like Math.

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Example: no computer program can tell if any other computer program HALTS.

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Example: no computer program can tell if any other computer program HALTS.

Proof Idea:

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Example: no computer program can tell if any other computer program HALTS.

Proof Idea: Diagonalization.

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Example: no computer program can tell if any other computer program HALTS.

Proof Idea: Diagonalization.

Program: Turing (or DIAGONAL) takes P.

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Example: no computer program can tell if any other computer program HALTS.

Proof Idea: Diagonalization. Program: Turing (or DIAGONAL) takes *P*. Assume there is HALT.

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Example: no computer program can tell if any other computer program HALTS.

Proof Idea: Diagonalization. Program: Turing (or DIAGONAL) takes *P*. Assume there is HALT. DIAGONAL flips answer.

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Example: no computer program can tell if any other computer program HALTS.

Proof Idea: Diagonalization. Program: Turing (or DIAGONAL) takes *P*. Assume there is HALT. DIAGONAL flips answer. Loops if P halts, halts if P loops.

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Example: no computer program can tell if any other computer program HALTS.

Proof Idea: Diagonalization. Program: Turing (or DIAGONAL) takes *P*. Assume there is HALT. DIAGONAL flips answer. Loops if P halts, halts if P loops. What does Turing do on turing?

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Example: no computer program can tell if any other computer program HALTS.

Proof Idea: Diagonalization.
Program: Turing (or DIAGONAL) takes *P*.
Assume there is HALT.
DIAGONAL flips answer.
Loops if P halts, halts if P loops.
What does Turing do on turing? Doesn't loop or HALT.

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Example: no computer program can tell if any other computer program HALTS.

Proof Idea: Diagonalization.
Program: Turing (or DIAGONAL) takes *P*.
Assume there is HALT.
DIAGONAL flips answer.
Loops if P halts, halts if P loops.
What does Turing do on turing? Doesn't loop or HALT.
HALT does not exist!

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Example: no computer program can tell if any other computer program HALTS.

Proof Idea: Diagonalization.
Program: Turing (or DIAGONAL) takes *P*.
Assume there is HALT.
DIAGONAL flips answer.
Loops if P halts, halts if P loops.
What does Turing do on turing? Doesn't loop or HALT.
HALT does not exist!

Computer Programs are an interesting thing. Like Math. Formal Systems.

Computer Programs cannot completely "understand" computer programs.

Example: no computer program can tell if any other computer program HALTS.

Proof Idea: Diagonalization.
Program: Turing (or DIAGONAL) takes *P*.
Assume there is HALT.
DIAGONAL flips answer.
Loops if P halts, halts if P loops.
What does Turing do on turing? Doesn't loop or HALT.
HALT does not exist!

Computation is a lens for other action in the world.