Lecture 14

What's to come?

Lecture 14

What's to come? Probability.

Lecture 14

What's to come? Probability.
A bag contains:

Lecture 14

What's to come? Probability.
A bag contains:

Lecture 14

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?

Lecture 14

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue.

Lecture 14

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total.

Lecture 14

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.

Lecture 14

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.
Today:

Lecture 14

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.
Today: Counting!

Lecture 14

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.
Today: Counting!
Later: Probability.

Lecture 14

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.
Today: Counting!
Later: Probability. Professor Walrand.

Outline: basics

1. Counting.
2. Tree
3. Rules of Counting
4. Sample with/without replacement where order does/doesn't matter.

Probability is soon..but first let's count.

Count?

How many outcomes possible for k coin tosses?
How many poker hands?
How many handshakes for n people?
How many diagonals in a convex polygon?
How many 10 digit numbers?
How many 10 digit numbers without repetition?

Using a tree..

How many 3-bit strings?

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$?

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$? How would you make one sequence?

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$?
How would you make one sequence?
How many different ways to do that making?

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$?
How would you make one sequence?
How many different ways to do that making?

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$? How would you make one sequence? How many different ways to do that making?

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$?
How would you make one sequence?
How many different ways to do that making?

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$?
How would you make one sequence?
How many different ways to do that making?

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$?
How would you make one sequence?
How many different ways to do that making?

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$?
How would you make one sequence?
How many different ways to do that making?

8 leaves which is $2 \times 2 \times 2$.

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$?
How would you make one sequence?
How many different ways to do that making?

8 leaves which is $2 \times 2 \times 2$. One leaf for each string.

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$?
How would you make one sequence?
How many different ways to do that making?

8 leaves which is $2 \times 2 \times 2$. One leaf for each string.

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$?
How would you make one sequence?
How many different ways to do that making?

8 leaves which is $2 \times 2 \times 2$. One leaf for each string. 8 3-bit srings!

First Rule of Counting: Product Rule

Objects made by choosing from n_{1}, then n_{2}, \ldots, then n_{k} the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.

First Rule of Counting: Product Rule

Objects made by choosing from n_{1}, then n_{2}, \ldots, then n_{k} the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.

First Rule of Counting: Product Rule

Objects made by choosing from n_{1}, then n_{2}, \ldots, then n_{k} the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.

First Rule of Counting: Product Rule

Objects made by choosing from n_{1}, then n_{2}, \ldots, then n_{k} the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.

First Rule of Counting: Product Rule

Objects made by choosing from n_{1}, then n_{2}, \ldots, then n_{k} the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.

First Rule of Counting: Product Rule

Objects made by choosing from n_{1}, then n_{2}, \ldots, then n_{k} the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.

In picture, $2 \times 2 \times 3=12$!

First Rule of Counting: Product Rule

Objects made by choosing from n_{1}, then n_{2}, \ldots, then n_{k} the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.

In picture, $2 \times 2 \times 3=12$!

Using the first rule..

How many outcomes possible for k coin tosses?

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice,

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ... 2

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
2×2

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \ldots$

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2$

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice,

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
10

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ... $10 \times$

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots$

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots \times 10$

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots \times 10=10^{k}$

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots \times 10=10^{k}$
How many n digit base m numbers?

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots \times 10=10^{k}$
How many n digit base m numbers?
m ways for first,

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots \times 10=10^{k}$
How many n digit base m numbers?
m ways for first, m ways for second, ...

Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots \times 10=10^{k}$
How many n digit base m numbers?
m ways for first, m ways for second, ...
m^{n}

Functions, polynomials.

How many functions f mapping S to T ?

Functions, polynomials.

How many functions f mapping S to T ?
$|T|$ ways to choose for $f\left(s_{1}\right)$,

Functions, polynomials.

How many functions f mapping S to T ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$

Functions, polynomials.

How many functions f mapping S to T ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$

Functions, polynomials.

How many functions f mapping S to T ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree d modulo p ?

Functions, polynomials.

How many functions f mapping S to T ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree d modulo p ?
p ways to choose for first coefficient,

Functions, polynomials.

How many functions f mapping S to T ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree d modulo p ?
p ways to choose for first coefficient, p ways for second, ...

Functions, polynomials.

How many functions f mapping S to T ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree d modulo p ?
p ways to choose for first coefficient, p ways for second, p^{d+1}

Functions, polynomials.

How many functions f mapping S to T ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree d modulo p ?
p ways to choose for first coefficient, p ways for second, ...
... p^{d+1}
p values for first point,

Functions, polynomials.

How many functions f mapping S to T ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree d modulo p ?
p ways to choose for first coefficient, p ways for second, ...
... p^{d+1}
p values for first point, p values for second,...

Functions, polynomials.

How many functions f mapping S to T ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree d modulo p ?
p ways to choose for first coefficient, p ways for second, ...
... p^{d+1}
p values for first point, p values for second, ...
$\ldots p^{d+1}$

Permutations.

${ }^{1}$ By definition: $0!=1$.

Permutations.

How many 10 digit numbers without repeating a digit?
${ }^{1}$ By definition: $0!=1$.

Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first,
${ }^{1}$ By definition: $0!=1$.

Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second,
${ }^{1}$ By definition: $0!=1$.

Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third,
${ }^{1}$ By definition: $0!=1$.

Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
${ }^{1}$ By definition: $0!=1$.

Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10$!. ${ }^{1}$
${ }^{1}$ By definition: $0!=1$.

Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size k from n numbers without replacement.
${ }^{1}$ By definition: $0!=1$.

Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size k from n numbers without replacement.
n ways for first choice,
${ }^{1}$ By definition: $0!=1$.

Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size k from n numbers without replacement.
n ways for first choice, $n-1$ ways for second,

[^0]
Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size k from n numbers without replacement.
n ways for first choice, $n-1$ ways for second, $n-2$ choices for third,

[^1]
Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size k from n numbers without replacement.
n ways for first choice, $n-1$ ways for second, $n-2$ choices for third, ...

[^2]
Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size k from n numbers without replacement.
n ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.

[^3]
Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size k from n numbers without replacement.
n ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.
How many orderings of n objects are there?
Permutations of n objects.
${ }^{1}$ By definition: $0!=1$.

Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10$!. ${ }^{1}$
How many different samples of size k from n numbers without replacement.
n ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.
How many orderings of n objects are there?
Permutations of n objects.
n ways for first,
${ }^{1}$ By definition: $0!=1$.

Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10$!. ${ }^{1}$
How many different samples of size k from n numbers without replacement.
n ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.
How many orderings of n objects are there?
Permutations of n objects.
n ways for first, $n-1$ ways for second,

[^4]
Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10$!. ${ }^{1}$
How many different samples of size k from n numbers without replacement.
n ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.
How many orderings of n objects are there?
Permutations of n objects.
n ways for first, $n-1$ ways for second,
$n-2$ ways for third,

[^5]
Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10$!. ${ }^{1}$
How many different samples of size k from n numbers without replacement.
n ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.
How many orderings of n objects are there?
Permutations of n objects.
n ways for first, $n-1$ ways for second,
$n-2$ ways for third, ...

[^6]
Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10$!. ${ }^{1}$
How many different samples of size k from n numbers without replacement.
n ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.
How many orderings of n objects are there?
Permutations of n objects.
n ways for first, $n-1$ ways for second,
$n-2$ ways for third, \ldots
... $n *(n-1) *(n-2) \cdot * 1=n!$.

[^7]
One-to-One Functions.

One-to-One Functions.

How many one-to-one functions from $|S|$ to $|S|$.

One-to-One Functions.

How many one-to-one functions from $|S|$ to $|S|$.
$|S|$ choices for $f\left(s_{1}\right)$,

One-to-One Functions.

How many one-to-one functions from $|S|$ to $|S|$.
$|S|$ choices for $f\left(s_{1}\right),|S|-1$ choices for $f\left(s_{2}\right), \ldots$

One-to-One Functions.

How many one-to-one functions from $|S|$ to $|S|$.
$|S|$ choices for $f\left(s_{1}\right),|S|-1$ choices for $f\left(s_{2}\right), \ldots$

One-to-One Functions.

How many one-to-one functions from $|S|$ to $|S|$.
$|S|$ choices for $f\left(s_{1}\right),|S|-1$ choices for $f\left(s_{2}\right), \ldots$
So total number is $|S| \times|S|-1 \cdots 1=|S|$!

One-to-One Functions.

How many one-to-one functions from $|S|$ to $|S|$.
$|S|$ choices for $f\left(s_{1}\right),|S|-1$ choices for $f\left(s_{2}\right), \ldots$
So total number is $|S| \times|S|-1 \cdots 1=|S|$!
A one-to-one function is a permutation!

Counting sets..when order doesn't matter.

How many poker hands?
${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

Counting sets..when order doesn't matter.

How many poker hands?

$$
52 \times 51 \times 50 \times 49 \times 48
$$

${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

Counting sets..when order doesn't matter.

How many poker hands?

$$
52 \times 51 \times 50 \times 49 \times 48 ? ? ?
$$

${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

Counting sets..when order doesn't matter.

How many poker hands?
$52 \times 51 \times 50 \times 49 \times 48$???
Are $A, K, Q, 10, J$ of spades
and $10, J, Q, K, A$ of spades the same?

[^8]
Counting sets..when order doesn't matter.

How many poker hands?
$52 \times 51 \times 50 \times 49 \times 48$???
Are $A, K, Q, 10$, J of spades
and $10, J, Q, K, A$ of spades the same?
Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings. ${ }^{2}$

[^9]
Counting sets..when order doesn't matter.

How many poker hands?
$52 \times 51 \times 50 \times 49 \times 48$???
Are $A, K, Q, 10$, J of spades
and $10, J, Q, K, A$ of spades the same?
Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings. ${ }^{2}$
Number of orderings for a poker hand: 5!.

[^10]
Counting sets..when order doesn't matter.

How many poker hands?
$52 \times 51 \times 50 \times 49 \times 48$???
Are $A, K, Q, 10$, J of spades
and $10, J, Q, K, A$ of spades the same?
Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings. ${ }^{2}$
Number of orderings for a poker hand: 5!.

$$
\frac{52 \times 51 \times 50 \times 49 \times 48}{5!}
$$

[^11]
Counting sets..when order doesn't matter.

How many poker hands?
$52 \times 51 \times 50 \times 49 \times 48$???
Are $A, K, Q, 10$, J of spades and $10, J, Q, K, A$ of spades the same?
Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings. ${ }^{2}$
Number of orderings for a poker hand: 5!.

Can write as...
$\frac{52 \times 51 \times 50 \times 49 \times 48}{5!}$

$$
\frac{52!}{5!\times 47!}
$$

${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

Counting sets..when order doesn't matter.

How many poker hands?
$52 \times 51 \times 50 \times 49 \times 48$???
Are $A, K, Q, 10$, J of spades and $10, J, Q, K, A$ of spades the same?
Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings. ${ }^{2}$
Number of orderings for a poker hand: 5!.

Can write as...

$$
\frac{52 \times 51 \times 50 \times 49 \times 48}{5!}
$$

$$
\frac{52!}{5!\times 47!}
$$

Generic: ways to choose 5 out of 52 possibilities.

[^12]
Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)?

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9 .

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node?

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node? 3.

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node? 3.
How many blue nodes (unordered objects)?

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node? 3.
How many blue nodes (unordered objects)? $\frac{9}{3}$

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node? 3.
How many blue nodes (unordered objects)? $\frac{9}{3}=3$.

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node? 3.
How many blue nodes (unordered objects)? $\frac{9}{3}=3$.
How many poker deals?

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node? 3.
How many blue nodes (unordered objects)? $\frac{9}{3}=3$.
How many poker deals? $52 \cdot 51 \cdot 50 \cdot 49 \cdot 48$.

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node? 3.
How many blue nodes (unordered objects)? $\frac{9}{3}=3$.
How many poker deals? $52 \cdot 51 \cdot 50 \cdot 49 \cdot 48$.
How many poker hands per deal?

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node? 3.
How many blue nodes (unordered objects)? $\frac{9}{3}=3$.
How many poker deals? $52 \cdot 51 \cdot 50 \cdot 49 \cdot 48$.
How many poker hands per deal? Map each deal to ordered deal.

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node? 3.
How many blue nodes (unordered objects)? $\frac{9}{3}=3$.
How many poker deals? 52 $51 \cdot 50 \cdot 49 \cdot 48$.
How many poker hands per deal? Map each deal to ordered deal. 5!

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node? 3.
How many blue nodes (unordered objects)? $\frac{9}{3}=3$.
How many poker deals? $52 \cdot 51 \cdot 50 \cdot 49 \cdot 48$.
How many poker hands per deal? Map each deal to ordered deal. 5!
How many poker hands?

Ordered to unordered.

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node? 3.
How many blue nodes (unordered objects)? $\frac{9}{3}=3$.
How many poker deals? $52 \cdot 51 \cdot 50 \cdot 49 \cdot 48$.
How many poker hands per deal? Map each deal to ordered deal. 5!
How many poker hands? $\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5!}$
..order doesn't matter.

..order doesn't matter.

Choose 2 out of n ?

..order doesn't matter.

Choose 2 out of n ?

$$
n \times(n-1)
$$

..order doesn't matter.

Choose 2 out of n ?

$$
\frac{n \times(n-1)}{2}
$$

..order doesn't matter.

Choose 2 out of n ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

..order doesn't matter.

Choose 2 out of n ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of n ?

..order doesn't matter.

Choose 2 out of n ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of n ?

$$
n \times(n-1) \times(n-2)
$$

..order doesn't matter.

Choose 2 out of n ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of n ?

$$
\frac{n \times(n-1) \times(n-2)}{3!}
$$

..order doesn't matter.

Choose 2 out of n ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of n ?

$$
\frac{n \times(n-1) \times(n-2)}{3!}=\frac{n!}{(n-3)!\times 3!}
$$

..order doesn't matter.

Choose 2 out of n ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of n ?

$$
\frac{n \times(n-1) \times(n-2)}{3!}=\frac{n!}{(n-3)!\times 3!}
$$

Choose k out of n ?

$$
\frac{n!}{(n-k)!}
$$

..order doesn't matter.

Choose 2 out of n ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of n ?

$$
\frac{n \times(n-1) \times(n-2)}{3!}=\frac{n!}{(n-3)!\times 3!}
$$

Choose k out of n ?

$$
\frac{n!}{(n-k)!}
$$

..order doesn't matter.

Choose 2 out of n ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of n ?

$$
\frac{n \times(n-1) \times(n-2)}{3!}=\frac{n!}{(n-3)!\times 3!}
$$

Choose k out of n ?

$$
\frac{n!}{(n-k)!\times k!}
$$

..order doesn't matter.

Choose 2 out of n ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of n ?

$$
\frac{n \times(n-1) \times(n-2)}{3!}=\frac{n!}{(n-3)!\times 3!}
$$

Choose k out of n ?

$$
\frac{n!}{(n-k)!\times k!}
$$

Notation: $\binom{n}{k}$ and pronounced " n choose k."

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule. Second rule: when order doesn't matter divide..when possible.

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule. Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: 52

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule. Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: 52×51

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule. Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50$

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule. Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$.

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule. Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule. Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.
Deals: Q, K, A,

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule. Poker hands: Δ ?

Hand: Q, K, A.
Deals: Q, K, A, Q, A, K,

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule. Poker hands: Δ ?

Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.
$\Delta=3 \times 2 \times 1$ First rule again.

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule. Poker hands: Δ ?

Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.
$\Delta=3 \times 2 \times 1$ First rule again.
Total:

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.
$\Delta=3 \times 2 \times 1$ First rule again.
Total: $\frac{52!}{49!3!}$

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.
$\Delta=3 \times 2 \times 1$ First rule again.
Total: $\frac{52!}{49!3!}$ Second Rule!

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.
$\Delta=3 \times 2 \times 1$ First rule again.
Total: $\frac{52!}{49!3!}$ Second Rule!
Choose k out of n.

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.
$\Delta=3 \times 2 \times 1$ First rule again.
Total: $\frac{52!}{49!3!}$ Second Rule!
Choose k out of n.
Ordered set: $\frac{n!}{(n-k)!}$

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.
$\Delta=3 \times 2 \times 1$ First rule again.
Total: $\frac{52!}{49!3!}$ Second Rule!
Choose k out of n.
Ordered set: $\frac{n!}{(n-k)!}$
What is Δ ?

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.
$\Delta=3 \times 2 \times 1$ First rule again.
Total: $\frac{52!}{49!3!}$ Second Rule!
Choose k out of n.
Ordered set: $\frac{n!}{(n-k)!}$
What is Δ ? k !

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.
$\Delta=3 \times 2 \times 1$ First rule again.
Total: $\frac{52!}{49!3!}$ Second Rule!
Choose k out of n.
Ordered set: $\frac{n!}{(n-k)!}$
What is Δ ? k ! First rule again.

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.
$\Delta=3 \times 2 \times 1$ First rule again.
Total: $\frac{52!}{49!3!}$ Second Rule!
Choose k out of n.
Ordered set: $\frac{n!}{(n-k)!}$
What is Δ ? k ! First rule again.
\Longrightarrow Total: $\frac{n!}{(n-k)!k!}$

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.
$\Delta=3 \times 2 \times 1$ First rule again.
Total: $\frac{52!}{49!3!}$ Second Rule!
Choose k out of n.
Ordered set: $\frac{n!}{(n-k)!}$
What is Δ ? k ! First rule again.
\Longrightarrow Total: $\frac{n!}{(n-k)!k!}$ Second rule.

Example: Visualize the proof..

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{52!}{49!}$. First rule.
Poker hands: Δ ?
Hand: Q, K, A.
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$.
$\Delta=3 \times 2 \times 1$ First rule again.
Total: $\frac{52!}{49!3!}$ Second Rule!
Choose k out of n.
Ordered set: $\frac{n!}{(n-k)!}$
What is Δ ? k ! First rule again.
\Longrightarrow Total: $\frac{n!}{(n-k)!k!}$ Second rule.

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule. Second rule: when order doesn't matter divide..when possible.

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule. Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule. Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7!

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule. Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A's are the same!

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A's are the same!
What is Δ ?

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A's are the same!
What is Δ ?
ANAGRAM

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A's are the same!
What is Δ ?
ANAGRAM
$\mathrm{A}_{1} \mathrm{NA}_{2} \mathrm{GRA}_{3} \mathrm{M}$,

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A's are the same!
What is Δ ?
ANAGRAM
$\mathrm{A}_{1} \mathrm{NA}_{2} \mathrm{GRA}_{3} \mathrm{M}, \mathrm{A}_{2} \mathrm{NA}_{1} \mathrm{GRA}_{3} \mathrm{M}$,

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A's are the same!
What is Δ ?
ANAGRAM
$\mathrm{A}_{1} \mathrm{NA}_{2} \mathrm{GRA}_{3} \mathrm{M}, \mathrm{A}_{2} \mathrm{NA}_{1} \mathrm{GRA}_{3} \mathrm{M}, \ldots$

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A's are the same!
What is Δ ?
ANAGRAM
$\mathrm{A}_{1} \mathrm{NA}_{2}$ GRA $_{3} \mathrm{M}, \mathrm{A}_{2} \mathrm{NA}_{1} \mathrm{GRA}_{3} \mathrm{M}, \ldots$
$\Delta=3 \times 2 \times 1$

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A's are the same!
What is Δ ?
ANAGRAM
A_{1} NA $_{2}$ GRA $_{3} \mathrm{M}, \mathrm{A}_{2} \mathrm{NA}_{1} \mathrm{GRA}_{3} \mathrm{M}, \ldots$
$\Delta=3 \times 2 \times 1=3$!

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A's are the same!
What is Δ ?
ANAGRAM
$\mathrm{A}_{1} \mathrm{NA}_{2} \mathrm{GRA}_{3} \mathrm{M}, \mathrm{A}_{2} \mathrm{NA}_{1} \mathrm{GRA}_{3} \mathrm{M}, \ldots$
$\Delta=3 \times 2 \times 1=3!\quad$ First rule!

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A's are the same!
What is Δ ?
ANAGRAM
$\mathrm{A}_{1} \mathrm{NA}_{2} \mathrm{GRA}_{3} \mathrm{M}, \mathrm{A}_{2} \mathrm{NA}_{1} \mathrm{GRA}_{3} \mathrm{M}, \ldots$
$\Delta=3 \times 2 \times 1=3!\quad$ First rule!
$\Longrightarrow \frac{7!}{3!}$

Example: Anagram

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A's are the same!
What is Δ ?
ANAGRAM
$\mathrm{A}_{1} \mathrm{NA}_{2} \mathrm{GRA}_{3} \mathrm{M}, \mathrm{A}_{2} \mathrm{NA}_{1} \mathrm{GRA}_{3} \mathrm{M}, \ldots$
$\Delta=3 \times 2 \times 1=3$! First rule!
$\Longrightarrow \frac{7!}{3!}$ Second rule!

Some Practice.

How many orderings of letters of CAT?

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1$

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered,

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A! total orderings of 7 letters.

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!
total orderings of 7 letters. 7 !

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!
total orderings of 7 letters. 7! total "extra counts" or orderings of two A's?

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!
total orderings of 7 letters. 7! total "extra counts" or orderings of two A's? 3!

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!
total orderings of 7 letters. 7!
total "extra counts" or orderings of two A's? 3!
Total orderings?

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!
total orderings of 7 letters. 7!
total "extra counts" or orderings of two A's? 3!
Total orderings? $\frac{7!}{3!}$

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!
total orderings of 7 letters. 7!
total "extra counts" or orderings of two A's? 3!
Total orderings? $\frac{7!}{3!}$
How many orderings of MISSISSIPPI?

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!
total orderings of 7 letters. 7! total "extra counts" or orderings of two A's? 3!
Total orderings? $\frac{7!}{3!}$
How many orderings of MISSISSIPPI?
4 S's, 4 l's, 2 P's.

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!
total orderings of 7 letters. 7! total "extra counts" or orderings of two A's? 3!
Total orderings? $\frac{7!}{3!}$
How many orderings of MISSISSIPPI?
4 S's, 4 l's, 2 P's.
11 letters total!

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!
total orderings of 7 letters. 7! total "extra counts" or orderings of two A's? 3!
Total orderings? $\frac{7!}{3!}$
How many orderings of MISSISSIPPI?
4 S's, 4 l's, 2 P's.
11 letters total!
11 ! ordered objects!

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!
total orderings of 7 letters. 7! total "extra counts" or orderings of two A's? 3!
Total orderings? $\frac{7!}{3!}$
How many orderings of MISSISSIPPI?
4 S's, 4 l's, 2 P's.
11 letters total!
11 ! ordered objects!
$4!\times 4!\times 2$! ordered objects per "unordered object"

Some Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!
total orderings of 7 letters. 7!
total "extra counts" or orderings of two A's? 3!
Total orderings? $\frac{7!}{3!}$
How many orderings of MISSISSIPPI?
4 S's, 4 l's, 2 P's.
11 letters total!
11 ! ordered objects!
$4!\times 4!\times 2$! ordered objects per "unordered object"
$\Longrightarrow \frac{11!}{4!4!2!}$.

Sampling...

Sample k items out of n

Sampling...

Sample k items out of n
Without replacement:

Sampling...

Sample k items out of n
Without replacement:
Order matters:

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times$

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots$

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1$

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$ Order does not matter:

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" n choose k "

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" n choose k "
With Replacement.

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" n choose k "
With Replacement.
Order matters: n

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" n choose k "
With Replacement.
Order matters: $n \times n$

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n$

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter:

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"

$$
\Longrightarrow \frac{n!}{(n-k!)!k!} .
$$

" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
So different number of unordered elts map to each unordered elt.

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
So different number of unordered elts map to each unordered elt.

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"

$$
\Longrightarrow \frac{n!}{(n-k)!k!} .
$$

" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
So different number of unordered elts map to each unordered elt.
Unordered elt: 1,2,3

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"

$$
\Longrightarrow \frac{n!}{(n-k)!k!} .
$$

" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
So different number of unordered elts map to each unordered elt.
Unordered elt: 1,2,3 3 ! ordered elts map to it.

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"

$$
\Longrightarrow \frac{n!}{(n-k)!k!} .
$$

" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
So different number of unordered elts map to each unordered elt.
Unordered elt: 1,2,3 3 ! ordered elts map to it.
Unordered elt: 1,2,2

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"

$$
\Longrightarrow \frac{n!}{(n-k)!k!} .
$$

" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
So different number of unordered elts map to each unordered elt.
Unordered elt: 1,2,3 3 ! ordered elts map to it.
Unordered elt: $1,2,2 \quad \frac{3!}{2!}$ ordered elts map to it.

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"

$$
\Longrightarrow \frac{n!}{(n-k)!k!} .
$$

" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
So different number of unordered elts map to each unordered elt.
Unordered elt: 1,2,3 3 ! ordered elts map to it.
Unordered elt: $1,2,2 \quad \frac{3!}{2!}$ ordered elts map to it.

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"

$$
\Longrightarrow \frac{n!}{(n-k)!k!} .
$$

" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
So different number of unordered elts map to each unordered elt.
Unordered elt: 1,2,3 3 ! ordered elts map to it.
Unordered elt: $1,2,2 \quad \frac{3!}{2!}$ ordered elts map to it.
How do we deal with this

Sampling...

Sample k items out of n
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " k !"

$$
\Longrightarrow \frac{n!}{(n-k)!k!} .
$$

" n choose k "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
So different number of unordered elts map to each unordered elt.
Unordered elt: 1,2,3 3 ! ordered elts map to it.
Unordered elt: $1,2,2 \quad \frac{3!}{2!}$ ordered elts map to it.
How do we deal with this mess?!?!

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: (B, B, B, B, B).

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: (B, B, B, B, B).
4 for Bob and 1 for Alice:

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: (B, B, B, B, B).
4 for Bob and 1 for Alice:
5 ordered sets: $(A, B, B, B, B) ;(B, A, B, B, B) ; \ldots$

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: (B, B, B, B, B).
4 for Bob and 1 for Alice:
5 ordered sets: $(A, B, B, B, B) ;(B, A, B, B, B) ; \ldots$
"Sorted" way to specify, first Alice's dollars, then Bob's.
(B, B, B, B, B) (A, B, B, B, B)
(A, A, B, B, B)

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: (B, B, B, B, B).
4 for Bob and 1 for Alice:
5 ordered sets: $(A, B, B, B, B) ;(B, A, B, B, B) ; \ldots$
"Sorted" way to specify, first Alice's dollars, then Bob's.
(B, B, B, B, B)
(A, B, B, B, B)
(A, A, B, B, B)
and so on.

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: (B, B, B, B, B).
4 for Bob and 1 for Alice:
5 ordered sets: $(A, B, B, B, B) ;(B, A, B, B, B) ; \ldots$
"Sorted" way to specify, first Alice's dollars, then Bob's.
(B, B, B, B, B)
(A, B, B, B, B)
(A, A, B, B, B)
and so on.

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: (B, B, B, B, B).
4 for Bob and 1 for Alice:
5 ordered sets: (A, B, B, B, B); $(B, A, B, B, B) ; \ldots$
"Sorted" way to specify, first Alice's dollars, then Bob's.
$(B, B, B, B, B) \quad(\mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{B})$
(A, B, B, B, B)
(A, A, B, B, B)
and so on.

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: (B, B, B, B, B).
4 for Bob and 1 for Alice:
5 ordered sets: (A, B, B, B, B); $(B, A, B, B, B) ; \ldots$
"Sorted" way to specify, first Alice's dollars, then Bob's.
(B, B, B, B, B)
$(A, B, B, B, B) \quad(A, B, B, B, B),(B, A, B, B, B),(B, B, A, B, B), \ldots$
(A, A, B, B, B)
and so on.

Δ ??

Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: (B, B, B, B, B).
4 for Bob and 1 for Alice:
5 ordered sets: $(A, B, B, B, B) ;(B, A, B, B, B) ; \ldots$
"Sorted" way to specify, first Alice's dollars, then Bob's.
(B, B, B, B, B)
(A, B, B, B, B)
$(A, A, B, B, B) \quad(A, A, B, B, B),(A, B, A, B, B),(A, B, B, A, B), \ldots$
and so on.

Second rule of counting is no good here!

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: (A, A, A, B, E).

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: (A, A, A, B, E).
Separate Alice's dollars from Bob's and then Bob's from Eve's.

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: (A, A, A, B, E).
Separate Alice's dollars from Bob's and then Bob's from Eve's.
Five dollars are five stars: $\star \star \star \star *$.

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: (A, A, A, B, E).
Separate Alice's dollars from Bob's and then Bob's from Eve's.
Five dollars are five stars: $\star \star \star \star *$.
Alice: 2, Bob: 1, Eve: 2.

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: (A, A, A, B, E).
Separate Alice's dollars from Bob's and then Bob's from Eve's.
Five dollars are five stars: $\star \star \star \star *$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: (A, A, A, B, E).
Separate Alice's dollars from Bob's and then Bob's from Eve's.
Five dollars are five stars: $\star \star \star \star *$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: (A, A, A, B, E).
Separate Alice's dollars from Bob's and then Bob's from Eve's.
Five dollars are five stars: $\star \star \star \star *$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: $|\star| \star \star \star \star$.

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: (A, A, A, B, E).
Separate Alice's dollars from Bob's and then Bob's from Eve's.
Five dollars are five stars: $\star \star \star \star *$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: $|\star| \star \star \star *$.
Each split "is" a sequence of stars and bars.

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: (A, A, A, B, E).
Separate Alice's dollars from Bob's and then Bob's from Eve's.
Five dollars are five stars: $\star \star \star \star \star$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: $|\star| \star * * *$.
Each split "is" a sequence of stars and bars.
Each sequence of stars and bars "is" a split.

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: (A, A, A, B, E).
Separate Alice's dollars from Bob's and then Bob's from Eve's.
Five dollars are five stars: $\star \star \star \star \star$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: $|\star| \star * * *$.
Each split "is" a sequence of stars and bars.
Each sequence of stars and bars "is" a split.

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: (A, A, A, B, E).
Separate Alice's dollars from Bob's and then Bob's from Eve's.
Five dollars are five stars: $\star \star \star \star \star$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: $|\star| \star * * *$.
Each split "is" a sequence of stars and bars.
Each sequence of stars and bars "is" a split.
Counting Rule: if there is a one-to-one mapping between two sets they have the same size!

Stars and Bars.

How many different 5 star and 2 bar diagrams?

Stars and Bars.

How many different 5 star and 2 bar diagrams?
$|\star| \star \star \star \star$.

Stars and Bars.

How many different 5 star and 2 bar diagrams?
$|\star| \star \star \star *$.
7 positions in which to place the 2 bars.

- - - - - - -

Stars and Bars.

How many different 5 star and 2 bar diagrams?
$|\star| \star \star \star \star$.
7 positions in which to place the 2 bars.

Alice: 0; Bob 1; Eve: 4

Stars and Bars.

How many different 5 star and 2 bar diagrams?
$|\star| \star \star \star \star$.
7 positions in which to place the 2 bars.

Alice: 0; Bob 1; Eve: 4
$|\star| \star \star \star \star$.

Stars and Bars.

How many different 5 star and 2 bar diagrams?
$|\star| \star \star \star \star$.
7 positions in which to place the 2 bars.

Alice: 0; Bob 1; Eve: 4
$|\star| \star \star \star \star$.
Bars in first and third position.

Stars and Bars.

How many different 5 star and 2 bar diagrams?
$|\star| \star \star \star *$.
7 positions in which to place the 2 bars.

Alice: 0; Bob 1; Eve: 4
$|\star| \star \star \star \star$.
Bars in first and third position.
Alice: 1; Bob 4; Eve: 0

Stars and Bars.

How many different 5 star and 2 bar diagrams?
$|\star| \star \star \star \star$.
7 positions in which to place the 2 bars.

Alice: 0; Bob 1; Eve: 4
$|\star| \star \star * *$.
Bars in first and third position.
Alice: 1; Bob 4; Eve: 0
$\star|\star \star \star \star|$.

Stars and Bars.

How many different 5 star and 2 bar diagrams?
$|\star| \star \star \star *$.
7 positions in which to place the 2 bars.

Alice: 0; Bob 1; Eve: 4
$|\star| \star \star \star \star$.
Bars in first and third position.
Alice: 1; Bob 4; Eve: 0
$\star|\star \star \star \star|$.
Bars in second and seventh position.

Stars and Bars.

How many different 5 star and 2 bar diagrams?
$|\star| \star \star \star *$.
7 positions in which to place the 2 bars.

Alice: 0; Bob 1; Eve: 4
$|\star| \star \star \star *$.
Bars in first and third position.
Alice: 1; Bob 4; Eve: 0
$\star|\star \star \star \star|$.
Bars in second and seventh position.
$\binom{7}{2}$ ways to do so and

Stars and Bars.

How many different 5 star and 2 bar diagrams?
$|\star| \star \star \star *$.
7 positions in which to place the 2 bars.

Alice: 0; Bob 1; Eve: 4
$|\star| \star \star \star *$.
Bars in first and third position.
Alice: 1; Bob 4; Eve: 0
$\star|\star \star \star \star|$.
Bars in second and seventh position.
$\binom{7}{2}$ ways to do so and
$\binom{7}{2}$ ways to split 5 dollars among 3 people.

Stars and Bars.

Ways to add up n numbers to sum to k ?

Stars and Bars.

Ways to add up n numbers to sum to k ? or
" k from n with replacement where order doesn't matter."

Stars and Bars.

Ways to add up n numbers to sum to k ? or
" k from n with replacement where order doesn't matter."
In general, k stars $n-1$ bars.

$$
\star \star|\star| \cdots \mid \star \star .
$$

Stars and Bars.

Ways to add up n numbers to sum to k ? or
" k from n with replacement where order doesn't matter."
In general, k stars $n-1$ bars.

$$
\star \star|\star| \cdots \mid \star * .
$$

$n+k-1$ positions from which to choose $n-1$ bar positions.

Stars and Bars.

Ways to add up n numbers to sum to k ? or
" k from n with replacement where order doesn't matter."
In general, k stars $n-1$ bars.

$$
\star \star|\star| \cdots \mid \star \star .
$$

$n+k-1$ positions from which to choose $n-1$ bar positions.

$$
\binom{n+k-1}{n-1}
$$

Stars and Bars.

Ways to add up n numbers to sum to k ? or
" k from n with replacement where order doesn't matter."
In general, k stars $n-1$ bars.

$$
\star \star|\star| \cdots \mid \star \star .
$$

$n+k-1$ positions from which to choose $n-1$ bar positions.

$$
\binom{n+k-1}{n-1}
$$

Or: k unordered choices from set of n possibilities with replacement. Sample with replacement where order doesn't matter.

Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.

Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
k Samples with replacement from n items: n^{k}.

Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
k Samples with replacement from n items: n^{k}. Sample without replacement: $\frac{n!}{(n-k)!}$

Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
k Samples with replacement from n items: n^{k}.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter (sometimes) can divide...

Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
k Samples with replacement from n items: n^{k}.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter (sometimes) can divide...
Sample without replacement and order doesn't matter: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. " n choose k "

Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
k Samples with replacement from n items: n^{k}.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter (sometimes) can divide...
Sample without replacement and order doesn't matter: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. " n choose k "

One-to-one rule: equal in number if one-to-one correspondence. pause Bijection!

Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
k Samples with replacement from n items: n^{k}.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter (sometimes) can divide...
Sample without replacement and order doesn't matter: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. " n choose k "

One-to-one rule: equal in number if one-to-one correspondence. pause Bijection!
Sample k times from n objects with replacement and order doesn't matter: $\binom{k+n-1}{n}$.

Quick review of the basics.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.

Quick review of the basics.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
k Samples with replacement from n items: n^{k}.

Quick review of the basics.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
k Samples with replacement from n items: n^{k}.
Sample without replacement: $\frac{n!}{(n-k)!}$

Quick review of the basics.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
k Samples with replacement from n items: n^{k}.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter divide..when possible.

Quick review of the basics.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
k Samples with replacement from n items: n^{k}.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter divide..when possible. Sample without replacement and order doesn't matter: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. " n choose k "

Quick review of the basics.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
k Samples with replacement from n items: n^{k}.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter divide..when possible. Sample without replacement and order doesn't matter: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. " n choose k "

One-to-one rule: equal in number if one-to-one correspondence.

Quick review of the basics.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
k Samples with replacement from n items: n^{k}.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter divide..when possible. Sample without replacement and order doesn't matter: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. " n choose k "

One-to-one rule: equal in number if one-to-one correspondence. Sample with replacement and order doesn't matter: $\binom{k+n-1}{n}$.

Balls in bins.

" k Balls in n bins" \equiv " k samples from n possibilities."

Balls in bins.

" k Balls in n bins" \equiv " k samples from n possibilities." "indistinguishable balls" \equiv "order doesn't matter"

Balls in bins.

" k Balls in n bins" \equiv " k samples from n possibilities."
"indistinguishable balls" \equiv "order doesn't matter"
"only one ball in each bin" \equiv "without replacement"

Balls in bins.

" k Balls in n bins" \equiv " k samples from n possibilities."
"indistinguishable balls" \equiv "order doesn't matter"
"only one ball in each bin" \equiv "without replacement"
5 balls into 10 bins

Balls in bins.

" k Balls in n bins" \equiv " k samples from n possibilities." "indistinguishable balls" \equiv "order doesn't matter"
"only one ball in each bin" \equiv "without replacement"
5 balls into 10 bins 5 samples from 10 possibilities with replacement

Balls in bins.

" k Balls in n bins" \equiv " k samples from n possibilities." "indistinguishable balls" \equiv "order doesn't matter"
"only one ball in each bin" \equiv "without replacement"
5 balls into 10 bins
5 samples from 10 possibilities with replacement Example: 5 digit numbers.

Balls in bins.

" k Balls in n bins" \equiv " k samples from n possibilities."
"indistinguishable balls" \equiv "order doesn't matter"
"only one ball in each bin" \equiv "without replacement"
5 balls into 10 bins
5 samples from 10 possibilities with replacement Example: 5 digit numbers.

5 indistinguishable balls into 52 bins only one ball in each bin

Balls in bins.

" k Balls in n bins" \equiv " k samples from n possibilities."
"indistinguishable balls" \equiv "order doesn't matter"
"only one ball in each bin" \equiv "without replacement"
5 balls into 10 bins
5 samples from 10 possibilities with replacement Example: 5 digit numbers.

5 indistinguishable balls into 52 bins only one ball in each bin 5 samples from 52 possibilities without replacement

Balls in bins.

" k Balls in n bins" \equiv " k samples from n possibilities."
"indistinguishable balls" \equiv "order doesn't matter"
"only one ball in each bin" \equiv "without replacement"
5 balls into 10 bins
5 samples from 10 possibilities with replacement Example: 5 digit numbers.

5 indistinguishable balls into 52 bins only one ball in each bin 5 samples from 52 possibilities without replacement Example: Poker hands.

Balls in bins.

" k Balls in n bins" \equiv " k samples from n possibilities."
"indistinguishable balls" \equiv "order doesn't matter"
"only one ball in each bin" \equiv "without replacement"
5 balls into 10 bins
5 samples from 10 possibilities with replacement Example: 5 digit numbers.

5 indistinguishable balls into 52 bins only one ball in each bin 5 samples from 52 possibilities without replacement Example: Poker hands.

5 indistinguishable balls into 3 bins

Balls in bins.

" k Balls in n bins" \equiv " k samples from n possibilities."
"indistinguishable balls" \equiv "order doesn't matter"
"only one ball in each bin" \equiv "without replacement"
5 balls into 10 bins
5 samples from 10 possibilities with replacement Example: 5 digit numbers.

5 indistinguishable balls into 52 bins only one ball in each bin 5 samples from 52 possibilities without replacement Example: Poker hands.

5 indistinguishable balls into 3 bins
5 samples from 3 possibilities with replacement and no order

Balls in bins.

" k Balls in n bins" \equiv " k samples from n possibilities."
"indistinguishable balls" \equiv "order doesn't matter"
"only one ball in each bin" \equiv "without replacement"
5 balls into 10 bins
5 samples from 10 possibilities with replacement
Example: 5 digit numbers.
5 indistinguishable balls into 52 bins only one ball in each bin 5 samples from 52 possibilities without replacement Example: Poker hands.

5 indistinguishable balls into 3 bins
5 samples from 3 possibilities with replacement and no order Dividing 5 dollars among Alice, Bob and Eve.

Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands? Sum rule: Can sum over disjoint sets.

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands? Sum rule: Can sum over disjoint sets.
"exclusive" or Two Jokers

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers
"exclusive" or Two Jokers
$\binom{52}{5}$

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}
$$

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands?

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands?

$$
\binom{52}{5}+
$$

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+
$$

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Wait a minute!

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Wait a minute! Same as

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Wait a minute! Same as choosing 5 cards from 54

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Wait a minute! Same as choosing 5 cards from 54 or

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Wait a minute! Same as choosing 5 cards from 54 or

$$
\binom{54}{5}
$$

Theorem: $\binom{54}{5}$

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Wait a minute! Same as choosing 5 cards from 54 or

$$
\binom{54}{5}
$$

Theorem: $\binom{54}{5}=\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}$.

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Wait a minute! Same as choosing 5 cards from 54 or

$$
\binom{54}{5}
$$

Theorem: $\binom{54}{5}=\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}$.
Algebraic Proof:

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Wait a minute! Same as choosing 5 cards from 54 or

$$
\binom{54}{5}
$$

Theorem: $\binom{54}{5}=\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}$.
Algebraic Proof: Why?

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Wait a minute! Same as choosing 5 cards from 54 or

$$
\binom{54}{5}
$$

Theorem: $\binom{54}{5}=\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}$.
Algebraic Proof: Why? Just why?

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Wait a minute! Same as choosing 5 cards from 54 or

$$
\binom{54}{5}
$$

Theorem: $\binom{54}{5}=\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}$.
Algebraic Proof: Why? Just why? Especially on Thursday!

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Wait a minute! Same as choosing 5 cards from 54 or

$$
\binom{54}{5}
$$

Theorem: $\binom{54}{5}=\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}$.
Algebraic Proof: Why? Just why? Especially on Thursday! Above is combinatorial proof.

Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers "exclusive" or One Joker "exclusive" or Two Jokers

$$
\binom{52}{5}+\binom{52}{4}+\binom{52}{3} .
$$

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

$$
\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}
$$

Wait a minute! Same as choosing 5 cards from 54 or

$$
\binom{54}{5}
$$

Theorem: $\binom{54}{5}=\binom{52}{5}+2 *\binom{52}{4}+\binom{52}{3}$.
Algebraic Proof: Why? Just why? Especially on Thursday! Above is combinatorial proof.

Combinatorial Proofs.

Theorem: $\binom{n}{k}=\binom{n}{n-k}$

Combinatorial Proofs.

Theorem: $\binom{n}{k}=\binom{n}{n-k}$
Proof: How many subsets of size k ?

Combinatorial Proofs.

Theorem: $\binom{n}{k}=\binom{n}{n-k}$
Proof: How many subsets of size k ? $\binom{n}{k}$

Combinatorial Proofs.

Theorem: $\binom{n}{k}=\binom{n}{n-k}$
Proof: How many subsets of size k ? $\binom{n}{k}$
How many subsets of size k ?

Combinatorial Proofs.

Theorem: $\binom{n}{k}=\binom{n}{n-k}$
Proof: How many subsets of size k ? $\binom{n}{k}$
How many subsets of size k ?
Choose a subset of size $n-k$

Combinatorial Proofs.

Theorem: $\binom{n}{k}=\binom{n}{n-k}$
Proof: How many subsets of size k ? $\binom{n}{k}$
How many subsets of size k ?
Choose a subset of size $n-k$ and what's left out

Combinatorial Proofs.

Theorem: $\binom{n}{k}=\binom{n}{n-k}$
Proof: How many subsets of size k ? $\binom{n}{k}$
How many subsets of size k ?
Choose a subset of size $n-k$ and what's left out is a subset of size k.

Combinatorial Proofs.

Theorem: $\binom{n}{k}=\binom{n}{n-k}$
Proof: How many subsets of size k ? $\binom{n}{k}$
How many subsets of size k ?
Choose a subset of size $n-k$ and what's left out is a subset of size k.
Choosing a subset of size k is same

Combinatorial Proofs.

Theorem: $\binom{n}{k}=\binom{n}{n-k}$
Proof: How many subsets of size k ? $\binom{n}{k}$
How many subsets of size k ?
Choose a subset of size $n-k$ and what's left out is a subset of size k.
Choosing a subset of size k is same as choosing $n-k$ elements to not take.

Combinatorial Proofs.

Theorem: $\binom{n}{k}=\binom{n}{n-k}$
Proof: How many subsets of size k ? $\binom{n}{k}$
How many subsets of size k ?
Choose a subset of size $n-k$ and what's left out is a subset of size k.
Choosing a subset of size k is same as choosing $n-k$ elements to not take.
$\Longrightarrow\binom{n}{n-k}$ subsets of size k.

Combinatorial Proofs.

Theorem: $\binom{n}{k}=\binom{n}{n-k}$
Proof: How many subsets of size k ? $\binom{n}{k}$
How many subsets of size k ?
Choose a subset of size $n-k$ and what's left out is a subset of size k.
Choosing a subset of size k is same as choosing $n-k$ elements to not take.
$\Longrightarrow\binom{n}{n-k}$ subsets of size k.

Pascal's Triangle

Pascal's Triangle

$$
\begin{gathered}
0 \\
1 \quad 1
\end{gathered}
$$

Pascal's Triangle

$$
\begin{gathered}
0 \\
1{ }^{0} 1 \\
1 \quad 2 \quad 1
\end{gathered}
$$

Pascal's Triangle

$$
\begin{gathered}
0 \\
111 \\
12^{2} 1 \\
131
\end{gathered}
$$

Pascal's Triangle

Pascal's Triangle

Pascal's Triangle

$$
\begin{gathered}
0 \\
11 \\
1221 \\
14331 \\
146641
\end{gathered}
$$

Row n : coefficients of $(1+x)^{n}=(1+x)(1+x) \cdots(1+x)$.

Pascal's Triangle

$$
\begin{gathered}
0 \\
11 \\
1221 \\
14331 \\
146641
\end{gathered}
$$

Row n : coefficients of $(1+x)^{n}=(1+x)(1+x) \cdots(1+x)$.
Foil (4 terms)

Pascal's Triangle

$$
\begin{aligned}
& \text { Row } n \text { : coefficients of }(1+x)^{n}=(1+x)(1+x) \cdots(1+x) \text {. }
\end{aligned}
$$

Foil (4 terms) on steroids:

Pascal's Triangle

$$
\begin{aligned}
& \text { Row } n \text { : coefficients of }(1+x)^{n}=(1+x)(1+x) \cdots(1+x) \text {. }
\end{aligned}
$$

Foil (4 terms) on steroids:
2^{n} terms:

Pascal's Triangle

$$
\begin{gathered}
0 \\
1{ }^{1} 2^{2} 1 \\
13^{2} 31 \\
14641 \\
\text { Row } n \text { : coefficients of }(1+x)^{n}=(1+x)(1+x) \cdots(1+x) \text {. }
\end{gathered}
$$

Foil (4 terms) on steroids:
2^{n} terms: choose 1 or x froom each factor of $(1+x)$.

Pascal's Triangle

$$
\begin{gathered}
0 \\
1{ }^{1} 2^{2} 1 \\
13^{2} 31 \\
14641 \\
\text { Row } n \text { : coefficients of }(1+x)^{n}=(1+x)(1+x) \cdots(1+x) \text {. }
\end{gathered}
$$

Foil (4 terms) on steroids:
2^{n} terms: choose 1 or x froom each factor of $(1+x)$.

Pascal's Triangle

$$
\begin{gathered}
0 \\
11^{1} 2^{2} 1 \\
13^{3} 31 \\
14641 \\
\text { Row } n \text { : coefficients of }(1+x)^{n}=(1+x)(1+x) \cdots(1+x) \text {. }
\end{gathered}
$$

Foil (4 terms) on steroids:
2^{n} terms: choose 1 or x froom each factor of $(1+x)$.
Simplify: collect all terms corresponding to x^{k}.

Pascal's Triangle

$$
\begin{aligned}
& \text { Row } n \text { : coefficients of }(1+x)^{n}=(1+x)(1+x) \cdots(1+x) \text {. } \\
& \text { Foil (4 terms) on steroids: } \\
& 2^{n} \text { terms: choose } 1 \text { or } x \text { froom each factor of }(1+x) \text {. } \\
& \text { Simplify: collect all terms corresponding to } x^{k} \text {. } \\
& \text { Coefficient of } x^{k} \text { is }\binom{n}{k} \text { : choose } k \text { factors where } x \text { is in product. }
\end{aligned}
$$

Pascal's Triangle

$$
\begin{gathered}
0 \\
11^{1} 2^{2} 1 \\
13^{3} 31 \\
14641 \\
\text { Row } n \text { : coefficients of }(1+x)^{n}=(1+x)(1+x) \cdots(1+x) \text {. }
\end{gathered}
$$

Foil (4 terms) on steroids:
2^{n} terms: choose 1 or x froom each factor of $(1+x)$.
Simplify: collect all terms corresponding to x^{k}.
Coefficient of x^{k} is $\binom{n}{k}$: choose k factors where x is in product.

$$
\begin{gathered}
\binom{0}{0} \\
\binom{1}{0}
\end{gathered}\binom{1}{1}
$$

Pascal's Triangle

$$
\begin{gathered}
0 \\
11^{1} 2^{2} 1 \\
13^{3} 31 \\
14641 \\
\text { Row } n \text { : coefficients of }(1+x)^{n}=(1+x)(1+x) \cdots(1+x) \text {. }
\end{gathered}
$$

Foil (4 terms) on steroids:
2^{n} terms: choose 1 or x froom each factor of $(1+x)$.
Simplify: collect all terms corresponding to x^{k}.
Coefficient of x^{k} is $\binom{n}{k}$: choose k factors where x is in product.

$$
\begin{aligned}
& \binom{0}{0} \\
& \binom{1}{0} \quad\binom{1}{1} \\
& \binom{2}{0}\binom{2}{1} \quad\binom{2}{2}
\end{aligned}
$$

Pascal's Triangle

$$
\begin{gathered}
0 \\
1{ }^{1} 2^{2} 1 \\
13^{3} 31 \\
14641 \\
\text { Row } n \text { : coefficients of }(1+x)^{n}=(1+x)(1+x) \cdots(1+x) \text {. }
\end{gathered}
$$

Foil (4 terms) on steroids:
2^{n} terms: choose 1 or x froom each factor of $(1+x)$.
Simplify: collect all terms corresponding to x^{k}.
Coefficient of x^{k} is $\binom{n}{k}$: choose k factors where x is in product.

$$
\begin{aligned}
& \binom{0}{0} \\
& \binom{1}{0}\binom{1}{1} \\
& \binom{2}{0} \quad\binom{2}{1} \quad\binom{2}{2} \\
& \binom{3}{0}\binom{3}{1}\binom{3}{2}\binom{3}{3}
\end{aligned}
$$

Pascal's Triangle

> Row n : coefficients of $(1+x)^{n}=(1+x)(1+x) \cdots(1+x)$.
> Foil (4 terms) on steroids:
> 2^{n} terms: choose 1 or x froom each factor of $(1+x)$.
> Simplify: collect all terms corresponding to x^{k}.
> Coefficient of x^{k} is $\binom{n}{k}$: choose k factors where x is in product.

Pascal's rule $\Longrightarrow\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$?

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.
How many size k subsets of $n+1$?

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.
How many size k subsets of $n+1$?
How many contain the first element?

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.
How many size k subsets of $n+1$?
How many contain the first element?
Chose first element,

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.
How many size k subsets of $n+1$?
How many contain the first element?
Chose first element, need to choose $k-1$ more from remaining n elements.

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.
How many size k subsets of $n+1$?
How many contain the first element?
Chose first element, need to choose $k-1$ more from remaining n elements.
$\Longrightarrow\binom{n}{k-1}$

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.
How many size k subsets of $n+1$?
How many contain the first element?
Chose first element, need to choose $k-1$ more from remaining n elements.
$\Longrightarrow\binom{n}{k-1}$

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.
How many size k subsets of $n+1$?
How many contain the first element?
Chose first element, need to choose $k-1$ more from remaining n elements.
$\Longrightarrow\binom{n}{k-1}$
How many don't contain the first element?

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.
How many size k subsets of $n+1$?
How many contain the first element?
Chose first element, need to choose $k-1$ more from remaining n elements.
$\Longrightarrow\binom{n}{k-1}$
How many don't contain the first element?
Need to choose k elements from remaining n elts.

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.
How many size k subsets of $n+1$?
How many contain the first element?
Chose first element, need to choose $k-1$ more from remaining n elements.
$\Longrightarrow\binom{n}{k-1}$
How many don't contain the first element?
Need to choose k elements from remaining n elts.
$\Longrightarrow\binom{n}{k}$

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.
How many size k subsets of $n+1$?
How many contain the first element?
Chose first element, need to choose $k-1$ more from remaining n elements.
$\Longrightarrow\binom{n}{k-1}$
How many don't contain the first element?
Need to choose k elements from remaining n elts.
$\Longrightarrow\binom{n}{k}$

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.
How many size k subsets of $n+1$?
How many contain the first element?
Chose first element, need to choose $k-1$ more from remaining n elements.
$\Longrightarrow\binom{n}{k-1}$
How many don't contain the first element?
Need to choose k elements from remaining n elts.
$\Longrightarrow\binom{n}{k}$
So, $\binom{n}{k-1}+\binom{n}{k}$

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$.
How many size k subsets of $n+1$?
How many contain the first element?
Chose first element, need to choose $k-1$ more from remaining n elements.
$\Longrightarrow\binom{n}{k-1}$
How many don't contain the first element?
Need to choose k elements from remaining n elts.
$\Longrightarrow\binom{n}{k}$
So, $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$.

Combinatorial Proof.

Theorem: $\binom{n}{k}=\binom{n-1}{k-1}+\cdots+\binom{k-1}{k-1}$.

Combinatorial Proof.

Theorem: $\binom{n}{k}=\binom{n-1}{k-1}+\cdots+\binom{k-1}{k-1}$.
Proof: Consider size k subset where i is the first element chosen.

Combinatorial Proof.

Theorem: $\binom{n}{k}=\binom{n-1}{k-1}+\cdots+\binom{k-1}{k-1}$.
Proof: Consider size k subset where i is the first element chosen.

$$
\{1, \ldots, i, \ldots, n\}
$$

Must choose $k-1$ elements from $n-i$ remaining elements.

Combinatorial Proof.

Theorem: $\binom{n}{k}=\binom{n-1}{k-1}+\cdots+\binom{k-1}{k-1}$.
Proof: Consider size k subset where i is the first element chosen.

$$
\{1, \ldots, i, \ldots, n\}
$$

Must choose $k-1$ elements from $n-i$ remaining elements.
$\Longrightarrow\binom{n-i}{k-1}$ such subsets.

Combinatorial Proof.

Theorem: $\binom{n}{k}=\binom{n-1}{k-1}+\cdots+\binom{k-1}{k-1}$.
Proof: Consider size k subset where i is the first element chosen.

$$
\{1, \ldots, i, \ldots, n\}
$$

Must choose $k-1$ elements from $n-i$ remaining elements.
$\Longrightarrow\binom{n-i}{k-1}$ such subsets.
Add them up to get the total number of subsets of size k

Combinatorial Proof.

Theorem: $\binom{n}{k}=\binom{n-1}{k-1}+\cdots+\binom{k-1}{k-1}$.
Proof: Consider size k subset where i is the first element chosen.

$$
\{1, \ldots, i, \ldots, n\}
$$

Must choose $k-1$ elements from $n-i$ remaining elements.
$\Longrightarrow\binom{n-i}{k-1}$ such subsets.
Add them up to get the total number of subsets of size k which is also $\binom{n+1}{k}$.

Binomial Theorem: $x=1$

Theorem: $2^{n}=\binom{n}{n}+\binom{n}{n-1}+\cdots+\binom{n}{0}$

Binomial Theorem: $x=1$

Theorem: $2^{n}=\binom{n}{n}+\binom{n}{n-1}+\cdots+\binom{n}{0}$
Proof: How many subsets of $\{1, \ldots, n\}$?

Binomial Theorem: $x=1$

Theorem: $2^{n}=\binom{n}{n}+\binom{n}{n-1}+\cdots+\binom{n}{0}$
Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices:

Binomial Theorem: $x=1$

Theorem: $2^{n}=\binom{n}{n}+\binom{n}{n-1}+\cdots+\binom{n}{0}$
Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices: element i is in or is not in the subset: 2 poss.

Binomial Theorem: $x=1$

Theorem: $2^{n}=\binom{n}{n}+\binom{n}{n-1}+\cdots+\binom{n}{0}$
Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices: element i is in or is not in the subset: 2 poss.
First rule of counting: $2 \times 2 \cdots \times 2=2^{n}$ subsets.

Binomial Theorem: $x=1$

Theorem: $2^{n}=\binom{n}{n}+\binom{n}{n-1}+\cdots+\binom{n}{0}$
Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices: element i is in or is not in the subset: 2 poss.
First rule of counting: $2 \times 2 \cdots \times 2=2^{n}$ subsets.
How many subsets of $\{1, \ldots, n\}$?

Binomial Theorem: $x=1$

Theorem: $2^{n}=\binom{n}{n}+\binom{n}{n-1}+\cdots+\binom{n}{0}$
Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices: element i is in or is not in the subset: 2 poss.
First rule of counting: $2 \times 2 \cdots \times 2=2^{n}$ subsets.
How many subsets of $\{1, \ldots, n\}$?
$\binom{n}{i}$ ways to choose i elts of $\{1, \ldots, n\}$.

Binomial Theorem: $x=1$

Theorem: $2^{n}=\binom{n}{n}+\binom{n}{n-1}+\cdots+\binom{n}{0}$
Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices: element i is in or is not in the subset: 2 poss.
First rule of counting: $2 \times 2 \cdots \times 2=2^{n}$ subsets.
How many subsets of $\{1, \ldots, n\}$?
$\binom{n}{i}$ ways to choose i elts of $\{1, \ldots, n\}$.
Sum over i to get total number of subsets..

Binomial Theorem: $x=1$

Theorem: $2^{n}=\binom{n}{n}+\binom{n}{n-1}+\cdots+\binom{n}{0}$
Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices: element i is in or is not in the subset: 2 poss.
First rule of counting: $2 \times 2 \cdots \times 2=2^{n}$ subsets.
How many subsets of $\{1, \ldots, n\}$?
$\binom{n}{i}$ ways to choose i elts of $\{1, \ldots, n\}$.
Sum over i to get total number of subsets..which is also 2^{n}.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$ Used to reason about all subsets
by adding number of subsets of size $1,2,3, \ldots$

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$ Used to reason about all subsets by adding number of subsets of size 1, 2, 3, ...
Also reasoned about subsets that contained
or didn't contain an element. (E.g., first element, first i elements.)

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$ Used to reason about all subsets by adding number of subsets of size $1,2,3, \ldots$
Also reasoned about subsets that contained
or didn't contain an element. (E.g., first element, first i elements.)
Inclusion/Exclusion Rule: For any S and T,
$|S \cup T|=|S|+|T|-|S \cap T|$.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$ Used to reason about all subsets by adding number of subsets of size $1,2,3, \ldots$
Also reasoned about subsets that contained
or didn't contain an element. (E.g., first element, first i elements.)
Inclusion/Exclusion Rule: For any S and T,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$ Used to reason about all subsets by adding number of subsets of size 1, 2, 3, ...
Also reasoned about subsets that contained
or didn't contain an element. (E.g., first element, first i elements.)
Inclusion/Exclusion Rule: For any S and T,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$ Used to reason about all subsets by adding number of subsets of size 1, 2, 3, ...
Also reasoned about subsets that contained
or didn't contain an element. (E.g., first element, first i elements.)
Inclusion/Exclusion Rule: For any S and T,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$ Used to reason about all subsets by adding number of subsets of size 1, 2, 3, ...
Also reasoned about subsets that contained
or didn't contain an element. (E.g., first element, first i elements.)
Inclusion/Exclusion Rule: For any S and T,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$
$T=$ phone numbers with 7 as second digit.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$ Used to reason about all subsets by adding number of subsets of size 1, 2, 3, ...
Also reasoned about subsets that contained
or didn't contain an element. (E.g., first element, first i elements.)
Inclusion/Exclusion Rule: For any S and T,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$
$T=$ phone numbers with 7 as second digit. $|T|=10^{9}$.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$ Used to reason about all subsets by adding number of subsets of size $1,2,3, \ldots$
Also reasoned about subsets that contained
or didn't contain an element. (E.g., first element, first i elements.)
Inclusion/Exclusion Rule: For any S and T,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$
$T=$ phone numbers with 7 as second digit. $|T|=10^{9}$.
$S \cap T=$ phone numbers with 7 as first and second digit.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$ Used to reason about all subsets by adding number of subsets of size $1,2,3, \ldots$
Also reasoned about subsets that contained
or didn't contain an element. (E.g., first element, first i elements.)
Inclusion/Exclusion Rule: For any S and T,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$
$T=$ phone numbers with 7 as second digit. $|T|=10^{9}$.
$S \cap T=$ phone numbers with 7 as first and second digit. $|S \cap T|=10^{8}$.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$ Used to reason about all subsets by adding number of subsets of size $1,2,3, \ldots$
Also reasoned about subsets that contained
or didn't contain an element. (E.g., first element, first i elements.)
Inclusion/Exclusion Rule: For any S and T,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$
$T=$ phone numbers with 7 as second digit. $|T|=10^{9}$.
$S \cap T=$ phone numbers with 7 as first and second digit. $|S \cap T|=10^{8}$.
Answer: $|S|+|T|-|S \cap T|=10^{9}+10^{9}-10^{8}$.

Summary.

First Rule of counting:

Summary.

First Rule of counting: Objects from a sequence of choices:

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting:

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.
Stars and Bars:

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for ith choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.
Typically: $\binom{n+k-1}{k-1}$.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.
Typically: $\binom{n+k-1}{k-1}$.
Inclusion/Exclusion: two sets of objects.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.
Typically: $\binom{n+k-1}{k-1}$.
Inclusion/Exclusion: two sets of objects.
Add number of each subtract intersection of sets.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.
Typically: $\binom{n+k-1}{k-1}$.
Inclusion/Exclusion: two sets of objects.
Add number of each subtract intersection of sets.
Sum Rule: If disjoint just add.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.
Typically: $\binom{n+k-1}{k-1}$.
Inclusion/Exclusion: two sets of objects.
Add number of each subtract intersection of sets.
Sum Rule: If disjoint just add.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object.
Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.
Typically: $\binom{n+k-1}{k-1}$.
Inclusion/Exclusion: two sets of objects.
Add number of each subtract intersection of sets.
Sum Rule: If disjoint just add.
Combinatorial Proofs: Identity from counting same in two ways.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.
Typically: $\binom{n+k-1}{k-1}$.
Inclusion/Exclusion: two sets of objects.
Add number of each subtract intersection of sets.
Sum Rule: If disjoint just add.
Combinatorial Proofs: Identity from counting same in two ways.
Pascal's Triangle Example: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object. Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.
Typically: $\binom{n+k-1}{k-1}$.
Inclusion/Exclusion: two sets of objects.
Add number of each subtract intersection of sets.
Sum Rule: If disjoint just add.
Combinatorial Proofs: Identity from counting same in two ways.
Pascal's Triangle Example: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$.
RHS: Number of subsets of $n+1$ items size k.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object.
Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.
Typically: $\binom{n+k-1}{k-1}$.
Inclusion/Exclusion: two sets of objects.
Add number of each subtract intersection of sets.
Sum Rule: If disjoint just add.
Combinatorial Proofs: Identity from counting same in two ways.
Pascal's Triangle Example: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$.
RHS: Number of subsets of $n+1$ items size k.
LHS: $\binom{n}{k-1}$ counts subsets of $n+1$ items with first item.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object.
Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.
Typically: $\binom{n+k-1}{k-1}$.
Inclusion/Exclusion: two sets of objects.
Add number of each subtract intersection of sets.
Sum Rule: If disjoint just add.
Combinatorial Proofs: Identity from counting same in two ways.
Pascal's Triangle Example: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$.
RHS: Number of subsets of $n+1$ items size k.
LHS: $\binom{n}{k-1}$ counts subsets of $n+1$ items with first item.
$\binom{n}{k}$ counts subsets of $n+1$ items without first item.

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object.
Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.
Typically: $\binom{n+k-1}{k-1}$.
Inclusion/Exclusion: two sets of objects.
Add number of each subtract intersection of sets.
Sum Rule: If disjoint just add.
Combinatorial Proofs: Identity from counting same in two ways.
Pascal's Triangle Example: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$.
RHS: Number of subsets of $n+1$ items size k.
LHS: $\binom{n}{k-1}$ counts subsets of $n+1$ items with first item.
$\binom{n}{k}$ counts subsets of $n+1$ items without first item.
Disjoint

Summary.

First Rule of counting: Objects from a sequence of choices:
n_{i} possibilitities for i th choice.
$n_{1} \times n_{2} \times \cdots \times n_{k}$ objects.
Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object.
Typically: $\binom{n}{k}$.
Stars and Bars: Sample k objects with replacement from n.
Order doesn't matter.
Typically: $\binom{n+k-1}{k-1}$.
Inclusion/Exclusion: two sets of objects.
Add number of each subtract intersection of sets.
Sum Rule: If disjoint just add.
Combinatorial Proofs: Identity from counting same in two ways.
Pascal's Triangle Example: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$.
RHS: Number of subsets of $n+1$ items size k.
LHS: $\binom{n}{k-1}$ counts subsets of $n+1$ items with first item.
$\binom{n}{k}$ counts subsets of $n+1$ items without first item.
Disjoint - so add!

[^0]: ${ }^{1}$ By definition: $0!=1$.

[^1]: ${ }^{1}$ By definition: $0!=1$.

[^2]: ${ }^{1}$ By definition: $0!=1$.

[^3]: ${ }^{1}$ By definition: $0!=1$.

[^4]: ${ }^{1}$ By definition: $0!=1$.

[^5]: ${ }^{1}$ By definition: $0!=1$.

[^6]: ${ }^{1}$ By definition: $0!=1$.

[^7]: ${ }^{1}$ By definition: $0!=1$.

[^8]: ${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

[^9]: ${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

[^10]: ${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

[^11]: ${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

[^12]: ${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

