CS70: Jean Walrand: Lecture 15b.

Modeling Uncertainty: Probability Space

- 1. Key Points
- 2. Random Experiments
- 3. Probability Space

Key Points

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance
 - Design randomized algorithms.
- Probability
 - Models knowledge about uncertainty
 - Discovers best way to use that knowledge in making decisions

The Magic of Probability

about uncertainty.

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think

Uncertainty = Fear

Probability = Serenity

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.

Random Experiment: Flip one Fair Coin

Flip a fair coin: (One flips or tosses a coin)

- Possible outcomes: Heads (H) and Tails (T) (One flip yields either 'heads' or 'tails'.)
- ▶ Likelihoods: *H*: 50% and *T*: 50%

Random Experiment: Flip one Fair Coin Flip a fair coin:

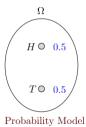
What do we mean by the likelihood of tails is 50%? Two interpretations:

- Single coin flip: 50% chance of 'tails' [subjectivist]
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' [frequentist]
 Makes sense for many flips
- Question: Why does the fraction of tails converge to the same value every time? Statistical Regularity! Deep!

Random Experiment: Flip one Fair Coin

Flip a fair coin: model

Physical Experiment



- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
 - A set Ω of outcomes: $\Omega = \{H, T\}$.
 - A probability assigned to each outcome: Pr[H] = 0.5, Pr[T] = 0.5.

Random Experiment: Flip one Unfair Coin

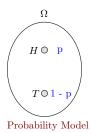
Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation: Flip many times \Rightarrow Fraction 1 – p of tails
- Question: How can one figure out p? Flip many times
- Tautolgy? No: Statistical regularity!

Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin: model

Physical Experiment



Flip Two Fair Coins

- ▶ Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- ▶ Note: $A \times B := \{(a,b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.
- ► Likelihoods: 1/4 each.

Flip Glued Coins

Flips two coins glued together side by side:

► Possible outcomes: {*HH*, *TT*}.

Likelihoods: *HH* : 0.5, *TT* : 0.5.

Note: Coins are glued so that they show the same face.

Flip Glued Coins

Flips two coins glued together side by side:

- ▶ Possible outcomes: {*HT*, *TH*}.
- Likelihoods: *HT* : 0.5, *TH* : 0.5.
- ▶ Note: Coins are glued so that they show different faces.

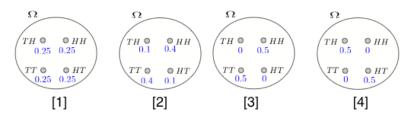
Flip two Attached Coins

Flips two coins attached by a spring:

- ▶ Possible outcomes: {*HH*, *HT*, *TH*, *TT*}.
- ▶ Likelihoods: HH: 0.4, HT: 0.1, TH: 0.1, TT: 0.4.
- Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.

Flipping Two Coins

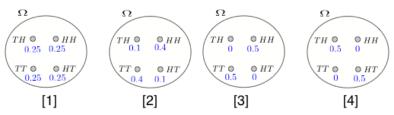
Here is a way to summarize the four random experiments:



- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- ▶ The probabilities are \geq 0 and add up to 1;
- ► Fair coins: [1]; Glued coins: [3], [4]; Spring-attached coins: [2];

Flipping Two Coins

Here is a way to summarize the four random experiments:



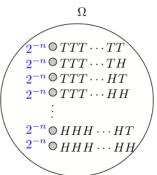
Important remarks:

- Each outcome describes the two coins.
- ► E.g., HT is one outcome of the experiment.
- ▶ It is wrong to think that the outcomes are {*H*, *T*} and that one picks twice from that set.
- Indeed, this viewpoint misses the relationship between the two flips.
- ▶ Each $\omega \in \Omega$ describes one outcome of the complete experiment.
- Ω and the probabilities specify the random experiment.

Flipping *n* times

Flip a fair coin n times (some $n \ge 1$):

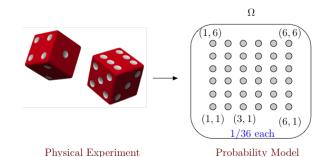
- ▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}. |A^n| = |A|^n$.
- Likelihoods: 1/2ⁿ each.



Roll two Dice

Roll a balanced 6-sided die twice:

- ► Possible outcomes: $\{1,2,3,4,5,6\}^2 = \{(a,b) \mid 1 \le a,b \le 6\}.$
- ► Likelihoods: 1/36 for each.



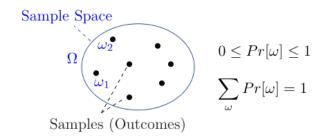
Probability Space.

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .
 - (a) $\Omega = \{H, T\};$
 - (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4;$
- 3. Assign a probability to each outcome: $Pr : \Omega \rightarrow [0,1]$.
 - (a) Pr[H] = p, Pr[T] = 1 p for some $p \in [0, 1]$
 - (b) $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$
 - (c) $Pr\left[\begin{array}{c|c} A & A & A & A & K \end{array}\right] = \cdots = 1/\binom{52}{5}$

Probability Space: formalism.

 Ω is the **sample space.** $\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.) Sample point ω has a probability $Pr[\omega]$ where

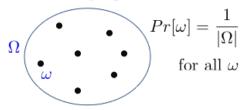
- ▶ $0 \le Pr[\omega] \le 1$;
- $\sum_{\omega \in \Omega} Pr[\omega] = 1.$



Probability Space: Formalism.

In a **uniform probability space** each outcome ω is equally probable: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Uniform Probability Space

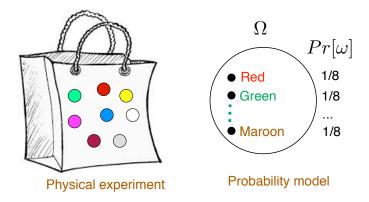


Examples:

- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
- ▶ Flipping a biased coin is not a uniform probability space.

Probability Space: Formalism

Simplest physical model of a uniform probability space:



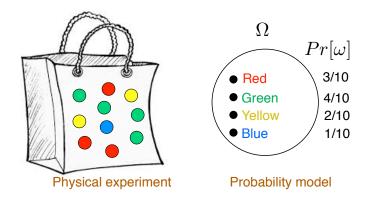
A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

$$\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \}$$

$$Pr[\text{blue}] = \frac{1}{8}.$$

Probability Space: Formalism

Simplest physical model of a non-uniform probability space:



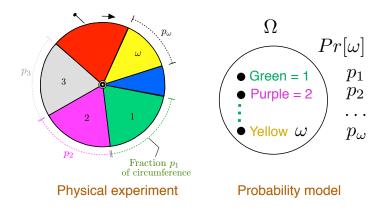
$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

Note: Probabilities are restricted to rational numbers: $\frac{N_k}{N}$.

Probability Space: Formalism

Physical model of a general non-uniform probability space:



The roulette wheel stops in sector ω with probability p_{ω} .

$$\Omega = \{1, 2, 3, \dots, N\}, Pr[\omega] = p_{\omega}.$$

An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $ightharpoonup \Omega = \{HH, TH, HT, TT\}$
 - The experiment selects *one* of the elements of Ω.
- ▶ In this case, its would be wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- ► For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets *HH* or *TT* with probability 50% each. This is not captured by 'picking two outcomes.'

Lecture 15: Summary

Modeling Uncertainty: Probability Space

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0,1]$; $\sum_{\omega} Pr[\omega] = 1$.
- 3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.