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Probability Basics Review

Setup:

I Random Experiment.
Flip a fair coin twice.

I Probability Space.
I Sample Space: Set of outcomes, Ω.

Ω = {HH,HT ,TH,TT}
(Note: Not Ω = {H,T} with two picks!)

I Probability: Pr [ω] for all ω ∈ Ω.
Pr [HH] = · · ·= Pr [TT ] = 1/4

1. 0≤ Pr [ω]≤ 1.
2. ∑ω∈Ω Pr [ω] = 1.
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Set notation review

A B

⌦

Figure: Two events

⌦

Ā

Figure: Complement
(not)

⌦

A [ B

Figure: Union (or)

⌦

A \ B

Figure: Intersection
(and)

⌦

A \ B

Figure: Difference (A,
not B)

⌦

A�B

Figure: Symmetric
difference (only one)
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Probability of exactly one ‘heads’ in two coin flips?

Idea: Sum the probabilities of all the different outcomes that
have exactly one ‘heads’: HT ,TH.

This leads to a definition!
Definition:

I An event, E , is a subset of outcomes: E ⊂ Ω.
I The probability of E is defined as Pr [E ] = ∑ω∈E Pr [ω].
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Event: Example

Red
Green
Yellow
Blue

⌦

3/10
4/10
2/10
1/10

Pr[!]

Physical experiment Probability model

Ω = {Red, Green, Yellow, Blue}
Pr [Red] =

3
10

,Pr [Green] =
4

10
, etc.

E = {Red ,Green}⇒Pr [E ] =
3 + 4
10

=
3

10
+

4
10

= Pr [Red]+Pr [Green].
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Probability of exactly one heads in two coin flips?

Sample Space, Ω = {HH,HT ,TH,TT}.
Uniform probability space:
Pr [HH] = Pr [HT ] = Pr [TH] = Pr [TT ] = 1

4 .

Event, E , “exactly one heads”: {TH,HT}.

Pr [E ] = ∑
ω∈E

Pr [ω] =
|E |
|Ω| =

2
4

=
1
2
.
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Example: 20 coin tosses.
20 coin tosses

Sample space: Ω = set of 20 fair coin tosses.

Ω = {T ,H}20 ≡ {0,1}20; |Ω|= 220.

I What is more likely?
I ω1 := (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), or
I ω2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)?

Answer: Both are equally likely: Pr [ω1] = Pr [ω2] = 1
|Ω| .

I What is more likely?
(E1) Twenty Hs out of twenty, or
(E2) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.
Why? There are many sequences of 20 tosses with ten Hs;
only one with twenty Hs. ⇒ Pr [E1] = 1

|Ω| � Pr [E2] = |E2|
|Ω| .

|E2|=
(

20
10

)
= 184,756.
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Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.
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Event En = ‘n heads’; |En|=
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n

)
pn := Pr [En] = |En|

|Ω| =
(100

n )
2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100;

|Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)
pn := Pr [En] = |En|

|Ω| =
(100

n )
2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)
pn := Pr [En] = |En|

|Ω| =
(100

n )
2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)
pn := Pr [En] = |En|

|Ω| =
(100

n )
2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’;

|En|=
(100

n

)
pn := Pr [En] = |En|

|Ω| =
(100

n )
2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=

(100
n

)
pn := Pr [En] = |En|

|Ω| =
(100

n )
2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)

pn := Pr [En] = |En|
|Ω| =

(100
n )

2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)
pn := Pr [En] =

|En|
|Ω| =

(100
n )

2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)
pn := Pr [En] = |En|

|Ω| =

(100
n )

2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)
pn := Pr [En] = |En|

|Ω| =
(100

n )
2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)
pn := Pr [En] = |En|

|Ω| =
(100

n )
2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)
pn := Pr [En] = |En|

|Ω| =
(100

n )
2100

Observe:

I Concentration around mean:

Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)
pn := Pr [En] = |En|

|Ω| =
(100

n )
2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)
pn := Pr [En] = |En|

|Ω| =
(100

n )
2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape:

Central Limit
Theorem.



Probability of n heads in 100 coin tosses.

Ω = {H,T}100; |Ω|= 2100.

n

pn

Event En = ‘n heads’; |En|=
(100

n

)
pn := Pr [En] = |En|

|Ω| =
(100

n )
2100

Observe:

I Concentration around mean:
Law of Large Numbers;

I Bell-shape: Central Limit
Theorem.



Roll a red and a blue die.



Roll a red and a blue die.



Exactly 50 heads in 100 coin tosses.

Sample space: Ω = set of 100 coin tosses

= {H,T}100.
|Ω|= 2×2×·· ·×2 = 2100.

Uniform probability space: Pr [ω] = 1
2100 .

Event E = “100 coin tosses with exactly 50 heads”
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|E |=
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Calculation.
Stirling formula (for large n):

n!≈
√

2πn
(n

e

)n
.

(
2n
n

)
≈
√

4πn(2n/e)2n

[
√

2πn(n/e)n]2
≈ 4n
√

πn
.

Pr [E ] =
|E |
|Ω| =

|E |
22n =

1√
πn

=
1√
50π
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Exactly 50 heads in 100 coin tosses.



Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., A∩B = /0, then

Pr [A∪B] = Pr [A] + Pr [B].

(b) If events A1, . . . ,An are pairwise disjoint,
i.e., Ak ∩Am = /0,∀k 6= m, then

Pr [A1∪·· ·∪An] = Pr [A1] + · · ·+ Pr [An].

Proof:

Obvious.
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Consequences of Additivity

Theorem

(a) Pr [A∪B] = Pr [A] + Pr [B]−Pr [A∩B];
(inclusion-exclusion property)

(b) Pr [A1∪·· ·∪An]≤ Pr [A1] + · · ·+ Pr [An];
(union bound)

(c) If A1, . . .AN are a partition of Ω, i.e.,
pairwise disjoint and ∪N

m=1Am = Ω, then

Pr [B] = Pr [B∩A1] + · · ·+ Pr [B∩AN ].

(law of total probability)

Proof:

(b) is obvious.

See next two slides for (a) and (c).
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Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Then,
Pr [B] = Pr [A1∩B] + · · ·+ Pr [AN ∩B].

Indeed, B is the union of the disjoint sets An∩B for n = 1, . . . ,N.
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Roll a Red and a Blue Die.

E1 = ‘Red die shows 6’;E2 = ‘Blue die shows 6’
E1∪E2 = ‘At least one die shows 6’

Pr [E1] =
6

36
,Pr [E2] =

6
36

,Pr [E1∪E2] =
11
36

.
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Conditional probability: example.

Two coin flips.

First flip is heads. Probability of two heads?
Ω = {HH,HT ,TH,TT}; Uniform probability space.
Event A = first flip is heads: A = {HH,HT}.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if the first flip is heads.
The probability of B given A is 1/2.
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A similar example.
Two coin flips.

At least one of the flips is heads.
→ Probability of two heads?

Ω = {HH,HT ,TH,TT}; uniform.
Event A = at least one flip is heads. A = {HH,HT ,TH}.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if at least one flip is heads.
The probability of B given A is 1/3.
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Another non-uniform example
Consider Ω = {1,2, . . . ,N} with Pr [n] = pn.

Let A = {3,4},B = {1,2,3}.

Pr [A|B] =
p3

p1 + p2 + p3
=

Pr [A∩B]

Pr [B]
.
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Conditional Probability.

Definition: The conditional probability of B given A is

Pr [B|A] =
Pr [A∩B]

Pr [A]

A B

A B
In A!
In B?

Must be in A∩B.

A∩B

Pr [B|A] = Pr [A∩B]
Pr [A] .
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More fun with conditional probability.

Toss a red and a blue die, sum is 4,

What is probability that red is 1?

Pr [B|A] = |B∩A|
|A| = 1

3 ; versus Pr [B] = 1/6.

B is more likely given A.
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Yet more fun with conditional probability.
Toss a red and a blue die, sum is 7,
what is probability that red is 1?

Pr [B|A] = |B∩A|
|A| = 1

6 ; versus Pr [B] = 1
6 .

Observing A does not change your mind about the likelihood of B.
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Emptiness..
Suppose I toss 3 balls into 3 bins.

A =“1st bin empty”; B =“2nd bin empty.” What is Pr [A|B]?

Pr [B] = Pr [{(a,b,c) | a,b,c ∈ {1,3}] = Pr [{1,3}3] = 8
27

Pr [A∩B] = Pr [(3,3,3)] = 1
27

Pr [A|B] = Pr [A∩B]
Pr [B] = (1/27)

(8/27) = 1/8; vs. Pr [A] = 8
27 .

A is less likely given B: If second bin is empty the first is more
likely to have balls in it.
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Gambler’s fallacy.

Flip a fair coin 51 times.

A = “first 50 flips are heads”
B = “the 51st is heads”
Pr [B|A] ?

A = {HH · · ·HT ,HH · · ·HH}
B∩A = {HH · · ·HH}
Uniform probability space.

Pr [B|A] = |B∩A|
|A| = 1

2 .

Same as Pr [B].

The likelihood of 51st heads does not depend on the previous flips.
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Product Rule

Recall the definition:

Pr [B|A] =
Pr [A∩B]

Pr [A]
.

Hence,
Pr [A∩B] = Pr [A]Pr [B|A].

Consequently,

Pr [A∩B∩C] = Pr [(A∩B)∩C]

= Pr [A∩B]Pr [C|A∩B]

= Pr [A]Pr [B|A]Pr [C|A∩B].
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Correlation

An example.

Random experiment: Pick a person at random.
Event A: the person has lung cancer.
Event B: the person is a heavy smoker.

Fact:
Pr [A|B] = 1.17×Pr [A].

Conclusion:

I Smoking increases the probability of lung cancer by 17%.
I Smoking causes lung cancer.
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A second look.

Note that

Pr [A|B] = 1.17×Pr [A] ⇔ Pr [A∩B]

Pr [B]
= 1.17×Pr [A]

⇔ Pr [A∩B] = 1.17×Pr [A]Pr [B]

⇔ Pr [B|A] = 1.17×Pr [B].

Conclusion:

I Lung cancer increases the probability of smoking by 17%.
I Lung cancer causes smoking. Really?
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Causality vs. Correlation
Events A and B are positively correlated if

Pr [A∩B] > Pr [A]Pr [B].

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A
causes B or that B causes A.

Other examples:

I Tesla owners are more likely to be rich. That does not
mean that poor people should buy a Tesla to get rich.

I People who go to the opera are more likely to have a good
career. That does not mean that going to the opera will
improve your career.

I Rabbits eat more carrots and do not wear glasses. Are
carrots good for eyesight?
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Proving Causality

Proving causality is generally difficult.

One has to eliminate
external causes of correlation and be able to test the
cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

I A and B may be positively correlated because they have a
common cause. (E.g., being a rabbit.)

I If B precedes A, then B is more likely to be the cause.
(E.g., smoking.) However, they could have a common
cause that induces B before A. (E.g., smart, CS70, Tesla.)

More about such questions later. For fun, check “N. Taleb:
Fooled by randomness.”
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Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Then,
Pr [B] = Pr [A1∩B] + · · ·+ Pr [AN ∩B].

Indeed, B is the union of the disjoint sets An∩B for n = 1, . . . ,N.
Thus,

Pr [B] = Pr [A1]Pr [B|A1] + · · ·+ Pr [AN ]Pr [B|AN ].
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Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr [H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = ‘coin is fair’,B = ‘outcome is heads’

We want to calculate P[A|B].

We know P[B|A] = 1/2,P[B|Ā] = 0.6,Pr [A] = 1/2 = Pr [Ā]

Now,

Pr [B] = Pr [A∩B] + Pr [Ā∩B] = Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]

= (1/2)(1/2) + (1/2)0.6 = 0.55.

Thus,

Pr [A|B] =
Pr [A]Pr [B|A]

Pr [B]
=

(1/2)(1/2)

(1/2)(1/2) + (1/2)0.6
≈ 0.45.
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= (1/2)(1/2) + (1/2)0.6 = 0.55.

Thus,

Pr [A|B] =
Pr [A]Pr [B|A]

Pr [B]
=

(1/2)(1/2)

(1/2)(1/2) + (1/2)0.6
≈ 0.45.



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr [H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = ‘coin is fair’,

B = ‘outcome is heads’

We want to calculate P[A|B].

We know P[B|A] = 1/2,P[B|Ā] = 0.6,Pr [A] = 1/2 = Pr [Ā]
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Now,
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= (1/2)(1/2) + (1/2)0.6 = 0.55.

Thus,

Pr [A|B] =
Pr [A]Pr [B|A]

Pr [B]
=

(1/2)(1/2)

(1/2)(1/2) + (1/2)0.6
≈ 0.45.



Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr [H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = ‘coin is fair’,B = ‘outcome is heads’

We want to calculate P[A|B].

We know P[B|A] = 1/2,P[B|Ā] = 0.6,Pr [A] =
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Now,
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Is you coin loaded?
A picture:

Imagine 100 situations, among which
m := 100(1/2)(1/2) are such that A and B occur and
n := 100(1/2)(0.6) are such that Ā and B occur.

Thus, among the m + n situations where B occurred, there are
m where A occurred.

Hence,

Pr [A|B] =
m

m + n
=

(1/2)(1/2)

(1/2)(1/2) + (1/2)0.6
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Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

I When rolling two dice, A = sum is 7 and B = red die is 1
are independent;

I When rolling two dice, A = sum is 3 and B = red die is 1
are not independent;

I When flipping coins, A = coin 1 yields heads and B = coin
2 yields tails are independent;

I When throwing 3 balls into 3 bins, A = bin 1 is empty and
B = bin 2 is empty are not independent;
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Independence and conditional probability

Fact: Two events A and B are independent if and only if

Pr [A|B] = Pr [A].

Indeed: Pr [A|B] = Pr [A∩B]
Pr [B] , so that

Pr [A|B] = Pr [A]⇔ Pr [A∩B]

Pr [B]
= Pr [A]⇔ Pr [A∩B] = Pr [A]Pr [B].
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Bayes Rule
Another picture: We imagine that there are N possible causes
A1, . . . ,AN .

Imagine 100 situations, among which 100pnqn are such that An
and B occur, for n = 1, . . . ,N.
Thus, among the 100∑m pmqm situations where B occurred,
there are 100pnqn where An occurred.

Hence,
Pr [An|B] =

pnqn

∑m pmqm
.
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Why do you have a fever?

Using Bayes’ rule, we find

Pr [Flu|High Fever] =
0.15×0.80

0.15×0.80+10−8×1+0.85×0.1
≈ 0.58

Pr [Ebola|High Fever] =
10−8×1

0.15×0.80+10−8×1+0.85×0.1
≈ 5×10−8

Pr [Other|High Fever] =
0.85×0.1

0.15×0.80+10−8×1+0.85×0.1
≈ 0.42

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a
Posteriori (MAP) cause of the high fever.
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Bayes’ Rule Operations

Bayes’ Rule is the canonical example of how information
changes our opinions.
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Thomas Bayes

Source: Wikipedia.



Thomas Bayes

A Bayesian picture of Thomas Bayes.



Testing for disease.

Let’s watch TV!!

Random Experiment: Pick a random male.
Outcomes: (test ,disease)
A - prostate cancer.
B - positive PSA test.

I Pr [A] = 0.0016, (.16 % of the male population is affected.)
I Pr [B|A] = 0.80 (80% chance of positive test with disease.)
I Pr [B|A] = 0.10 (10% chance of positive test without

disease.)

From http://www.cpcn.org/01 psa tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Pr [A|B]???
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Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80 + 0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.
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Summary

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

I Conditional Probability:

Pr [A|B] = Pr [A∩B]
Pr [B]

I Independence: Pr [A∩B] = Pr [A]Pr [B].
I Bayes’ Rule:

Pr [An|B] =
Pr [An]Pr [B|An]

∑m Pr [Am]Pr [B|Am]
.

Pr [An|B] = posterior probability;Pr [An] = prior probability .

I All these are possible:
Pr [A|B] < Pr [A];Pr [A|B] > Pr [A];Pr [A|B] = Pr [A].
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