CS70: Jean Walrand: Lecture 17.

Bayes' Rule, Mutual Independence, Collisions and Collecting

1. Conditional Probability
2. Independence
3. Bayes' Rule
4. Balls and Bins
5. Coupons

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are independent if $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated. $(\operatorname{Pr}[A \mid B]=1>\operatorname{Pr}[A])$
- Note: $A \cap B=\emptyset \Rightarrow A$ and B are negatively correlated. $(\operatorname{Pr}[A \mid B]=0<\operatorname{Pr}[A])$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then
$\operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M$
$\operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ; \operatorname{Pr}\left[A_{m} \cap B\right]=p_{m} q_{m}$
$\operatorname{Pr}[B]=p_{1} q_{1}+\cdots p_{M} q_{M}$
$\operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots p_{M} q_{M}}=$ fraction of B inside A_{m}.

Conditional Probability: Pictures
Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.
$\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2}$. Note: $\operatorname{Pr}[B] \in\left(b_{2}, b_{1}\right)$.
- Right: A and B are negatively correlated $\operatorname{Pr}[B \mid A]=b_{1}<\operatorname{Pr}[B \mid \bar{A}]=b_{2}$. Note: $\operatorname{Pr}[B] \in\left(b_{1}, b_{2}\right)$.

Bayes Rule

Another picture:

$$
\begin{array}{cc}
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{p_{n} q_{n}}{\sum_{m} p_{m} q_{m}}
\end{array}
$$

Why do you have a fever?

Using Bayes' rule, we find

$$
\begin{aligned}
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }] & =\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58 \\
\operatorname{Pr}[\text { Ebola } \mid \text { High Fever }] & =\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8}
\end{aligned}
$$

$$
\operatorname{Pr}[\text { Other } \mid \text { High Fever }]=\frac{0.85 \times 0.1}{015 \times 0.80+10^{-8} \times 1}
$$

The values $0.58,5 \times 10^{-8}, 0.42$ are the posterior probabilities.

Bayes' Rule Operations

Bayes' Rule is the canonical example of how information changes our opinions.

Why do you have a fever?
Our "Bayes' Square" picture:

Note that even though $\operatorname{Pr}[$ Fever \mid Ebola $]=1$, one has
$\operatorname{Pr}[$ Ebola|Fever $] \approx 0$
This example shows the importance of the prior probabilities.

Why do you have a fever?
We found
$\operatorname{Pr}[$ Flu \mid High Fever $] \approx 0.58$,
$\operatorname{Pr}[$ Ebola|High Fever $] \approx 5 \times 10^{-8}$,
$\operatorname{Pr}[$ Other \mid High Fever $] \approx 0.42$
One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.
'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability. Recall that

$$
p_{m}=\operatorname{Pr}\left[A_{m}\right], q_{m}=\operatorname{Pr}\left[B \mid A_{m}\right], \operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots+p_{M} q_{M}}
$$

Thus,

- MAP $=$ value of m that maximizes $p_{m} q_{m}$.
- MLE $=$ value of m that maximizes q_{m}.

Thomas Bayes

Thomas Bayes?

A Bayesian picture of Thomas Bayes.

Independence Recall
A and B are independent
$\quad \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$
$\quad \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$.

Consider the example below:

$\left(A_{2}, B\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid B\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{2}, \bar{B}\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid \bar{B}\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$
$\left(A_{1}, B\right)$ are not independent: $\operatorname{Pr}\left[A_{1} \mid B\right]=\frac{0.5}{0.5}=0.2 \neq \operatorname{Pr}\left[A_{1}\right]=0.25$
Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all } K \subseteq\{1, \ldots, 5\} .
$$

(b) More generally, the events $\left\{A_{j}, j \in J\right\}$ are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{K}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all finite } K \subseteq J
$$

Example: Flip a fair coin forever. Let $A_{n}=$ 'coin n is H.' Then the events A_{n} are mutually independent.

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$ '
- $B=$ 'second coin is $\mathrm{H}^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$

A, C are independent; B, C are independent;
$A \cap B, C$ are not independent. $(\operatorname{Pr}[A \cap B \cap C]=0 \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.
If A did not say anything about C and B did not say anything about C, then $A \cap B$ would not say anything about C.

Mutual Independence

Theorem

(a) If the events $\left\{A_{j}, j \in J\right\}$ are mutually independent and if K_{1} and K_{2} are disjoint finite subsets of J, then

$$
\cap_{k \in K_{1}} A_{k} \text { and } \cap_{k \in K_{2}} A_{k} \text { are independent. }
$$

(b) More generally, if the K_{n} are pairwise disjoint finite subsets of J, then the events

$$
\cap_{k \in K_{n}} A_{k} \text { are mutually independent. }
$$

(c) Also, the same is true if we replace some of the A_{k} by \bar{A}_{k}. Proof:
See Notes 25, 2.7

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.
Then,
A_{m}, A_{n} are independent for all $m \neq n$.
Also,
A_{1} and $A_{3} \cap A_{5}$ are independent.
Indeed,
$\operatorname{Pr}\left[A_{1} \cap\left(A_{3} \cap A_{5}\right)\right]=\frac{1}{8}=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{3} \cap A_{5}\right]$
Similarly,
$A_{1} \cap A_{2}$ and $A_{3} \cap A_{4} \cap A_{5}$ are independent.
This leads to a definition

Balls in bins

One throws m balls into $n>m$ bins.

Balls in bins

One throws m balls into $n>m$ bins.

Theorem:
$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n

The Calculation

$A_{i}=$ no collision when i th ball is placed in a bin
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.
Product rule:
$\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{m}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{m} \mid A_{1} \cap \cdots \cap A_{m-1}\right]$

$$
\Rightarrow \operatorname{Pr}[\text { no collision }]=\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) .
$$

Hence

$$
\begin{aligned}
\ln (\operatorname{Pr}[\text { no collision }]) & =\sum_{k=1}^{m-1} \ln \left(1-\frac{k}{n}\right) \approx \sum_{k=1}^{m-1}\left(-\frac{k}{n}\right)^{(*)} \\
& =-\frac{1}{n} \frac{m(m-1)^{(*)}}{2} \approx-\frac{m^{2}}{2 n}
\end{aligned}
$$

(*) We used $\ln (1-\varepsilon) \approx-\varepsilon$ for $|\varepsilon| \ll 1$.
(ث) $1+2+\cdots+m-1=(m-1) m / 2$.

Balls in bins

Theorem:
$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

Approximation

$\exp \{-x\}=1-x+\frac{1}{2!} x^{2}+\cdots \approx 1-x$, for $|x| \ll 1$.
Hence, $-x \approx \ln (1-x)$ for $|x| \ll 1$.

Balls in bins

Theorem

$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

In particular, $\operatorname{Pr}[$ no collision $] \approx 1 / 2$ for $m^{2} /(2 n) \approx \ln (2)$, i.e.,

$$
m \approx \sqrt{2 \ln (2) n} \approx 1.2 \sqrt{n}
$$

E.g., $1.2 \sqrt{20} \approx 5.4$.

Roughly, $\operatorname{Pr}[$ collision $] \approx 1 / 2$ for $m=\sqrt{n} .\left(e^{-0.5} \approx 0.6\right.$.

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays?

With $n=365$, one finds
$\operatorname{Pr}[$ collision $] \approx 1 / 2$ if $m \approx 1.2 \sqrt{365} \approx 23$.
If $m=60$, we find that
$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}=\exp \left\{-\frac{60^{2}}{2 \times 365}\right\} \approx 0.007$.

If $m=366$, then $\operatorname{Pr}[$ no collision $]=0$. (No approximation here!)

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.

Proof:

Let $n=2^{b}$ be the number of checksums
We know $\operatorname{Pr}[$ no collision $] \approx \exp \left\{-m^{2} /(2 n)\right\} \approx 1-m^{2} /(2 n)$. Hence,

$$
\begin{aligned}
& \operatorname{Pr}[\text { no collision }] \approx 1-10^{-3} \Leftrightarrow m^{2} /(2 n) \approx 10^{-3} \\
& \quad \Leftrightarrow 2 n \approx m^{2} 10^{3} \Leftrightarrow 2^{b+1} \approx m^{2} 2^{10} \\
& \quad \Leftrightarrow b+1 \approx 10+2 \log _{2}(m) \approx 10+2.9 \ln (m)
\end{aligned}
$$

Note: $\log _{2}(x)=\log _{2}(e) \ln (x) \approx 1.44 \ln (x)$.

Collect all cards?

Experiment: Choose m cards at random with replacement
Events: $E_{k}=$ 'fail to get player k ' , for $\mathrm{k}=1, \ldots, \mathrm{n}$
Probability of failing to get at least one of these n players:

$$
p:=\operatorname{Pr}\left[E_{1} \cup E_{2} \cdots \cup E_{n}\right]
$$

How does one estimate p ? Union Bound:

$$
p=\operatorname{Pr}\left[E_{1} \cup E_{2} \cdots \cup E_{n}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right] \cdots \operatorname{Pr}\left[E_{n}\right] .
$$

$$
\operatorname{Pr}\left[E_{k}\right] \approx e^{-\frac{m}{n}}, k=1, \ldots, n
$$

Plug in and get

$$
p \leq n e^{-\frac{m}{n}}
$$

Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)
One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) $\operatorname{Pr}[$ miss one specific item $] \approx e^{-\frac{m}{n}}$
(b) $\operatorname{Pr}[$ miss any one of the items $] \leq n e^{-\frac{m}{n}}$.

Collect all cards?

Thus,
$\operatorname{Pr}[$ missing at least one card $] \leq n e^{-\frac{m}{n}}$.
Hence,
$\operatorname{Pr}[$ missing at least one card $] \leq p$ when $m \geq n \ln \left(\frac{n}{p}\right)$.

To get $p=1 / 2$, set $m=n \ln (2 n)$.
E.g., $n=10^{2} \Rightarrow m=530 ; n=10^{3} \Rightarrow m=7600$.

Coupon Collector Problem: Analysis

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'
Fail the first time: $\left(1-\frac{1}{n}\right)$
Fail the second time: $\left(1-\frac{1}{n}\right)$
And so on ... for m times. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m}\right] & =\left(1-\frac{1}{n}\right) \times \cdots \times\left(1-\frac{1}{n}\right) \\
& =\left(1-\frac{1}{n}\right)^{m} \\
\operatorname{In}\left(\operatorname{Pr}\left[A_{m}\right]\right) & =m \ln \left(1-\frac{1}{n}\right) \approx m \times\left(-\frac{1}{n}\right) \\
\operatorname{Pr}\left[A_{m}\right] & \approx \exp \left\{-\frac{m}{n}\right\} .
\end{aligned}
$$

For $p_{m}=\frac{1}{2}$, we need around $n \ln 2 \approx 0.69 n$ boxes

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$
- Product Rule:
$\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right]$.
- Balls in bins: m balls into $n>m$ bins.

$$
\operatorname{Pr}[\text { no collisions }] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}
$$

- Coupon Collection: n items. Buy m cereal boxes. $\operatorname{Pr}[$ miss one specific item $] \approx e^{-\frac{m}{n}} ; \operatorname{Pr}[$ miss any one of the items $] \leq n e^{-\frac{m}{n}}$ Key Mathematical Fact: $\ln (1-\varepsilon) \approx-\varepsilon$

