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Conditional Probability: Review

Recall:

I Pr [A|B] = Pr [A∩B]
Pr [B] .

I Hence, Pr [A∩B] = Pr [B]Pr [A|B] = Pr [A]Pr [B|A].

I A and B are positively correlated if Pr [A|B] > Pr [A],

i.e., if Pr [A∩B] > Pr [A]Pr [B].

I A and B are negatively correlated if Pr [A|B] < Pr [A],

i.e., if Pr [A∩B] < Pr [A]Pr [B].

I A and B are independent if Pr [A|B] = Pr [A],

i.e., if Pr [A∩B] = Pr [A]Pr [B].

I Note: B ⊂ A⇒ A and B are positively correlated.
(Pr [A|B] = 1 > Pr [A])

I Note: A∩B = /0⇒ A and B are negatively correlated.
(Pr [A|B] = 0 < Pr [A])
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Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square
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I Left: A and B are independent. Pr [B] = b;Pr [B|A] = b.

I Middle: A and B are positively correlated.
Pr [B|A] = b1 > Pr [B|Ā] = b2. Note: Pr [B] ∈ (b2,b1).

I Right: A and B are negatively correlated.
Pr [B|A] = b1 < Pr [B|Ā] = b2. Note: Pr [B] ∈ (b1,b2).
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Pr [B|A] = b1 > Pr [B|Ā] = b2. Note: Pr [B] ∈ (b2,b1).

I Right: A and B are negatively correlated.
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Pr [B|A] = b1 > Pr [B|Ā] = b2. Note: Pr [B] ∈ (b2,b1).

I Right: A and B are negatively correlated.
Pr [B|A] = b1 < Pr [B|Ā] = b2. Note: Pr [B] ∈ (b1,b2).



Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

b0 1
0

1

A

B

0 1
0

1

A

B

0 1
0

1

A

B

b1b2 b1 b2

I Left: A and B are independent. Pr [B] = b;Pr [B|A] = b.

I Middle: A and B are positively correlated.
Pr [B|A] =
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Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

Pr [A] = 0.5;Pr [Ā] = 0.5
Pr [B|A] = 0.5;Pr [B|Ā] = 0.6;Pr [A∩B] = 0.5×0.5
Pr [B] = 0.5×0.5 + 0.5×0.6 = Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]

Pr [A|B] =
0.5×0.5

0.5×0.5 + 0.5×0.6
=

Pr [A]Pr [B|A]

Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]

≈ 0.46 = fraction of B that is inside A



Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

Pr [A] = 0.5;Pr [Ā] = 0.5
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≈ 0.46 = fraction of B that is inside A



Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

Pr [A] =

0.5;Pr [Ā] = 0.5
Pr [B|A] = 0.5;Pr [B|Ā] = 0.6;Pr [A∩B] = 0.5×0.5
Pr [B] = 0.5×0.5 + 0.5×0.6 = Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]
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Pr [A|B] =
0.5×0.5

0.5×0.5 + 0.5×0.6
=

Pr [A]Pr [B|A]

Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]
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Pr [A|B] =
0.5×0.5

0.5×0.5 + 0.5×0.6
=

Pr [A]Pr [B|A]

Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]

≈ 0.46 = fraction of B that is inside A



Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

Pr [A] = 0.5;Pr [Ā] = 0.5
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Pr [A|B] =
0.5×0.5

0.5×0.5 + 0.5×0.6
=

Pr [A]Pr [B|A]

Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]
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Bayes: General Case

Pick a point uniformly at random in the unit square. Then

Pr [Am] = pm,m = 1, . . . ,M
Pr [B|Am] = qm,m = 1, . . . ,M;Pr [Am ∩B] = pmqm

Pr [B] = p1q1 + · · ·pMqM

Pr [Am|B] =
pmqm

p1q1 + · · ·pMqM
= fraction of B inside Am.
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Why do you have a fever?

Using Bayes’ rule, we find

Pr [Flu|High Fever] =
0.15×0.80

0.15×0.80+10−8×1+0.85×0.1
≈ 0.58

Pr [Ebola|High Fever] =
10−8×1

0.15×0.80+10−8×1+0.85×0.1
≈ 5×10−8

Pr [Other|High Fever] =
0.85×0.1

0.15×0.80+10−8×1+0.85×0.1
≈ 0.42

The values 0.58,5×10−8,0.42 are the posterior probabilities.
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Why do you have a fever?

Our “Bayes’ Square” picture:

Flu

Other

Ebola

58% of Fever = Flu

42% of Fever = Other
⇡ 0% of Fever = Ebola

0.15

0.85

⇡ 0

0.80

0.10

1

Green = Fever

Note that even though Pr [Fever|Ebola] = 1, one has

Pr [Ebola|Fever]≈ 0.

This example shows the importance of the prior probabilities.
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Why do you have a fever?

We found

Pr [Flu|High Fever]≈ 0.58,

Pr [Ebola|High Fever]≈ 5×10−8,

Pr [Other|High Fever]≈ 0.42

One says that ‘Flu’ is the Most Likely a Posteriori (MAP) cause of the high
fever.
‘Ebola’ is the Maximum Likelihood Estimate (MLE) of the cause: it causes the
fever with the largest probability.
Recall that

pm = Pr [Am],qm = Pr [B|Am],Pr [Am|B] =
pmqm

p1q1 + · · ·+pMqM
.

Thus,

I MAP = value of m that maximizes pmqm.
I MLE = value of m that maximizes qm.
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Source: Wikipedia.



Thomas Bayes

A Bayesian picture of Thomas Bayes.



Independence
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A and B are independent

⇔ Pr [A∩B] = Pr [A]Pr [B]
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Pairwise Independence
Flip two fair coins. Let

I A = ‘first coin is H’ = {HT ,HH};
I B = ‘second coin is H’ = {TH,HH};
I C = ‘the two coins are different’ = {TH,HT}.

A,C are independent; B,C are independent;
A∩B,C are not independent. (Pr [A∩B∩C] = 0 6= Pr [A∩B]Pr [C].)

If A did not say anything about C and B did not say anything
about C, then A∩B would not say anything about C.
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Example 2

Flip a fair coin 5 times.

Let An = ‘coin n is H’, for n = 1, . . . ,5.

Then,
Am,An are independent for all m 6= n.

Also,
A1 and A3∩A5 are independent.

Indeed,

Pr [A1∩ (A3∩A5)] =
1
8

= Pr [A1]Pr [A3∩A5]

. Similarly,

A1∩A2 and A3∩A4∩A5 are independent.

This leads to a definition ....
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Mutual Independence

Definition Mutual Independence

(a) The events A1, . . . ,A5 are mutually independent if

Pr [∩k∈K Ak ] = Πk∈K Pr [Ak ], for all K ⊆ {1, . . . ,5}.

(b) More generally, the events {Aj , j ∈ J} are mutually
independent if

Pr [∩k∈K Ak ] = Πk∈K Pr [Ak ], for all finiteK ⊆ J.

Example: Flip a fair coin forever. Let An = ‘coin n is H.’ Then the
events An are mutually independent.
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Mutual Independence

Theorem

(a) If the events {Aj , j ∈ J} are mutually independent and if K1
and K2 are disjoint finite subsets of J, then

∩k∈K1Ak and ∩k∈K2 Ak are independent.

(b) More generally, if the Kn are pairwise disjoint finite subsets
of J, then the events

∩k∈KnAk are mutually independent.

(c) Also, the same is true if we replace some of the Ak by Āk .

Proof:
See Notes 25, 2.7.
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In particular, Pr [no collision]≈ 1/2 for m2/(2n)≈ ln(2), i.e.,

m ≈
√

2ln(2)n ≈ 1.2
√
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E.g., 1.2
√

20≈ 5.4.

Roughly, Pr [collision]≈ 1/2 for m =
√

n. (e−0.5 ≈ 0.6.)
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The Calculation.
Ai = no collision when i th ball is placed in a bin.

Pr [Ai |Ai−1∩·· ·∩A1] = (1− i−1
n ).

no collision = A1∩·· ·∩Am.

Product rule:
Pr [A1∩·· ·∩Am] = Pr [A1]Pr [A2|A1] · · ·Pr [Am|A1∩·· ·∩Am−1]

⇒ Pr [no collision] =

(
1− 1

n

)
· · ·
(

1−m−1
n

)
.

Hence,

ln(Pr [no collision]) =
m−1

∑
k=1

ln(1− k
n

)≈
m−1

∑
k=1

(−k
n

) (∗)

= −1
n
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Approximation

exp{−x}= 1−x +
1
2!

x2 + · · · ≈ 1−x , for |x | � 1.

Hence, −x ≈ ln(1−x) for |x | � 1.
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Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?

With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365≈ 23.

If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
} ≈ 0.007.

If m = 366, then Pr [no collision] = 0. (No approximation here!)
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Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for Pr [share a checksum]≤ 10−3?

Claim: b ≥ 2.9ln(m) + 9.

Proof:

Let n = 2b be the number of checksums.
We know Pr [no collision]≈ exp{−m2/(2n)} ≈ 1−m2/(2n).
Hence,

Pr [no collision]≈ 1−10−3⇔m2/(2n)≈ 10−3

⇔ 2n ≈m2103⇔ 2b+1 ≈m2210

⇔ b + 1≈ 10 + 2log2(m)≈ 10 + 2.9ln(m).

Note: log2(x) = log2(e) ln(x)≈ 1.44ln(x).
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Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) Pr [miss one specific item]≈ e−
m
n

(b) Pr [miss any one of the items]≤ ne−
m
n .
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Coupon Collector Problem: Analysis.

Event Am = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1− 1
n )

Fail the second time: (1− 1
n )

And so on ... for m times. Hence,

Pr [Am] = (1− 1
n

)×·· ·× (1− 1
n

)

= (1− 1
n

)m

ln(Pr [Am]) = m ln(1− 1
n

)≈m× (−1
n

)

Pr [Am] ≈ exp{−m
n
}.

For pm = 1
2 , we need around n ln2≈ 0.69n boxes.
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Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:

p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:

p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:

p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:

p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p?

Union Bound:

p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:

p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:

p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:

p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Thus,

Pr [missing at least one card]≤ ne−
m
n .

Hence,

Pr [missing at least one card]≤ p when m ≥ n ln(
n
p

).

To get p = 1/2, set m = n ln(2n) .

E.g., n = 102⇒m = 530;n = 103⇒m = 7600.
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Summary.

Bayes’ Rule, Mutual Independence, Collisions and Collecting

Main results:

I Bayes’ Rule: Pr [Am|B] = pmqm/(p1q1 + · · ·+ pMqM).

I Product Rule:
Pr [A1∩·· ·∩An] = Pr [A1]Pr [A2|A1] · · ·Pr [An|A1∩·· ·∩An−1].

I Balls in bins: m balls into n > m bins.

Pr [no collisions]≈ exp{−m2

2n
}

I Coupon Collection: n items. Buy m cereal boxes.

Pr [miss one specific item]≈e−
m
n ; Pr [miss any one of the items]≤ne−

m
n .

Key Mathematical Fact: ln(1− ε)≈−ε.
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