CS70: Jean Walrand: Lecture 17.

Bayes' Rule, Mutual Independence, Collisions and Collecting

CS70: Jean Walrand: Lecture 17.

Bayes' Rule, Mutual Independence, Collisions and Collecting

1. Conditional Probability
2. Independence
3. Bayes' Rule
4. Balls and Bins
5. Coupons

Conditional Probability: Review

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are independent if $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$,

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are independent if $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are independent if $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are independent if $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are independent if $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated. $(\operatorname{Pr}[A \mid B]=1>\operatorname{Pr}[A])$

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are independent if $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated. $(\operatorname{Pr}[A \mid B]=1>\operatorname{Pr}[A])$
- Note: $A \cap B=\emptyset \Rightarrow A$ and B are

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are independent if $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated. $(\operatorname{Pr}[A \mid B]=1>\operatorname{Pr}[A])$
- Note: $A \cap B=\emptyset \Rightarrow A$ and B are negatively correlated.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are independent if $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated. $(\operatorname{Pr}[A \mid B]=1>\operatorname{Pr}[A])$
- Note: $A \cap B=\emptyset \Rightarrow A$ and B are negatively correlated. $(\operatorname{Pr}[A \mid B]=0<\operatorname{Pr}[A])$

Conditional Probability: Pictures

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent.

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b$;

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated. $\operatorname{Pr}[B \mid A]=$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=
$$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} .
$$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{2}, b_{1}\right) .
$$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{2}, b_{1}\right) .
$$

- Right: A and B are

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{2}, b_{1}\right) .
$$

- Right: A and B are negatively correlated.

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{2}, b_{1}\right) .
$$

- Right: A and B are negatively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}<\operatorname{Pr}[B \mid \bar{A}]=b_{2} .
$$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{2}, b_{1}\right) .
$$

- Right: A and B are negatively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}<\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{1}, b_{2}\right)
$$

Bayes and Biased Coin

Bayes and Biased Coin

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\operatorname{Pr}[A]=
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\operatorname{Pr}[A]=0.5 ;
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ;
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ;
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}]
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& \operatorname{Pr}[A \mid B]=\frac{0.5 \times 0.5}{0.5 \times 0.5+0.5 \times 0.6}
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& \operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{0.5 \times 0.5+0.5}=\frac{\operatorname{Pr}}{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}]}
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& \operatorname{Pr}[A \mid B]=\frac{0.5 \times 0.5}{0.5 \times 0.5+0.5 \times 0.6}=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}]} \\
& \quad \approx 0.46
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& \operatorname{Pr}[A \mid B]=\frac{0.5 \times 0.5}{0.5 \times 0.5+0.5 \times 0.6}=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}]} \\
& \quad \approx 0.46=\text { fraction of } B \text { that is inside } A
\end{aligned}
$$

Bayes: General Case

Bayes: General Case

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M \\
& \operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ;
\end{aligned}
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M \\
& \operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ; \operatorname{Pr}\left[A_{m} \cap B\right]=
\end{aligned}
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M \\
& \operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ; \operatorname{Pr}\left[A_{m} \cap B\right]=p_{m} q_{m}
\end{aligned}
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M \\
& \operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ; \operatorname{Pr}\left[A_{m} \cap B\right]=p_{m} q_{m} \\
& \operatorname{Pr}[B]=p_{1} q_{1}+\cdots p_{M} q_{M}
\end{aligned}
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M \\
& \operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ; \operatorname{Pr}\left[A_{m} \cap B\right]=p_{m} q_{m} \\
& \operatorname{Pr}[B]=p_{1} q_{1}+\cdots p_{M} q_{M} \\
& \operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots p_{M} q_{M}}
\end{aligned}
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M \\
& \operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ; \operatorname{Pr}\left[A_{m} \cap B\right]=p_{m} q_{m} \\
& \operatorname{Pr}[B]=p_{1} q_{1}+\cdots p_{M} q_{M} \\
& \operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots p_{M} q_{M}}=\text { fraction of } B \text { inside } A_{m} .
\end{aligned}
$$

Bayes Rule

Another picture:

Bayes Rule

Another picture:

Bayes Rule

Another picture:

$$
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{p_{n} q_{n}}{\sum_{m} p_{m} q_{m}} .
$$

Why do you have a fever?

Why do you have a fever?

Using Bayes' rule, we find

Why do you have a fever?

Using Bayes' rule, we find

$$
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }]=\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58
$$

Why do you have a fever?

Using Bayes' rule, we find

$$
\begin{aligned}
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }] & =\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58 \\
\operatorname{Pr}[\text { Ebola|High Fever }] & =\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8}
\end{aligned}
$$

Why do you have a fever?

Using Bayes' rule, we find

$$
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }]=\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58
$$

$$
\operatorname{Pr}[\text { Ebola|High Fever }]=\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8}
$$

$$
\operatorname{Pr}[\text { Other } \mid \text { High Fever }]=\frac{0.85 \times 0.1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.42
$$

Why do you have a fever?

Using Bayes' rule, we find

$$
\begin{aligned}
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }] & =\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58 \\
\operatorname{Pr}[\text { Ebola } \mid \text { High Fever }] & =\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8} \\
\operatorname{Pr}[\text { Other } \mid \text { High Fever }] & =\frac{0.85 \times 0.1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.42
\end{aligned}
$$

The values $0.58,5 \times 10^{-8}, 0.42$ are the posterior probabilities.

Why do you have a fever?

Why do you have a fever?

Our "Bayes' Square" picture:

Why do you have a fever?

Our "Bayes' Square" picture:

Why do you have a fever?

Our "Bayes' Square" picture:

Note that even though $\operatorname{Pr}[$ Fever \mid Ebola $]=1$,

Why do you have a fever?

Our "Bayes' Square" picture:

Note that even though $\operatorname{Pr}[$ Fever \mid Ebola $]=1$, one has

$$
\operatorname{Pr}[\text { Ebola|Fever }] \approx 0 .
$$

Why do you have a fever?

Our "Bayes' Square" picture:

Note that even though $\operatorname{Pr}[$ Fever \mid Ebola $]=1$, one has

$$
\operatorname{Pr}[\text { Ebola|Fever }] \approx 0 .
$$

This example shows the importance of the prior probabilities.

Why do you have a fever?

We found

Why do you have a fever?

We found
$\operatorname{Pr}[$ Flu \mid High Fever $] \approx 0.58$,
$\operatorname{Pr}[$ Ebola|High Fever $] \approx 5 \times 10^{-8}$,
$\operatorname{Pr}[$ Other \mid High Fever $] \approx 0.42$

Why do you have a fever?

We found

$$
\begin{aligned}
& \operatorname{Pr}[\text { Flu } \mid \text { High Fever }] \approx 0.58, \\
& \operatorname{Pr}[\text { Ebola } \mid \text { High Fever }] \approx 5 \times 10^{-8}, \\
& \operatorname{Pr}[\text { Other } \mid \text { High Fever }] \approx 0.42
\end{aligned}
$$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

Why do you have a fever?

We found
$\operatorname{Pr}[$ Flu \mid High Fever $] \approx 0.58$,
$\operatorname{Pr}[$ Ebola \mid High Fever $] \approx 5 \times 10^{-8}$,
$\operatorname{Pr}[$ Other \mid High Fever $] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.
'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.

Why do you have a fever?

We found
$\operatorname{Pr}[$ Flu \mid High Fever $] \approx 0.58$,
$\operatorname{Pr}[$ Ebola \mid High Fever $] \approx 5 \times 10^{-8}$,
$\operatorname{Pr}[$ Other \mid High Fever $] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.
'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.
Recall that

$$
p_{m}=\operatorname{Pr}\left[A_{m}\right], q_{m}=\operatorname{Pr}\left[B \mid A_{m}\right], \operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots+p_{M} q_{M}}
$$

Why do you have a fever?

We found
$\operatorname{Pr}[$ Flu \mid High Fever $] \approx 0.58$,
$\operatorname{Pr}[$ Ebola \mid High Fever $] \approx 5 \times 10^{-8}$,
$\operatorname{Pr}[$ Other \mid High Fever $] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.
'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.
Recall that

$$
p_{m}=\operatorname{Pr}\left[A_{m}\right], q_{m}=\operatorname{Pr}\left[B \mid A_{m}\right], \operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots+p_{M} q_{M}}
$$

Thus,

- MAP $=$ value of m that maximizes $p_{m} q_{m}$.

Why do you have a fever?

We found
$\operatorname{Pr}[$ Flu \mid High Fever $] \approx 0.58$,
$\operatorname{Pr}[$ Ebola \mid High Fever $] \approx 5 \times 10^{-8}$,
$\operatorname{Pr}[$ Other \mid High Fever $] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.
'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.
Recall that

$$
p_{m}=\operatorname{Pr}\left[A_{m}\right], q_{m}=\operatorname{Pr}\left[B \mid A_{m}\right], \operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots+p_{M} q_{M}}
$$

Thus,

- MAP $=$ value of m that maximizes $p_{m} q_{m}$.
- MLE $=$ value of m that maximizes q_{m}.

Bayes' Rule Operations

Bayes' Rule Operations

Bayes' Rule Operations

Bayes' Rule is the canonical example of how information changes our opinions.

Thomas Bayes

Source: Wikipedia.

Thomas Bayes

A Bayesian picture of Thomas Bayes.

Independence

 Recall :
A and B are independent

Independence

 Recall :
A and B are independent

$$
\Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]
$$

Independence

 Recall :A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Independence

Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

Independence

Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent:

Independence

Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid B\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.

Independence

Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid B\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
(A_{2}, \bar{B}) are independent:

Independence
 Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid B\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{2}, \bar{B}\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid \bar{B}\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.

Independence
 Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid B\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{2}, \bar{B}\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid \bar{B}\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{1}, B\right)$ are not independent:

Independence
 Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid B\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{2}, \bar{B}\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid \bar{B}\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{1}, B\right)$ are not independent: $\operatorname{Pr}\left[A_{1} \mid B\right]=\frac{0.1}{0.5}=0.2 \neq \operatorname{Pr}\left[A_{1}\right]=0.25$.

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $H^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $H^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $H^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

A, C are independent;

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $H^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

A, C are independent; B, C are independent;

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $\mathrm{H}^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

A, C are independent; B, C are independent; $A \cap B, C$ are not independent.

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $\mathrm{H}^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

A, C are independent; B, C are independent; $A \cap B, C$ are not independent. $(\operatorname{Pr}[A \cap B \cap C]=0 \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $H^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

A, C are independent; B, C are independent;
$A \cap B, C$ are not independent. $(\operatorname{Pr}[A \cap B \cap C]=0 \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.)
If A did not say anything about C and B did not say anything about C, then $A \cap B$ would not say anything about C.

Example 2

Flip a fair coin 5 times.

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.
Then,
A_{m}, A_{n} are independent for all $m \neq n$.

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.
Then,

$$
A_{m}, A_{n} \text { are independent for all } m \neq n .
$$

Also,
A_{1} and $A_{3} \cap A_{5}$ are independent.

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.
Then,
A_{m}, A_{n} are independent for all $m \neq n$.
Also,
A_{1} and $A_{3} \cap A_{5}$ are independent.
Indeed,

$$
\operatorname{Pr}\left[A_{1} \cap\left(A_{3} \cap A_{5}\right)\right]=\frac{1}{8}=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{3} \cap A_{5}\right]
$$

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.
Then,
A_{m}, A_{n} are independent for all $m \neq n$.
Also,
A_{1} and $A_{3} \cap A_{5}$ are independent.
Indeed,

$$
\operatorname{Pr}\left[A_{1} \cap\left(A_{3} \cap A_{5}\right)\right]=\frac{1}{8}=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{3} \cap A_{5}\right]
$$

. Similarly,
$A_{1} \cap A_{2}$ and $A_{3} \cap A_{4} \cap A_{5}$ are independent.

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.
Then,
A_{m}, A_{n} are independent for all $m \neq n$.
Also,
A_{1} and $A_{3} \cap A_{5}$ are independent.
Indeed,

$$
\operatorname{Pr}\left[A_{1} \cap\left(A_{3} \cap A_{5}\right)\right]=\frac{1}{8}=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{3} \cap A_{5}\right]
$$

. Similarly,
$A_{1} \cap A_{2}$ and $A_{3} \cap A_{4} \cap A_{5}$ are independent.
This leads to a definition

Mutual Independence

Definition Mutual Independence

Mutual Independence

Definition Mutual Independence

(a) The events A_{1}, \ldots, A_{5} are mutually independent if

Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all } K \subseteq\{1, \ldots, 5\}
$$

Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all } K \subseteq\{1, \ldots, 5\}
$$

(b) More generally, the events $\left\{A_{j}, j \in J\right\}$ are mutually independent if

Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all } K \subseteq\{1, \ldots, 5\}
$$

(b) More generally, the events $\left\{A_{j}, j \in J\right\}$ are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all finite } K \subseteq J
$$

Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all } K \subseteq\{1, \ldots, 5\}
$$

(b) More generally, the events $\left\{A_{j}, j \in J\right\}$ are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all finite } K \subseteq J
$$

Example: Flip a fair coin forever. Let $A_{n}=$ 'coin n is H.' Then the events A_{n} are mutually independent.

Mutual Independence

Theorem

Mutual Independence

Theorem

(a) If the events $\left\{A_{j}, j \in J\right\}$ are mutually independent and if K_{1} and K_{2} are disjoint finite subsets of J, then

Mutual Independence

Theorem

(a) If the events $\left\{A_{j}, j \in J\right\}$ are mutually independent and if K_{1} and K_{2} are disjoint finite subsets of J, then
$\cap_{k \in K_{1}} A_{k}$ and $\cap_{k \in K_{2}} A_{k}$ are independent.

Mutual Independence

Theorem

(a) If the events $\left\{A_{j}, j \in J\right\}$ are mutually independent and if K_{1} and K_{2} are disjoint finite subsets of J, then

$$
\cap_{k \in K_{1}} A_{k} \text { and } \cap_{k \in K_{2}} A_{k} \text { are independent. }
$$

(b) More generally, if the K_{n} are pairwise disjoint finite subsets of J, then the events
$\cap_{k \in K_{n}} A_{k}$ are mutually independent.

Mutual Independence

Theorem

(a) If the events $\left\{A_{j}, j \in J\right\}$ are mutually independent and if K_{1} and K_{2} are disjoint finite subsets of J, then

$$
\cap_{k \in K_{1}} A_{k} \text { and } \cap_{k \in K_{2}} A_{k} \text { are independent. }
$$

(b) More generally, if the K_{n} are pairwise disjoint finite subsets of J, then the events
$\cap_{k \in K_{n}} A_{k}$ are mutually independent.
(c) Also, the same is true if we replace some of the A_{k} by \bar{A}_{k}.

Mutual Independence

Theorem

(a) If the events $\left\{A_{j}, j \in J\right\}$ are mutually independent and if K_{1} and K_{2} are disjoint finite subsets of J, then

$$
\cap_{k \in K_{1}} A_{k} \text { and } \cap_{k \in K_{2}} A_{k} \text { are independent. }
$$

(b) More generally, if the K_{n} are pairwise disjoint finite subsets of J, then the events

$$
\cap_{k \in K_{n}} A_{k} \text { are mutually independent. }
$$

(c) Also, the same is true if we replace some of the A_{k} by \bar{A}_{k}. Proof:
See Notes 25, 2.7.

Balls in bins

Balls in bins

One throws m balls into $n>m$ bins.

Balls in bins

One throws m balls into $n>m$ bins.

Balls in bins

One throws m balls into $n>m$ bins.

Balls in bins

One throws m balls into $n>m$ bins.

Theorem:

$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

Balls in bins

Theorem:

$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

Balls in bins

Theorem:

$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

Balls in bins

Theorem:
$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

Balls in bins

Theorem:
$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

In particular, $\operatorname{Pr}[$ no collision $] \approx 1 / 2$ for $m^{2} /(2 n) \approx \ln (2)$, i.e.,

$$
m \approx \sqrt{2 \ln (2) n} \approx 1.2 \sqrt{n}
$$

Balls in bins

Theorem:
$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

In particular, $\operatorname{Pr}[$ no collision $] \approx 1 / 2$ for $m^{2} /(2 n) \approx \ln (2)$, i.e.,

$$
m \approx \sqrt{2 \ln (2) n} \approx 1.2 \sqrt{n}
$$

E.g., $1.2 \sqrt{20} \approx 5.4$.

Balls in bins

Theorem:
$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

In particular, $\operatorname{Pr}[$ no collision $] \approx 1 / 2$ for $m^{2} /(2 n) \approx \ln (2)$, i.e.,

$$
m \approx \sqrt{2 \ln (2) n} \approx 1.2 \sqrt{n}
$$

E.g., 1.2 $\sqrt{20} \approx 5.4$.

Roughly, $\operatorname{Pr}[$ collision $] \approx 1 / 2$ for $m=\sqrt{n}$.

Balls in bins

Theorem:
$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

In particular, $\operatorname{Pr}[$ no collision $] \approx 1 / 2$ for $m^{2} /(2 n) \approx \ln (2)$, i.e.,

$$
m \approx \sqrt{2 \ln (2) n} \approx 1.2 \sqrt{n}
$$

E.g., $1.2 \sqrt{20} \approx 5.4$.

Roughly, $\operatorname{Pr}[$ collision $] \approx 1 / 2$ for $m=\sqrt{n} .\left(e^{-0.5} \approx 0.6.\right)$

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.

$$
\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right) .
$$

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.
Product rule:

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.
Product rule:
$\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{m}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{m} \mid A_{1} \cap \cdots \cap A_{m-1}\right]$

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.
Product rule:
$\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{m}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{m} \mid A_{1} \cap \cdots \cap A_{m-1}\right]$
$\Rightarrow \operatorname{Pr}[$ no collision $]=\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right)$.

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.
Product rule:

$$
\begin{array}{r}
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{m}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{m} \mid A_{1} \cap \cdots \cap A_{m-1}\right] \\
\quad \Rightarrow \operatorname{Pr}[\text { no collision }]=\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) .
\end{array}
$$

Hence,

$$
\ln (\operatorname{Pr}[\text { no collision }])=\sum_{k=1}^{m-1} \ln \left(1-\frac{k}{n}\right)
$$

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.
Product rule:

$$
\begin{array}{r}
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{m}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{m} \mid A_{1} \cap \cdots \cap A_{m-1}\right] \\
\quad \Rightarrow \operatorname{Pr}[\text { no collision }]=\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) .
\end{array}
$$

Hence,

$$
\ln (\operatorname{Pr}[\text { no collision }])=\sum_{k=1}^{m-1} \ln \left(1-\frac{k}{n}\right) \approx \sum_{k=1}^{m-1}\left(-\frac{k}{n}\right)^{(*)}
$$

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.
Product rule:

$$
\begin{array}{r}
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{m}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{m} \mid A_{1} \cap \cdots \cap A_{m-1}\right] \\
\quad \Rightarrow \operatorname{Pr}[\text { no collision }]=\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) .
\end{array}
$$

Hence,

$$
\begin{aligned}
\ln (\operatorname{Pr}[\text { no collision }]) & =\sum_{k=1}^{m-1} \ln \left(1-\frac{k}{n}\right) \approx \sum_{k=1}^{m-1}\left(-\frac{k}{n}\right)^{(*)} \\
& =-\frac{1}{n} \frac{m(m-1)^{(\dagger)}}{2} \approx
\end{aligned}
$$

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.
Product rule:

$$
\begin{array}{r}
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{m}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{m} \mid A_{1} \cap \cdots \cap A_{m-1}\right] \\
\quad \Rightarrow \operatorname{Pr}[\text { no collision }]=\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) .
\end{array}
$$

Hence,

$$
\begin{aligned}
\ln (\operatorname{Pr}[\text { no collision }]) & =\sum_{k=1}^{m-1} \ln \left(1-\frac{k}{n}\right) \approx \sum_{k=1}^{m-1}\left(-\frac{k}{n}\right)^{(*)} \\
& =-\frac{1}{n}{\frac{m(m-1)^{(\dagger)}}{2}}^{(\dagger)} \frac{m^{2}}{2 n}
\end{aligned}
$$

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.
Product rule:

$$
\begin{array}{r}
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{m}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{m} \mid A_{1} \cap \cdots \cap A_{m-1}\right] \\
\quad \Rightarrow \operatorname{Pr}[\text { no collision }]=\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) .
\end{array}
$$

Hence,

$$
\begin{aligned}
\ln (\operatorname{Pr}[\text { no collision }]) & =\sum_{k=1}^{m-1} \ln \left(1-\frac{k}{n}\right) \approx \sum_{k=1}^{m-1}\left(-\frac{k}{n}\right)^{(*)} \\
& =-\frac{1}{n} \frac{m(m-1)^{(\dagger)}}{2} \approx-\frac{m^{2}}{2 n}
\end{aligned}
$$

${ }^{(*)}$ We used $\ln (1-\varepsilon) \approx-\varepsilon$ for $|\varepsilon| \ll 1$.

The Calculation.

$A_{i}=$ no collision when i th ball is placed in a bin.
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.
Product rule:

$$
\begin{array}{r}
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{m}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{m} \mid A_{1} \cap \cdots \cap A_{m-1}\right] \\
\quad \Rightarrow \operatorname{Pr}[\text { no collision }]=\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) .
\end{array}
$$

Hence,

$$
\begin{aligned}
\ln (\operatorname{Pr}[\text { no collision }]) & =\sum_{k=1}^{m-1} \ln \left(1-\frac{k}{n}\right) \approx \sum_{k=1}^{m-1}\left(-\frac{k}{n}\right)^{(*)} \\
& =-\frac{1}{n} \frac{m(m-1)^{(\dagger)}}{2} \approx-\frac{m^{2}}{2 n}
\end{aligned}
$$

${ }^{(*)}$ We used $\ln (1-\varepsilon) \approx-\varepsilon$ for $|\varepsilon| \ll 1$.
${ }^{(\dagger)} 1+2+\cdots+m-1=(m-1) m / 2$.

Approximation

Approximation

$$
\exp \{-x\}=1-x+\frac{1}{2!} x^{2}+\cdots \approx 1-x, \text { for }|x| \ll 1
$$

Approximation

$$
\exp \{-x\}=1-x+\frac{1}{2!} x^{2}+\cdots \approx 1-x, \text { for }|x| \ll 1
$$

Hence, $-x \approx \ln (1-x)$ for $|x| \ll 1$.

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays?

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With $n=365$, one finds

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With $n=365$, one finds
$\operatorname{Pr}[$ collision $] \approx 1 / 2$ if $m \approx 1.2 \sqrt{365} \approx 23$.

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With $n=365$, one finds
$\operatorname{Pr}[$ collision $] \approx 1 / 2$ if $m \approx 1.2 \sqrt{365} \approx 23$.
If $m=60$, we find that

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With $n=365$, one finds
$\operatorname{Pr}[$ collision $] \approx 1 / 2$ if $m \approx 1.2 \sqrt{365} \approx 23$.
If $m=60$, we find that

$$
\operatorname{Pr}[\text { no collision }] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}=\exp \left\{-\frac{60^{2}}{2 \times 365}\right\} \approx 0.007
$$

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With $n=365$, one finds
$\operatorname{Pr}[$ collision $] \approx 1 / 2$ if $m \approx 1.2 \sqrt{365} \approx 23$.
If $m=60$, we find that

$$
\operatorname{Pr}[\text { no collision }] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}=\exp \left\{-\frac{60^{2}}{2 \times 365}\right\} \approx 0.007
$$

If $m=366$, then $\operatorname{Pr}[$ no collision $]=$

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With $n=365$, one finds
$\operatorname{Pr}[$ collision $] \approx 1 / 2$ if $m \approx 1.2 \sqrt{365} \approx 23$.
If $m=60$, we find that

$$
\operatorname{Pr}[\text { no collision }] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}=\exp \left\{-\frac{60^{2}}{2 \times 365}\right\} \approx 0.007
$$

If $m=366$, then $\operatorname{Pr}[$ no collision $]=0$. (No approximation here!)

Checksums!

Checksums!

Consider a set of m files.

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.

Checksums!

Consider a set of m files.
Each file has a checksum of b bits. How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}\left[\right.$ share a checksum] $\leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.
Proof:

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.
Proof:
Let $n=2^{b}$ be the number of checksums.

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.
Proof:
Let $n=2^{b}$ be the number of checksums.
We know $\operatorname{Pr}[$ no collision $] \approx \exp \left\{-m^{2} /(2 n)\right\}$

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.
Proof:
Let $n=2^{b}$ be the number of checksums.
We know $\operatorname{Pr}[$ no collision $] \approx \exp \left\{-m^{2} /(2 n)\right\} \approx 1-m^{2} /(2 n)$.

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.
Proof:
Let $n=2^{b}$ be the number of checksums.
We know $\operatorname{Pr}[$ no collision $] \approx \exp \left\{-m^{2} /(2 n)\right\} \approx 1-m^{2} /(2 n)$. Hence,
$\operatorname{Pr}[$ no collision $] \approx 1-10^{-3}$

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.
Proof:
Let $n=2^{b}$ be the number of checksums.
We know $\operatorname{Pr}[$ no collision $] \approx \exp \left\{-m^{2} /(2 n)\right\} \approx 1-m^{2} /(2 n)$. Hence,

$$
\operatorname{Pr}[\text { no collision }] \approx 1-10^{-3} \Leftrightarrow m^{2} /(2 n) \approx 10^{-3}
$$

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.
Proof:
Let $n=2^{b}$ be the number of checksums.
We know $\operatorname{Pr}[$ no collision $] \approx \exp \left\{-m^{2} /(2 n)\right\} \approx 1-m^{2} /(2 n)$. Hence,

$$
\begin{aligned}
& \operatorname{Pr}[\text { no collision }] \approx 1-10^{-3} \Leftrightarrow m^{2} /(2 n) \approx 10^{-3} \\
& \quad \Leftrightarrow 2 n \approx m^{2} 10^{3}
\end{aligned}
$$

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.
Proof:
Let $n=2^{b}$ be the number of checksums.
We know $\operatorname{Pr}[$ no collision $] \approx \exp \left\{-m^{2} /(2 n)\right\} \approx 1-m^{2} /(2 n)$. Hence,
$\operatorname{Pr}[$ no collision $] \approx 1-10^{-3} \Leftrightarrow m^{2} /(2 n) \approx 10^{-3}$

$$
\Leftrightarrow 2 n \approx m^{2} 10^{3} \Leftrightarrow 2^{b+1} \approx m^{2} 2^{10}
$$

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.
Proof:
Let $n=2^{b}$ be the number of checksums.
We know $\operatorname{Pr}[$ no collision $] \approx \exp \left\{-m^{2} /(2 n)\right\} \approx 1-m^{2} /(2 n)$. Hence,
$\operatorname{Pr}[$ no collision $] \approx 1-10^{-3} \Leftrightarrow m^{2} /(2 n) \approx 10^{-3}$

$$
\begin{aligned}
& \Leftrightarrow 2 n \approx m^{2} 10^{3} \Leftrightarrow 2^{b+1} \approx m^{2} 2^{10} \\
& \Leftrightarrow b+1 \approx 10+2 \log _{2}(m)
\end{aligned}
$$

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.
Proof:
Let $n=2^{b}$ be the number of checksums.
We know $\operatorname{Pr}[$ no collision $] \approx \exp \left\{-m^{2} /(2 n)\right\} \approx 1-m^{2} /(2 n)$. Hence,
$\operatorname{Pr}[$ no collision $] \approx 1-10^{-3} \Leftrightarrow m^{2} /(2 n) \approx 10^{-3}$

$$
\begin{aligned}
& \Leftrightarrow 2 n \approx m^{2} 10^{3} \Leftrightarrow 2^{b+1} \approx m^{2} 2^{10} \\
& \Leftrightarrow b+1 \approx 10+2 \log _{2}(m) \approx 10+2.9 \ln (m) .
\end{aligned}
$$

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\operatorname{Pr}[$ share a checksum $] \leq 10^{-3}$?
Claim: $b \geq 2.9 \ln (m)+9$.
Proof:
Let $n=2^{b}$ be the number of checksums.
We know $\operatorname{Pr}[$ no collision $] \approx \exp \left\{-m^{2} /(2 n)\right\} \approx 1-m^{2} /(2 n)$. Hence,
$\operatorname{Pr}[$ no collision $] \approx 1-10^{-3} \Leftrightarrow m^{2} /(2 n) \approx 10^{-3}$

$$
\begin{aligned}
& \Leftrightarrow 2 n \approx m^{2} 10^{3} \Leftrightarrow 2^{b+1} \approx m^{2} 2^{10} \\
& \Leftrightarrow b+1 \approx 10+2 \log _{2}(m) \approx 10+2.9 \ln (m) .
\end{aligned}
$$

Note: $\log _{2}(x)=\log _{2}(e) \ln (x) \approx 1.44 \ln (x)$.

Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)
One random baseball card in each cereal box.

Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)
One random baseball card in each cereal box.

Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)
One random baseball card in each cereal box.

Theorem:

Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)
One random baseball card in each cereal box.

Theorem: If you buy m boxes,

Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)
One random baseball card in each cereal box.

Theorem: If you buy m boxes,
(a) $\operatorname{Pr}[$ miss one specific item $] \approx e^{-\frac{m}{n}}$

Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)
One random baseball card in each cereal box.

Theorem: If you buy m boxes,
(a) $\operatorname{Pr}[$ miss one specific item $] \approx e^{-\frac{m}{n}}$
(b) $\operatorname{Pr}[$ miss any one of the items $] \leq n e^{-\frac{m}{n}}$.

Coupon Collector Problem: Analysis.

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'

Coupon Collector Problem: Analysis.

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'
Fail the first time: $\left(1-\frac{1}{n}\right)$

Coupon Collector Problem: Analysis.

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'
Fail the first time: $\left(1-\frac{1}{n}\right)$
Fail the second time: $\left(1-\frac{1}{n}\right)$

Coupon Collector Problem: Analysis.

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'
Fail the first time: $\left(1-\frac{1}{n}\right)$
Fail the second time: $\left(1-\frac{1}{n}\right)$
And so on ...

Coupon Collector Problem: Analysis.

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'
Fail the first time: $\left(1-\frac{1}{n}\right)$
Fail the second time: $\left(1-\frac{1}{n}\right)$
And so on ... for m times. Hence,

Coupon Collector Problem: Analysis.

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'
Fail the first time: $\left(1-\frac{1}{n}\right)$
Fail the second time: $\left(1-\frac{1}{n}\right)$
And so on ... for m times. Hence,

$$
\operatorname{Pr}\left[A_{m}\right]=\left(1-\frac{1}{n}\right) \times \cdots \times\left(1-\frac{1}{n}\right)
$$

Coupon Collector Problem: Analysis.

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'
Fail the first time: $\left(1-\frac{1}{n}\right)$
Fail the second time: $\left(1-\frac{1}{n}\right)$
And so on ... for m times. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m}\right] & =\left(1-\frac{1}{n}\right) \times \cdots \times\left(1-\frac{1}{n}\right) \\
& =\left(1-\frac{1}{n}\right)^{m}
\end{aligned}
$$

Coupon Collector Problem: Analysis.

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'
Fail the first time: $\left(1-\frac{1}{n}\right)$
Fail the second time: $\left(1-\frac{1}{n}\right)$
And so on ... for m times. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m}\right] & =\left(1-\frac{1}{n}\right) \times \cdots \times\left(1-\frac{1}{n}\right) \\
& =\left(1-\frac{1}{n}\right)^{m} \\
\operatorname{In}\left(\operatorname{Pr}\left[A_{m}\right]\right) & =m \ln \left(1-\frac{1}{n}\right) \approx
\end{aligned}
$$

Coupon Collector Problem: Analysis.

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'
Fail the first time: $\left(1-\frac{1}{n}\right)$
Fail the second time: $\left(1-\frac{1}{n}\right)$
And so on ... for m times. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m}\right] & =\left(1-\frac{1}{n}\right) \times \cdots \times\left(1-\frac{1}{n}\right) \\
& =\left(1-\frac{1}{n}\right)^{m} \\
\operatorname{In}\left(\operatorname{Pr}\left[A_{m}\right]\right) & =m \ln \left(1-\frac{1}{n}\right) \approx m \times\left(-\frac{1}{n}\right)
\end{aligned}
$$

Coupon Collector Problem: Analysis.

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'
Fail the first time: $\left(1-\frac{1}{n}\right)$
Fail the second time: $\left(1-\frac{1}{n}\right)$
And so on ... for m times. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m}\right] & =\left(1-\frac{1}{n}\right) \times \cdots \times\left(1-\frac{1}{n}\right) \\
& =\left(1-\frac{1}{n}\right)^{m} \\
\operatorname{In}\left(\operatorname{Pr}\left[A_{m}\right]\right) & =m \ln \left(1-\frac{1}{n}\right) \approx m \times\left(-\frac{1}{n}\right) \\
\operatorname{Pr}\left[A_{m}\right] & \approx \exp \left\{-\frac{m}{n}\right\} .
\end{aligned}
$$

Coupon Collector Problem: Analysis.

Event $A_{m}=$ 'fail to get Brian Wilson in m cereal boxes'
Fail the first time: $\left(1-\frac{1}{n}\right)$
Fail the second time: $\left(1-\frac{1}{n}\right)$
And so on ... for m times. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m}\right] & =\left(1-\frac{1}{n}\right) \times \cdots \times\left(1-\frac{1}{n}\right) \\
& =\left(1-\frac{1}{n}\right)^{m} \\
\operatorname{In}\left(\operatorname{Pr}\left[A_{m}\right]\right) & =m \ln \left(1-\frac{1}{n}\right) \approx m \times\left(-\frac{1}{n}\right) \\
\operatorname{Pr}\left[A_{m}\right] & \approx \exp \left\{-\frac{m}{n}\right\} .
\end{aligned}
$$

For $p_{m}=\frac{1}{2}$, we need around $n \ln 2 \approx 0.69 n$ boxes.

Collect all cards?

Experiment: Choose m cards at random with replacement.

Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_{k}=$ 'fail to get player k ', for $k=1, \ldots, n$

Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_{k}=$ 'fail to get player k ', for $k=1, \ldots, n$

Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_{k}=$ 'fail to get player k ', for $\mathrm{k}=1, \ldots, \mathrm{n}$
Probability of failing to get at least one of these n players:

$$
p:=\operatorname{Pr}\left[E_{1} \cup E_{2} \cdots \cup E_{n}\right]
$$

Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_{k}=$ 'fail to get player k ', for $\mathrm{k}=1, \ldots, \mathrm{n}$
Probability of failing to get at least one of these n players:

$$
p:=\operatorname{Pr}\left[E_{1} \cup E_{2} \cdots \cup E_{n}\right]
$$

How does one estimate p ?

Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_{k}=$ 'fail to get player k ', for $\mathrm{k}=1, \ldots, \mathrm{n}$
Probability of failing to get at least one of these n players:

$$
p:=\operatorname{Pr}\left[E_{1} \cup E_{2} \cdots \cup E_{n}\right]
$$

How does one estimate p ? Union Bound:

$$
p=\operatorname{Pr}\left[E_{1} \cup E_{2} \cdots \cup E_{n}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right] \cdots \operatorname{Pr}\left[E_{n}\right] .
$$

Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_{k}=$ 'fail to get player k ', for $\mathrm{k}=1, \ldots, \mathrm{n}$
Probability of failing to get at least one of these n players:

$$
p:=\operatorname{Pr}\left[E_{1} \cup E_{2} \cdots \cup E_{n}\right]
$$

How does one estimate p ? Union Bound:

$$
\begin{gathered}
p=\operatorname{Pr}\left[E_{1} \cup E_{2} \cdots \cup E_{n}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right] \cdots \operatorname{Pr}\left[E_{n}\right] . \\
\operatorname{Pr}\left[E_{k}\right] \approx e^{-\frac{m}{n}}, k=1, \ldots, n .
\end{gathered}
$$

Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_{k}=$ 'fail to get player k ', for $\mathrm{k}=1, \ldots, \mathrm{n}$
Probability of failing to get at least one of these n players:

$$
p:=\operatorname{Pr}\left[E_{1} \cup E_{2} \cdots \cup E_{n}\right]
$$

How does one estimate p ? Union Bound:

$$
\begin{gathered}
p=\operatorname{Pr}\left[E_{1} \cup E_{2} \cdots \cup E_{n}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right] \cdots \operatorname{Pr}\left[E_{n}\right] . \\
\operatorname{Pr}\left[E_{k}\right] \approx e^{-\frac{m}{n}}, k=1, \ldots, n .
\end{gathered}
$$

Plug in and get

$$
p \leq n e^{-\frac{m}{n}} .
$$

Collect all cards?

Thus,
$\operatorname{Pr}[$ missing at least one card $] \leq n e^{-\frac{m}{n}}$.

Collect all cards?

Thus,

$$
\operatorname{Pr}[\text { missing at least one card }] \leq n e^{-\frac{m}{n}} .
$$

Hence,
$\operatorname{Pr}[$ missing at least one card $] \leq p$ when $m \geq n \ln \left(\frac{n}{p}\right)$.

Collect all cards?

Thus,

$$
\operatorname{Pr}[\text { missing at least one card }] \leq n e^{-\frac{m}{n}} .
$$

Hence,
$\operatorname{Pr}[$ missing at least one card $] \leq p$ when $m \geq n \ln \left(\frac{n}{p}\right)$.
To get $p=1 / 2$, set $m=n \ln (2 n)$.

Collect all cards?

Thus,

$$
\operatorname{Pr}[\text { missing at least one card }] \leq n e^{-\frac{m}{n}} \text {. }
$$

Hence,
$\operatorname{Pr}[$ missing at least one card $] \leq p$ when $m \geq n \ln \left(\frac{n}{p}\right)$.
To get $p=1 / 2$, set $m=n \ln (2 n)$.

$$
\text { E.g., } n=10^{2} \Rightarrow m=530 \text {; }
$$

Collect all cards?

Thus,

$$
\operatorname{Pr}[\text { missing at least one card }] \leq n e^{-\frac{m}{n}} \text {. }
$$

Hence,
$\operatorname{Pr}[$ missing at least one card $] \leq p$ when $m \geq n \ln \left(\frac{n}{p}\right)$.
To get $p=1 / 2$, set $m=n \ln (2 n)$.

$$
\text { E.g., } n=10^{2} \Rightarrow m=530 ; n=10^{3} \Rightarrow m=7600
$$

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$.

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$.
- Product Rule:

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$.
- Product Rule:

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

- Balls in bins: m balls into $n>m$ bins.

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$.
- Product Rule:

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

- Balls in bins: m balls into $n>m$ bins.

$$
\operatorname{Pr}[\text { no collisions }] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}
$$

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$.
- Product Rule:

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

- Balls in bins: m balls into $n>m$ bins.

$$
\operatorname{Pr}[\text { no collisions }] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}
$$

- Coupon Collection: n items. Buy m cereal boxes.

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$.
- Product Rule:

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

- Balls in bins: m balls into $n>m$ bins.

$$
\operatorname{Pr}[\text { no collisions }] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}
$$

- Coupon Collection: n items. Buy m cereal boxes.
$\operatorname{Pr}[$ miss one specific item $] \approx e^{-\frac{m}{n}} ;$

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$.
- Product Rule:

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

- Balls in bins: m balls into $n>m$ bins.

$$
\operatorname{Pr}[\text { no collisions }] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}
$$

- Coupon Collection: n items. Buy m cereal boxes.
$\operatorname{Pr}[$ miss one specific item $] \approx e^{-\frac{m}{n}} ; \operatorname{Pr}[$ miss any one of the items $] \leq n e^{-\frac{m}{n}}$.

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$.
- Product Rule:

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

- Balls in bins: m balls into $n>m$ bins.

$$
\operatorname{Pr}[\text { no collisions }] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}
$$

- Coupon Collection: n items. Buy m cereal boxes.
$\operatorname{Pr}[$ miss one specific item $] \approx e^{-\frac{m}{n}} ; \operatorname{Pr}[$ miss any one of the items $] \leq n e^{-\frac{m}{n}}$.
Key Mathematical Fact:

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$.
- Product Rule:

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

- Balls in bins: m balls into $n>m$ bins.

$$
\operatorname{Pr}[\text { no collisions }] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}
$$

- Coupon Collection: n items. Buy m cereal boxes.
$\operatorname{Pr}[$ miss one specific item $] \approx e^{-\frac{m}{n}} ; \operatorname{Pr}[$ miss any one of the items $] \leq n e^{-\frac{m}{n}}$.
Key Mathematical Fact: $\ln (1-\varepsilon) \approx-\varepsilon$.

