CS70: Jean Walrand: Lecture 19.

Random Variables: Expectation

1. Random Variables: Brief Review
2. Expectation
3. Important Distributions

Random Variables: Definitions

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X: \Omega \rightarrow \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \mathfrak{R}$, one defines

$$
X^{-1}(a):=\{\omega \in \Omega \mid X(\omega)=a\} .
$$

(b) For $A \subset \mathfrak{R}$, one defines

$$
X^{-1}(A):=\{\omega \in \Omega \mid X(\omega) \in A\} .
$$

(c) The probability that $X=a$ is defined as

$$
\operatorname{Pr}[X=a]=\operatorname{Pr}\left[X^{-1}(a)\right] .
$$

(d) The probability that $X \in A$ is defined as

$$
\operatorname{Pr}[X \in A]=\operatorname{Pr}\left[X^{-1}(A)\right] .
$$

(e) The distribution of a random variable X, is

$$
\{(a, \operatorname{Pr}[X=a]): a \in \mathscr{A}\}
$$

where \mathscr{A} is the range of X. That is, $\mathscr{A}=\{X(\omega), \omega \in \Omega\}$.

Random Variables: Definitions

Definition

Let X, Y, Z be random variables on Ω and $g: \Re^{3} \rightarrow \Re$ a function.
Then $g(X, Y, Z)$ is the random variable that assigns the value $g(X(\omega), Y(\omega), Z(\omega))$ to ω.
Thus, if $V=g(X, Y, Z)$, then $V(\omega):=g(X(\omega), Y(\omega), Z(\omega))$.

Examples:

- X^{k}
- $(X-a)^{2}$
- $a+b X+c X^{2}+(Y-Z)^{2}$
- $(X-Y)^{2}$
- $X \cos (2 \pi Y+Z)$.

Expectation - Definition

Definition: The expected value (or mean, or expectation) of a random variable X is

$$
E[X]=\sum_{a} a \times \operatorname{Pr}[X=a]
$$

Theorem:

$$
E[X]=\sum_{\omega} X(\omega) \times \operatorname{Pr}[\omega]
$$

An Example

Flip a fair coin three times.
$\Omega=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H, T T T\}$.
$X=$ number of H 's: $\{3,2,2,2,1,1,1,0\}$.
Thus,

$$
\sum_{\omega} X(\omega) \operatorname{Pr}[\omega]=\{3+2+2+2+1+1+1+0\} \times \frac{1}{8}
$$

Also,

$$
\sum_{a} a \times \operatorname{Pr}[X=a]=3 \times \frac{1}{8}+2 \times \frac{3}{8}+1 \times \frac{3}{8}+0 \times \frac{1}{8}
$$

Win or Lose.

Expected winnings for heads/tails games, with 3 flips?
Recall the definition of the random variable X :
$\{H H H, H H T, H T H, H T T$, THH, THT , TTH, TTT $\} \rightarrow\{3,1,1,-1,1,-1,-1,-3\}$.

$$
E[X]=3 \times \frac{1}{8}+1 \times \frac{3}{8}-1 \times \frac{3}{8}-3 \times \frac{1}{8}=0 .
$$

Can you ever win 0 ?
Apparently: expected value is not a common value, by any means.
The expected value of X is not the value that you expect!
It is the average value per experiment, if you perform the experiment many times:

$$
\frac{X_{1}+\cdots+X_{n}}{n}, \text { when } n \gg 1
$$

The fact that this average converges to $E[X]$ is a theorem: the Law of Large Numbers. (See later.)

Law of Large Numbers

An Illustration: Rolling Dice

average dice value against number of rolls

Indicators

Definition

Let A be an event. The random variable X defined by

$$
X(\omega)= \begin{cases}1, & \text { if } \omega \in A \\ 0, & \text { if } \omega \notin A\end{cases}
$$

is called the indicator of the event A.
Note that $\operatorname{Pr}[X=1]=\operatorname{Pr}[A]$ and $\operatorname{Pr}[X=0]=1-\operatorname{Pr}[A]$.
Hence,

$$
E[X]=1 \times \operatorname{Pr}[X=1]+0 \times \operatorname{Pr}[X=0]=\operatorname{Pr}[A]
$$

This random variable $X(\omega)$ is sometimes written as

$$
1\{\omega \in A\} \text { or } 1_{A}(\omega)
$$

Thus, we will write $X=1_{A}$.

Linearity of Expectation

Theorem: Expectation is linear

$$
E\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right]=a_{1} E\left[X_{1}\right]+\cdots+a_{n} E\left[X_{n}\right] .
$$

Proof:

$$
\begin{aligned}
E & {\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right] } \\
& =\sum_{\omega}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)(\omega) \operatorname{Pr}[\omega] \\
& =\sum_{\omega}\left(a_{1} X_{1}(\omega)+\cdots+a_{n} X_{n}(\omega)\right) \operatorname{Pr}[\omega] \\
& =a_{1} \sum_{\omega} X_{1}(\omega) \operatorname{Pr}[\omega]+\cdots+a_{n} \sum_{\omega} X_{n}(\omega) \operatorname{Pr}[\omega] \\
& =a_{1} E\left[X_{1}\right]+\cdots+a_{n} E\left[X_{n}\right] .
\end{aligned}
$$

Note: If we had defined $Y=a_{1} X_{1}+\cdots+a_{n} X_{n}$ has had tried to compute $E[Y]=\sum_{y} y \operatorname{Pr}[Y=y]$, we would have been in trouble!

Using Linearity - 1: Pips (dots) on dice

Roll a die n times.
$X_{m}=$ number of pips on roll m.
$X=X_{1}+\cdots+X_{n}=$ total number of pips in n rolls.

$$
\begin{aligned}
E[X] & =E\left[X_{1}+\cdots+X_{n}\right] \\
& =E\left[X_{1}\right]+\cdots+E\left[X_{n}\right], \text { by linearity } \\
& =n E\left[X_{1}\right], \text { because the } X_{m} \text { have the same distribution }
\end{aligned}
$$

Now,

$$
E\left[X_{1}\right]=1 \times \frac{1}{6}+\cdots+6 \times \frac{1}{6}=\frac{6 \times 7}{2} \times \frac{1}{6}=\frac{7}{2} .
$$

Hence,

$$
E[X]=\frac{7 n}{2} .
$$

Note: Computing $\sum_{x} x \operatorname{Pr}[X=x]$ directly is not easy!

Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.
$X=$ number of students that get their own assignment back.
$X=X_{1}+\cdots+X_{n}$ where
$X_{m}=1$ \{student m gets his/her own assignment back\}.
One has

$$
\begin{aligned}
E[X] & =E\left[X_{1}+\cdots+X_{n}\right] \\
& =E\left[X_{1}\right]+\cdots+E\left[X_{n}\right], \text { by linearity } \\
& =n E\left[X_{1}\right], \text { because all the } X_{m} \text { have the same distribution } \\
& =n \operatorname{Pr}\left[X_{1}=1\right], \text { because } X_{1} \text { is an indicator } \\
& =n(1 / n), \text { because student } 1 \text { is equally likely } \\
& =1 . \quad \text { to get any one of the } n \text { assignments }
\end{aligned}
$$

Note that linearity holds even though the X_{m} are not independent (whatever that means).
Note: What is $\operatorname{Pr}[X=m]$? Tricky

Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads Binomial Distibution: $\operatorname{Pr}[X=i]$, for each i.

$$
\begin{gathered}
\operatorname{Pr}[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i} . \\
E[X]=\sum_{i} i \times \operatorname{Pr}[X=i]=\sum_{i} i \times\binom{ n}{i} p^{i}(1-p)^{n-i} .
\end{gathered}
$$

Uh oh. ... Or... a better approach: Let

$$
X_{i}=\left\{\begin{array}{cc}
1 & \text { if } i \text { th flip is heads } \\
0 & \text { otherwise }
\end{array}\right.
$$

$E\left[X_{i}\right]=1 \times \operatorname{Pr}[$ "heads" $]+0 \times \operatorname{Pr}[$ "tails" $]=p$.
Moreover $X=X_{1}+\cdots X_{n}$ and
$E[X]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots E\left[X_{n}\right]=n \times E\left[X_{i}\right]=n p$.

Using Linearity - 4

Assume A and B are disjoint events. Then $1_{A \cup B}(\omega)=1_{A}(\omega)+1_{B}(\omega)$.
Taking expectation, we get

$$
\operatorname{Pr}[A \cup B]=E\left[1_{A \cup B}\right]=E\left[1_{A}+1_{B}\right]=E\left[1_{A}\right]+E\left[1_{B}\right]=\operatorname{Pr}[A]+\operatorname{Pr}[B] .
$$

In general, $1_{A \cup B}(\omega)=1_{A}(\omega)+1_{B}(\omega)-1_{A \cap B}(\omega)$.
Taking expectation, we get $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$.

Observe that if $Y(\omega)=b$ for all ω, then $E[Y]=b$.
Thus, $E[X+b]=E[X]+b$.

Calculating $E[g(X)]$

Let $Y=g(X)$. Assume that we know the distribution of X.
We want to calculate $E[Y]$.
Method 1: We calculate the distribution of Y :

$$
\operatorname{Pr}[Y=y]=\operatorname{Pr}\left[X \in g^{-1}(y)\right] \text { where } g^{-1}(x)=\{x \in \mathfrak{R}: g(x)=y\} .
$$

This is typically rather tedious!
Method 2: We use the following result.

Theorem:

Proof:

$$
E[g(X)]=\sum_{X} g(x) \operatorname{Pr}[X=x] .
$$

$$
\begin{aligned}
E[g(X)] & =\sum_{\omega} g(X(\omega)) \operatorname{Pr}[\omega]=\sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega)) \operatorname{Pr}[\omega] \\
& =\sum_{x} \sum_{\omega \in X^{-1}(x)} g(x) \operatorname{Pr}[\omega]=\sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} \operatorname{Pr}[\omega] \\
& =\sum_{x} g(x) \operatorname{Pr}[X=x] .
\end{aligned}
$$

An Example

Let X be uniform in $\{-2,-1,0,1,2,3\}$.
Let also $g(X)=X^{2}$. Then (method 2)

$$
\begin{aligned}
E[g(X)] & =\sum_{x=-2}^{3} x^{2} \frac{1}{6} \\
& =\{4+1+0+1+4+9\} \frac{1}{6}=\frac{19}{6} .
\end{aligned}
$$

Method 1 - We find the distribution of $Y=X^{2}$:

$$
Y= \begin{cases}4, & \text { w.p. } \frac{2}{6} \\ 1, & \text { w.p. } \frac{2}{6} \\ 0, & \text { w.p. } \frac{1}{6} \\ 9, & \text { w.p. } \frac{1}{6} .\end{cases}
$$

Thus,

$$
E[Y]=4 \frac{2}{6}+1 \frac{2}{6}+0 \frac{1}{6}+9 \frac{1}{6}=\frac{19}{6} .
$$

Calculating $E[g(X, Y, Z)]$

We have seen that $E[g(X)]=\sum_{x} g(x) \operatorname{Pr}[X=x]$.
Using a similar derivation, one can show that

$$
E[g(X, Y, Z)]=\sum_{x, y, z} g(x, y, z) \operatorname{Pr}[X=x, Y=y, Z=z]
$$

An Example. Let X, Y be as shown below:

$$
\begin{aligned}
E[\cos (2 \pi X+\pi Y)] & =0.1 \cos (0)+0.4 \cos (2 \pi)+0.2 \cos (\pi)+0.3 \cos (3 \pi) \\
& =0.1 \times 1+0.4 \times 1+0.2 \times(-1)+0.3 \times(-1)=0
\end{aligned}
$$

Best Guess: Least Squares

If you only know the distribution of X, it seems that $E[X]$ is a 'good guess' for X.
The following result makes that idea precise.

Theorem

The value of a that minimizes $E\left[(X-a)^{2}\right]$ is $a=E[X]$.

Proof 1:

$$
\begin{aligned}
E\left[(X-a)^{2}\right] & =E\left[(X-E[X]+E[X]-a)^{2}\right] \\
& =E\left[(X-E[X])^{2}+2(X-E[X])(E[X]-a)+(E[X]-a)^{2}\right] \\
& =E\left[(X-E[X])^{2}\right]+2(E[X]-a) E[X-E[X]]+(E[X]-a)^{2} \\
& =E\left[(X-E[X])^{2}\right]+0+(E[X]-a)^{2} \\
& \geq E\left[(X-E[X])^{2}\right] .
\end{aligned}
$$

Best Guess: Least Squares

If you only know the distribution of X, it seems that $E[X]$ is a 'good guess' for X.
The following result makes that idea precise.

Theorem

The value of a that minimizes $E\left[(X-a)^{2}\right]$ is $a=E[X]$.
Proof 2:
Let

$$
g(a):=\left[(X-a)^{2}\right]=E\left[X^{2}-2 a X+a^{2}\right]=E\left[X^{2}\right]-2 a E[X]+a^{2} .
$$

To find the minimizer of $g(a)$, we set to zero $\frac{d}{d a} g(a)$.
We get $0=\frac{d}{d a} g(a)=-2 E[X]+2 a$.
Hence, the minimizer is $a=E[X]$.

Best Guess: Least Absolute Deviation

Thus $E[X]$ minimizes $E\left[(X-a)^{2}\right]$. It must be noted that the measure of the 'quality of the approximation' matters. The following result illustrates that point.

Theorem

The value of a that minimizes $E[|X-a|]$ is the median of X.
The median v of X is any real number such that

$$
\operatorname{Pr}[X \leq v]=\operatorname{Pr}[X \geq v]
$$

Proof:
$g(a):=E[|X-a|]=\sum_{x \leq a}(a-x) \operatorname{Pr}[X=x]+\sum_{x \geq a}(x-a) \operatorname{Pr}[X=x]$.
Thus, if $0<\varepsilon \ll 1$,
$g(a+\varepsilon)=g(a)+\varepsilon \operatorname{Pr}[X \leq a]-\varepsilon \operatorname{Pr}[X \geq a]$.
Hence, changing a cannot reduce $g(a)$ only if $\operatorname{Pr}[X \leq a]=\operatorname{Pr}[X \geq a]$.

Best Guess: Illustration

Best Guess: Another Illustration

Center of Mass

The expected value has a center of mass interpretation:

Monotonicity

Definition

Let X, Y be two random variables on Ω. We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant a.
Facts
(a) If $X \geq 0$, then $E[X] \geq 0$.
(b) If $X \leq Y$, then $E[X] \leq E[Y]$.

Proof

(a) If $X \geq 0$, every value a of X is nonnegative. Hence,

$$
E[X]=\sum_{a} a \operatorname{Pr}[X=a] \geq 0
$$

(b) $X \leq Y \Rightarrow Y-X \geq 0 \Rightarrow E[Y]-E[X]=E[Y-X] \geq 0$.

Example:

$$
B=\cup_{m} A_{m} \Rightarrow 1_{B}(\omega) \leq \sum_{m} 1_{A_{m}}(\omega) \Rightarrow \operatorname{Pr}\left[\cup_{m} A_{m}\right] \leq \sum_{m} \operatorname{Pr}\left[A_{m}\right] .
$$

Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2, \ldots, 6\}$. We say that X is uniformly distributed in $\{1,2, \ldots, 6\}$.
More generally, we say that X is uniformly distributed in $\{1,2, \ldots, n\}$ if $\operatorname{Pr}[X=m]=1 / n$ for $m=1,2, \ldots, n$.
In that case,

$$
E[X]=\sum_{m=1}^{n} m \operatorname{Pr}[X=m]=\sum_{m=1}^{n} m \times \frac{1}{n}=\frac{1}{n} \frac{n(n+1)}{2}=\frac{n+1}{2}
$$

Geometric Distribution

Let's flip a coin with $\operatorname{Pr}[H]=p$ until we get H.

For instance:

$$
\begin{aligned}
& \omega_{1}=H, \text { or } \\
& \omega_{2}=T H, \text { or } \\
& \omega_{3}=T T H, \text { or } \\
& \omega_{n}=T T T T \cdots T H .
\end{aligned}
$$

Note that $\Omega=\left\{\omega_{n}, n=1,2, \ldots\right\}$.
Let X be the number of flips until the first H. Then, $X\left(\omega_{n}\right)=n$. Also,

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1
$$

Geometric Distribution

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1 .
$$

Geometric Distribution

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1 .
$$

Note that

$$
\sum_{n=1}^{\infty} \operatorname{Pr}\left[X_{n}\right]=\sum_{n=1}^{\infty}(1-p)^{n-1} p=p \sum_{n=1}^{\infty}(1-p)^{n-1}=p \sum_{n=0}^{\infty}(1-p)^{n} .
$$

Now, if $|a|<1$, then $S:=\sum_{n=0}^{\infty} a^{n}=\frac{1}{1-a}$. Indeed,

$$
\begin{aligned}
S & =1+a+a^{2}+a^{3}+\cdots \\
a S & =\quad a+a^{2}+a^{3}+a^{4}+\cdots \\
(1-a) S & =1+a-a+a^{2}-a^{2}+\cdots=1 .
\end{aligned}
$$

Hence,

$$
\sum_{n=1}^{\infty} \operatorname{Pr}\left[X_{n}\right]=p \frac{1}{1-(1-p)}=1 .
$$

Geometric Distribution: Expectation

$$
X={ }_{D} G(p), \text { i.e., } \operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1
$$

One has

$$
E[X]=\sum_{n=1}^{\infty} n \operatorname{Pr}[X=n]=\sum_{n=1}^{\infty} n(1-p)^{n-1} p
$$

Thus,

$$
\begin{array}{rlr}
E[X] & = & p+2(1-p) p+3(1-p)^{2} p+4(1-p)^{3} p+\cdots \\
(1-p) E[X] & = & (1-p) p+2(1-p)^{2} p+3(1-p)^{3} p+\cdots \\
p E[X] & =p+(1-p) p+(1-p)^{2} p+(1-p)^{3} p+\cdots
\end{array}
$$

by subtracting the previous two identities

$$
=\sum_{n=1}^{\infty} \operatorname{Pr}[X=n]=1
$$

Hence,

$$
E[X]=\frac{1}{p}
$$

Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$
\operatorname{Pr}[X>n]=\operatorname{Pr}[\text { first } n \text { flips are } T]=(1-p)^{n}
$$

Theorem

$$
\operatorname{Pr}[X>n+m \mid X>n]=\operatorname{Pr}[X>m], m, n \geq 0
$$

Proof:

$$
\begin{aligned}
\operatorname{Pr}[X>n+m \mid X>n] & =\frac{\operatorname{Pr}[X>n+m \text { and } X>n]}{\operatorname{Pr}[X>n]} \\
& =\frac{\operatorname{Pr}[X>n+m]}{\operatorname{Pr}[X>n]} \\
& =\frac{(1-p)^{n+m}}{(1-p)^{n}}=(1-p)^{m} \\
& =\operatorname{Pr}[X>m] .
\end{aligned}
$$

Geometric Distribution: Memoryless - Interpretation

$$
\operatorname{Pr}[X>n+m \mid X>n]=\operatorname{Pr}[X>m], m, n \geq 0 .
$$

$$
\operatorname{Pr}[X>\cap+M>P=\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]=\operatorname{Pr}[X>M]
$$

The coin is memoryless, therefore, so is X.

Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values $\{0,1,2, \ldots\}$, one has

$$
E[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] .
$$

[See later for a proof.]
If $X=G(p)$, then $\operatorname{Pr}[X \geq i]=\operatorname{Pr}[X>i-1]=(1-p)^{i-1}$.
Hence,

$$
E[X]=\sum_{i=1}^{\infty}(1-p)^{i-1}=\sum_{i=0}^{\infty}(1-p)^{i}=\frac{1}{1-(1-p)}=\frac{1}{p} .
$$

Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0,1,2, \ldots\}$, one has

Proof: One has

$$
E[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] .
$$

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{\infty} i \times \operatorname{Pr}[X=i] \\
& =\sum_{i=1}^{\infty} i\{\operatorname{Pr}[X \geq i]-\operatorname{Pr}[X \geq i+1]\} \\
& =\sum_{i=1}^{\infty}\{i \times \operatorname{Pr}[X \geq i]-i \times \operatorname{Pr}[X \geq i+1]\} \\
& =\sum_{i=1}^{\infty}\{i \times \operatorname{Pr}[X \geq i]-(i-1) \times \operatorname{Pr}[X \geq i]\} \\
& =\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i]
\end{aligned}
$$

Poisson

Experiment: flip a coin n times. The coin is such that $\operatorname{Pr}[H]=\lambda / n$.
Random Variable: X - number of heads. Thus, $X=B(n, \lambda / n)$.
Poisson Distribution is distribution of X "for large n."

Poisson

Experiment: flip a coin n times. The coin is such that $\operatorname{Pr}[H]=\lambda / n$.
Random Variable: X - number of heads. Thus, $X=B(n, \lambda / n)$.
Poisson Distribution is distribution of X "for large n."
We expect $X \ll n$. For $m \ll n$ one has

$$
\begin{aligned}
\operatorname{Pr}[X=m] & =\binom{n}{m} p^{m}(1-p)^{n-m}, \text { with } p=\lambda / n \\
& =\frac{n(n-1) \cdots(n-m+1)}{m!}\left(\frac{\lambda}{n}\right)^{m}\left(1-\frac{\lambda}{n}\right)^{n-m} \\
& =\frac{n(n-1) \cdots(n-m+1)}{n^{m}} \frac{\lambda^{m}}{m!}\left(1-\frac{\lambda}{n}\right)^{n-m} \\
& \approx(1) \frac{\lambda^{m}}{m!}\left(1-\frac{\lambda}{n}\right)^{n-m} \approx(2) \frac{\lambda^{m}}{m!}\left(1-\frac{\lambda}{n}\right)^{n} \approx \frac{\lambda^{m}}{m!} e^{-\lambda}
\end{aligned}
$$

For (1) we used $m \ll n$; for (2) we used $(1-a / n)^{n} \approx e^{-a}$.

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda>0$

$$
X=P(\lambda) \Leftrightarrow \operatorname{Pr}[X=m]=\frac{\lambda^{m}}{m!} e^{-\lambda}, m \geq 0
$$

Fact: $E[X]=\lambda$.
Proof:

$$
\begin{aligned}
E[X] & =\sum_{m=1}^{\infty} m \times \frac{\lambda^{m}}{m!} e^{-\lambda}=e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^{m}}{(m-1)!} \\
& =e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}=e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^{m}}{m!} \\
& =e^{-\lambda} \lambda e^{\lambda}=\lambda
\end{aligned}
$$

Simeon Poisson

The Poisson distribution is named after:
Siméon Poisson

Equal Time: B. Geometric

The geometric distribution is named after:

I could not find a picture of D. Binomial, sorry.

Summary

Random Variables

- A random variable X is a function $X: \Omega \rightarrow \Re$.
- $\operatorname{Pr}[X=a]:=\operatorname{Pr}\left[X^{-1}(a)\right]=\operatorname{Pr}[\{\omega \mid X(\omega)=a\}]$.
- $\operatorname{Pr}[X \in A]:=\operatorname{Pr}\left[X^{-1}(A)\right]$.
- The distribution of X is the list of possible values and their probability: $\{(a, \operatorname{Pr}[X=a]), a \in \mathscr{A}\}$.
- $g(X, Y, Z)$ assigns the value
- $E[X]:=\sum_{a} a \operatorname{Pr}[X=a]$.
- Expectation is Linear.
- $B(n, p), U[1: n], G(p), P(\lambda)$.

