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1. Random Variables: Brief Review
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Random Variables: Definitions
Definition
A random variable, X, for a random experiment with sample space Q
is a function X : Q — R.

Thus, X(-) assigns a real number X(w) to each o € Q.

Definitions
(a) For a e R, one defines

X Na)={oecQ|X(w)=al
(b) For A C R, one defines
X YA ={weQ|X(o)eA}.
(¢) The probability that X = a is defined as
Pr[X = a] = Pr[X~(a)].
(d) The probability that X € A is defined as
Pr[X € Al = Pr[X~"(A)].
(e) The distribution of a random variable X, is
{(a,Pr[X=al):ac &},
where & is the range of X. Thatis, & = {X(w),® € Q}.
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Random Variables: Definitions

Definition

Let X, Y, Z be random variables on Q and g : %% — % a function.
Then g(X,Y,Z) is the random variable that assigns the value

9 X(w),Y(w),Z(w)) to o.

Thus, if V=9(X,Y,2), then V(o) := g(X(), Y(0),Z(®)).
Examples:
» Xk
> (X —a)?
at+bX+cX?+(Y—-2)?
(X-Y)?
Xcos(2nY + 2).

v

v

v



Expectation - Definition

Definition: The expected value



Expectation - Definition

Definition: The expected value (or mean, or expectation)



Expectation - Definition

Definition: The expected value (or mean, or expectation) of a
random variable X is

EX]=) axPriX=a].



Expectation - Definition

Definition: The expected value (or mean, or expectation) of a
random variable X is

EX]=) axPriX=a].

Theorem:



Expectation - Definition

Definition: The expected value (or mean, or expectation) of a
random variable X is

EX]=) axPriX=a].

Theorem:

ElX] =Y X(w) x Pr{o)].
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Flip a fair coin three times.
Q= {HHH,HHT ,HTH, THH HTT, THT, TTH, TTT}.
X = number of H's: {3,2,2,2,1,1,1,0}.
Thus,
1
Y X(w)Prlo]={3+2+2+2+1+1+1+0} x 3

()

Also,

1 3 3 1
EaaxPr[X al 3><8—i—2><8+ ><8+0><8
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Win or Lose.

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable X:
{HHH,HHT ,HTH,HTT , THH, THT , TTH, TTT} — {3,1,1,-1,1,—1,—1,-3}.

1 3 3 1
E[X]—3x§+1x§—1x§—3x§_0.

Can you ever win 07

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect!
It is the average value per experiment, if you perform the experiment

many times:
M when n> 1
n ’ '

The fact that this average converges to E[X] is a theorem:
the Law of Large Numbers. (See later.)
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Indicators

Definition
Let A be an event. The random variable X defined by

1, focA
X(“’)_{ 0, ifogA

is called the indicator of the event A.
Note that Pr[X = 1] = Pr[A] and Pr[X =0] =1— Pr[A].
Hence,

E[X]=1xPr[X=1]+0x Pr[X =0] = Pr[A].
This random variable X(®) is sometimes written as
1{w € A} or 14(w).

Thus, we will write X =14.
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Linearity of Expectation
Theorem: Expectation is linear

Proof:

E[a1X1 +~~-+aan]

_Z (a1 X1(®)+---+anXn(w))Pr{o]
= a ZX1 )Pr[o]+ - +anZXn )Pr{w]
= a4 E[X1] + - +anE[Xn]~

Note: If we had defined Y = a; Xj +--- + an X, has had tried to
compute E[Y] =Y, yPr[Y = y], we would have been in trouble!
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'm = number of pips on roll m.
X = X1+ -+ Xp = total number of pips in n rolls.

E[X]

Now,
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Using Linearity - 1: Pips (dots) on dice

Roll a die ntimes.
Xm = number of pips on roll m.
X = X1+ -+ Xp = total number of pips in n rolls.
E[X] = EXi+---+Xi]
= E[Xi]+---+ E[Xx4], by linearity
= nE[Xi], because the X, have the same distribution

mow 1 1 6x7 1 7
X
Eal=1x g+ +Bxg="gxg=35.
Hence, .
n
E[X]f?.

Note: Computing Y., xPr[X = x] directly is not easy!
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Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has

EIX] = E[Xi+-+Xd]
= E[Xi]+---+ E[Xq], by linearity
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Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has

EIX] = EXi+-+X)
= E[Xi]+---+ E[Xq], by linearity
= nE[Xj], because all the X have the same distribution
= nPr[X; = 1], because X;j is an indicator
= n(1/n), because student 1 is equally likely
to get any one of the n assignments
= 1.
Note that linearity holds even though the X, are not independent
(whatever that means).

Note: What is Pr[X = m]? Tricky ....
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Flip n coins with heads probability p. X - number of heads
Binomial Distibution: Pr[X = i], for each i.

prix=1=()plt1-p"

EX]=Yix PriX=1=Yix (’I’) pl(1—p).

Uh oh. ... Or... a better approach: Let
X = { 1 if ithflipis hegds

0 otherwise
E[Xj] =1 x Pr[“heads"] + 0 x Pr[“tails"] = p.
Moreover X = X +--- X, and
E[X] = E[X{]+ E[Xo] + - - E[Xn] = n x E[X]]= np.
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Assume A and B are disjoint events. Then 1,,58(®) = 14(®) + 15(o).

Taking expectation, we get

Pf[AUB] = E[1AUB] = E[1A+1B] = E[1A]+E[1B] = Pr[A]+Pr[B]
In general, 14,58(®) =14(®)+15(®) — 1 p~8(®).
Taking expectation, we get Pr[AU B] = Pr[A]+ Pr[B] — Pr[AN B].

Observe that if Y(w) = b for all o, then E[Y] = b.
Thus, E[X+b] = E[X]+b.
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Let Y = g(X). Assume that we know the distribution of X.
We want to calculate E[Y].
Method 1: We calculate the distribution of Y:
PriY =yl =PriXeg '(y)] where g~' (x) = {x e R: g(x) = y}.
This is typically rather tedious!
Method 2: We use the following result.

Theorem:
E[g(X)] = Y. g(x)Pr[X = x].
Proof: X
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X weX-1(x)
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Method 1 - We find the distribution of Y = X2:
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Using a similar derivation, one can show that
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An Example. Let X, Y be as shown below:

(0,0), w.p. 0.1
) (1,0), w.p. 04
) (0,1), w.p. 02
(1,1), w.p. 03
E[cos(2xX+xmY)] = 0.1cos(0)+0.4cos(2x)+0.2cos(x)+0.3cos(3x)

= 01x1+04x14+02x(-1)+03x(-1)=0.
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Best Guess: Least Squares

If you only know the distribution of X, it seems that E[X] is a
‘good guess’ for X.
The following result makes that idea precise.

Theorem
The value of a that minimizes E[(X — a)?] is a= E[X].

Proof 2:
Let

g(a) := [(X — a)?] = E[X? — 2aX + &°] = E[X?] —2aE[X] + &.

To find the minimizer of g(a), we set to zero Zg(a).

We get 0= Lg(a) = —2E[X] +2a.
Hence, the minimizer is a= E[X].
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Thus E[X] minimizes E[(X — a)?]. It must be noted that the
measure of the ‘quality of the approximation’ matters. The
following result illustrates that point.
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The value of a that minimizes E[| X — a|] is the median of X.

The median v of X is any real number such that
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Let X, Y be two random variables on 2. We write X < Y if
X(w) < Y(w) for all € Q, and similarly for X > Y and X > a
for some constant a.

Facts

(a) If X >0, then E[X] > 0.

(b) If X <Y, then E[X] < E[Y].

Proof

(a) If X > 0, every value a of X is nonnegative. Hence,

E[X]=) aPr[X=a] > 0.

(b) X<Y=Y—X>0= E[Y]-E[X]=E[Y—-X]>0.

Example: =

B=UnAn=15(0) < Lm1a,(®) = PrlUnAm] < Lm PrlAm].
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Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips
(dots). Then X is equally likely to take any of the values
{1,2,...,6}. We say that X is uniformly distributed in
{1,2,...,6}.

More generally, we say that X is uniformly distributed in
{1,2,....,n}if PrIX=m]|=1/nform=1,2,...,n.

In that case,

n L 1 1n(n+1) n+A
E[X]_n§1mPr[X_m]_n;1me_E 5= 5
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Pr(X >n+m|X > n]=Pr[X>m],mn>0.

B A
TTT...TTTITTT ... T ....... H

ke = e
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Pr[X > n+m|X > n| = Pr[A|B] = Pr[A] = Pr[X > m].

The coin is memoryless, therefore, so is X.
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The Poisson distribution is named after:

Siméon Poisson

Siméon Denis Poisson (1781-1840)
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The geometric distribution is named after:

B. Geometric

B. Geometric (b. 300 BC)

| could not find a picture of D. Binomial, sorry.
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B(n,p), U[1 : ], G(p), P(%).



