CS70: Lecture 20.

Distributions; Independent RVs

1. Review: Expectation

2. Distributions

3. Independent RVs

Geometric Distribution

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or
 $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$.

Also,

$$Pr[X = n] = (1 - p)^{n-1}p, \ n \ge 1.$$

Review: Expectation

$$\blacktriangleright E[X] := \sum_{x} x Pr[X = x] = \sum_{\omega} X(\omega) Pr[\omega]$$

$$E[g(X,Y)] = \sum_{x,y} g(x,y) Pr[X = x, Y = y]$$

$$= \sum_{\omega} g(X(\omega), Y(\omega)) Pr[\omega]$$

$$E[aX + bY + c] = aE[X] + bE[Y] + c.$$

Geometric Distribution

$$Pr[X = n] = (1-p)^{n-1}p, n \ge 1.$$

Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, \dots, 6\}$. We say that X is uniformly distributed in $\{1, 2, \dots, 6\}$.

More generally, we say that X is uniformly distributed in $\{1,2,\ldots,n\}$ if Pr[X=m]=1/n for $m=1,2,\ldots,n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note tha

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1-a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} Pr[X_n] = p \ \frac{1}{1 - (1 - p)} = 1.$$

Geometric Distribution: Expectation

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1-p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$\begin{split} E[X] &= p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots \\ (1-p)E[X] &= (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots \\ pE[X] &= p + (1-p)p + (1-p)^2p + (1-p)^3p + \cdots \\ & \text{by subtracting the previous two identities} \\ &= \sum_{n=1}^{\infty} Pr[X=n] = 1. \end{split}$$

Hence,

$$E[X]=\frac{1}{p}.$$

Review: Harmonic sum

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

A good approximation is

 $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Coupon Collectors Problem.

Experiment: Get coupons at random from n until collect all n

coupons.

Outcomes: {123145...,56765...}

Random Variable: X - length of outcome.

Before: $Pr[X \ge n \ln 2n] \le \frac{1}{2}$.

Today: E[X]?

Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend H(n) to the right of the table. As n increases, you can go as far as you want!

Time to collect coupons

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr[\text{"get second coupon"}|\text{"got milk first coupon"}] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{2}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$

Paradox

par·a·dox

/'perə däks/

noun

a statement or proposition that, despite sound (or apparently sound) reasoning from acceptable premises, leads to a conclusion that seems senseless, logically unacceptable, or self-contradictory.

"a potentially serious conflict between quantum mechanics and the general theory of relativity known as the information paradox"

 a seemingly absurd or self-contradictory statement or proposition that when investigated or explained may prove to be well founded or true.

"in a paradox, he has discovered that stepping back from his job has increased the rewards he gleans from it"

 $synonyms: {\it contradiction, contradiction in terms, self-contradiction, inconsistency, incongruity; } {\it More}$

a situation, person, or thing that combines contradictory features or qualities.
 "the mingling of deciduous trees with elements of desert flora forms a fascinating ecological paradox"

Stacking

The cards have width 2. Induction shows that the center of gravity after n cards is H(n) away from the right-most edge.

Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i - 1}$.

Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

Geometric Distribution: Memoryless

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

Proof:

$$Pr[X > n+m|X > n] = \frac{Pr[X > n+m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n+m]}{Pr[X > n]}$$

$$= \frac{(1-p)^{n+m}}{(1-p)^n} = (1-p)^m$$

$$= Pr[X > m].$$

Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{ Pr[X \ge i] - Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - i \times Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - (i - 1) \times Pr[X \ge i] \}$$

$$= \sum_{i=1}^{\infty} Pr[X \ge i].$$

Geometric Distribution: Memoryless - Interpretation

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

Pr[X > n + m|X > n] = Pr[A|B] = Pr[A] = Pr[X > m]. The coin is memoryless, therefore, so is X.

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X "for large n."

Simeon Poisson

The Poisson distribution is named after:

Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n." We expect $X \ll n$. For $m \ll n$ one has

$$\begin{aligned} Pr[X=m] &= \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n \\ &= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m} \\ &= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \\ &\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}. \end{aligned}$$

For (1) we used $m \ll n$; for (2) we used $(1 - a/n)^n \approx e^{-a}$.

Equal Time: B. Geometric

The geometric distribution is named after:

Prof. Walrand could not find a picture of D. Binomial, sorry.

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0\,$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Review: Distributions

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ► $B(n,p): Pr[X=m] = \binom{n}{m} p^m (1-p)^{n-m}, m=0,...,n;$ E[X] = np;
- ► $G(p): Pr[X = n] = (1 p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p};$
- $P(\lambda): Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \ge 0;$ $E[X] = \lambda.$

Independent Random Variables.

Definition: Independence

The random variables X and Y are **independent** if and only if

$$Pr[Y = b|X = a] = Pr[Y = b]$$
, for all a and b.

Fact:

X, Y are independent if and only if

$$Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b]$$
, for all a and b.

Obvious.

Functions of Independent random Variables

Theorem Functions of independent RVs are independent Let *X* , *Y* be independent RV. Then

$$f(X)$$
 and $g(Y)$ are independent, for all $f(\cdot), g(\cdot)$.

Proof:

Recall the definition of inverse image:

$$h(z) \in C \Leftrightarrow z \in h^{-1}(C) := \{z \mid h(z) \in C\}. \tag{1}$$

Now,

$$\begin{split} & Pr[f(X) \in A, g(Y) \in B] \\ & = Pr[X \in f^{-1}(A), Y \in g^{-1}(B)], \text{ by (1)} \\ & = Pr[X \in f^{-1}(A)] Pr[Y \in g^{-1}(B)], \text{ since } X, Y \text{ ind.} \\ & = Pr[f(X) \in A] Pr[g(Y) \in B], \text{ by (1)}. \end{split}$$

Independence: Examples

Example 1

Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed:
$$Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$$

Example 2

Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed:
$$Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$$
.

Example 3

Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Indeed

$$Pr[X = a, Y = b] = {3 \choose a} {2 \choose b} 2^{-5} = {3 \choose a} 2^{-3} \times {2 \choose b} 2^{-2} = Pr[X = a]Pr[Y = b].$$

Mean of product of independent RV

Theorem

Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y]$$

Proof:

Recall that $E[g(X,Y)] = \sum_{x,y} g(x,y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xy Pr[X = x, Y = y] = \sum_{x,y} xy Pr[X = x] Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} \left[\sum_{y} xy Pr[X = x] Pr[Y = y]\right] = \sum_{x} \left[x Pr[X = x](\sum_{y} y Pr[Y = y])\right]$$

$$= \sum_{x} \left[x Pr[X = x] E[Y]\right] = E[X] E[Y].$$

A useful observation about independence

Theorem

X and Y are independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$$
 for all $A, B \subset \Re$.

Proof:

If (\Leftarrow): Choose $A = \{a\}$ and $B = \{b\}$.

This shows that Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b].

Only if (\Rightarrow) :

$$Pr[X \in A, Y \in B] = \sum_{a \in A} \sum_{b \in B} Pr[X = a, Y = b] = \sum_{a \in A} \sum_{b \in B} Pr[X = a] Pr[Y = b] = \sum_{a \in A} [\sum_{b \in B} Pr[X = a] Pr[Y = b]] = \sum_{a \in A} Pr[X = a] [\sum_{b \in B} Pr[Y = b]] = \sum_{a \in A} Pr[X = a] Pr[Y \in B] = Pr[X \in A] Pr[Y \in B].$$

Examples

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

Then

$$\begin{split} E[(X+2Y+3Z)^2] &= E[X^2+4Y^2+9Z^2+4XY+12YZ+6XZ] \\ &= 1+4+9+4\times0+12\times0+6\times0 \\ &= 14. \end{split}$$

(2) Let X, Y be independent and U[1, 2, ... n]. Then

$$E[(X-Y)^2] = E[X^2+Y^2-2XY] = 2E[X^2] - 2E[X]^2$$
$$= \frac{1+3n+2n^2}{3} - \frac{(n+1)^2}{2}.$$

Mutually Independent Random Variables

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Theorem

The events A,B,C,\ldots are pairwise (resp. mutually) independent iff the random variables $1_A,1_B,1_C,\ldots$ are pairwise (resp. mutually) independent.

Proof:

$$Pr[1_A = 1, 1_B = 1, 1_C = 1] = Pr[A \cap B \cap C],...$$

Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A\Delta B, C \setminus D, \overline{E}$ are mutually independent.

Proof:

$$1_{A\triangle B} = f(1_A, 1_B)$$
 where $f(0,0) = 0, f(1,0) = 1, f(0,1) = 1, f(1,1) = 0$
 $1_{C \setminus D} = g(1_C, 1_D)$ where $g(0,0) = 0, g(1,0) = 1, g(0,1) = 0, g(1,1) = 0$
 $1_{\widetilde{E}} = h(1_E)$ where $h(0) = 1$ and $h(1) = 0$.

Hence, $1_{A\triangle B}$, $1_{C\setminus D}$, $1_{\widetilde{E}}$ are functions of mutually independent RVs. Thus, those RVs are mutually independent. Consequently, the events of which they are indicators are mutually independent.

Functions of pairwise independent RVs

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

$$f(X)$$
 and $g(Y,Z)$ are not independent.

Example 1: Flip two fair coins,

X=1 {coin 1 is H}, Y=1 {coin 2 is H}, $Z=X\oplus Y$. Then, X,Y,Z are pairwise independent. Let $g(Y,Z)=Y\oplus Z$. Then g(Y,Z)=X is not independent of X.

Example 2: Let A, B, C be pairwise but not mutually independent in a way that A and $B \cap C$ are not independent. Let $X = 1_A, Y = 1_B, Z = 1_C$. Choose f(X) = X, g(Y, Z) = YZ.

Product of mutually independent RVs

Theoren

Let X_1, \dots, X_n be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof

Assume that the result is true for n. (It is true for n = 2.)

Then, with $Y = X_1 \cdots X_n$, one has

$$\begin{split} E[X_1\cdots X_nX_{n+1}] &=& E[YX_{n+1}],\\ &=& E[Y]E[X_{n+1}],\\ && \text{because } Y, X_{n+1} \text{ are independent}\\ &=& E[X_1]\cdots E[X_n]E[X_{n+1}]. \end{split}$$

Functions of mutually independent RVs

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

$$Y_1 := X_1 X_2 (X_3 + X_4)^2$$
, $Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}$, $Y_3 := X_9 \cos(X_{10} + X_{11})$ are mutually independent.

Proof:

Let $B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1 x_2 (x_3 + x_4)^2 \in A_1\}$. Similarly for B_2, B_2 . Then

$$\begin{split} ⪻[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] \\ &= Pr[(X_1, \dots, X_4) \in B_1, (X_5, \dots, X_8) \in B_2, (X_9, \dots, X_{11}) \in B_3] \\ &= Pr[(X_1, \dots, X_4) \in B_1] Pr[(X_5, \dots, X_8) \in B_2] Pr[(X_9, \dots, X_{11}) \in B_3] \\ &= Pr[Y_1 \in A_1] Pr[Y_2 \in A_2] Pr[Y_3 \in A_3] \end{split}$$

Summary.

Distributions; Independence

Distributions:

- G(p): E[X] = 1/p;
- ▶ B(n,p) : E[X] = np;
- $P(\lambda) : E[X] = \lambda$

Independence:

- \blacktriangleright X, Y independent \Leftrightarrow $Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$
- ▶ Then, f(X), g(Y) are independent

and
$$E[XY] = E[X]E[Y]$$

Mutual independence