
CS70: Lecture 20.

Distributions; Independent RVs

1. Review: Expectation

2. Distributions

3. Independent RVs

Review: Expectation

I E [X ] := ∑x xPr [X = x ] = ∑ω X (ω)Pr [ω].

I E [g(X ,Y )] = ∑x ,y g(x ,y)Pr [X = x ,Y = y ]

= ∑ω g(X (ω),Y (ω))Pr [ω]

I E [aX + bY + c] = aE [X ] + bE [Y ] + c.

Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots).
Then X is equally likely to take any of the values {1,2, . . . ,6}. We say
that X is uniformly distributed in {1,2, . . . ,6}.
More generally, we say that X is uniformly distributed in {1,2, . . . ,n} if
Pr [X = m] = 1/n for m = 1,2, . . . ,n.
In that case,

E [X ] =
n

∑
m=1

mPr [X = m] =
n

∑
m=1

m× 1
n

=
1
n

n(n + 1)

2
=

n + 1
2

.

Geometric Distribution
Let’s flip a coin with Pr [H] = p until we get H.

For instance:

ω1 = H, or
ω2 = T H, or
ω3 = T T H, or
ωn = T T T T · · · T H.

Note that Ω = {ωn,n = 1,2, . . .}.
Let X be the number of flips until the first H. Then, X (ωn) = n.

Also,
Pr [X = n] = (1−p)n−1p, n ≥ 1.

Geometric Distribution

Pr [X = n] = (1−p)n−1p,n ≥ 1.

Geometric Distribution

Pr [X = n] = (1−p)n−1p,n ≥ 1.

Note that
∞

∑
n=1

Pr [Xn] =
∞

∑
n=1

(1−p)n−1p = p
∞

∑
n=1

(1−p)n−1 = p
∞

∑
n=0

(1−p)n.

Now, if |a|< 1, then S := ∑∞
n=0 an = 1

1−a . Indeed,

S = 1 + a + a2 + a3 + · · ·
aS = a + a2 + a3 + a4 + · · ·

(1−a)S = 1 + a−a + a2−a2 + · · ·= 1.

Hence,
∞

∑
n=1

Pr [Xn] = p
1

1− (1−p)
= 1.



Geometric Distribution: Expectation

X =D G(p), i.e., Pr [X = n] = (1−p)n−1p,n ≥ 1.

One has

E [X ] =
∞

∑
n=1

nPr [X = n] =
∞

∑
n=1

n(1−p)n−1p.

Thus,

E [X ] = p + 2(1−p)p + 3(1−p)2p + 4(1−p)3p + · · ·
(1−p)E [X ] = (1−p)p + 2(1−p)2p + 3(1−p)3p + · · ·

pE [X ] = p + (1−p)p + (1−p)2p + (1−p)3p + · · ·
by subtracting the previous two identities

=
∞

∑
n=1

Pr [X = n] = 1.

Hence,

E [X ] =
1
p
.

Coupon Collectors Problem.

Experiment: Get coupons at random from n until collect all n
coupons.
Outcomes: {123145...,56765...}
Random Variable: X - length of outcome.

Before: Pr [X ≥ n ln2n]≤ 1
2 .

Today: E [X ]?

Time to collect coupons

X -time to get n coupons.

X1 - time to get first coupon. Note: X1 = 1. E(X1) = 1.

X2 - time to get second coupon after getting first.

Pr [“get second coupon”|“got milk—- first coupon”] = n−1
n

E [X2]? Geometric ! ! ! =⇒ E [X2] = 1
p = 1

n−1
n

= n
n−1 .

Pr [“getting i th coupon|“got i−1rst coupons”] = n−(i−1)
n = n−i+1

n

E [Xi ] = 1
p = n

n−i+1 , i = 1,2, . . . ,n.

E [X ] = E [X1] + · · ·+ E [Xn] =
n
n

+
n

n−1
+

n
n−2

+ · · ·+ n
1

= n(1 +
1
2

+ · · ·+ 1
n

) =: nH(n)≈ n(lnn + γ)

Review: Harmonic sum

H(n) = 1 +
1
2

+ · · ·+ 1
n
≈
∫ n

1

1
x

dx = ln(n).

.

A good approximation is

H(n)≈ ln(n) + γ where γ ≈ 0.58 (Euler-Mascheroni constant).

Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend H(n) to the right of the
table. As n increases, you can go as far as you want!

Paradox



Stacking

The cards have width 2. Induction shows that the center of gravity
after n cards is H(n) away from the right-most edge.

Geometric Distribution: Memoryless

Let X be G(p). Then, for n ≥ 0,

Pr [X > n] = Pr [ first n flips are T ] = (1−p)n.

Theorem

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Proof:

Pr [X > n + m|X > n] =
Pr [X > n + m and X > n]

Pr [X > n]

=
Pr [X > n + m]

Pr [X > n]

=
(1−p)n+m

(1−p)n = (1−p)m

= Pr [X > m].

Geometric Distribution: Memoryless - Interpretation

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Pr [X > n + m|X > n] = Pr [A|B] = Pr [A] = Pr [X > m].

The coin is memoryless, therefore, so is X .

Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values {0,1,2, . . .}, one has

E [X ] =
∞

∑
i=1

Pr [X ≥ i].

[See later for a proof.]

If X = G(p), then Pr [X ≥ i] = Pr [X > i−1] = (1−p)i−1.

Hence,

E [X ] =
∞

∑
i=1

(1−p)i−1 =
∞

∑
i=0

(1−p)i =
1

1− (1−p)
=

1
p
.

Expected Value of Integer RV
Theorem: For a r.v. X that takes values in {0,1,2, . . .}, one has

E [X ] =
∞

∑
i=1

Pr [X ≥ i].

Proof: One has

E [X ] =
∞

∑
i=1

i×Pr [X = i]

=
∞

∑
i=1

i{Pr [X ≥ i]−Pr [X ≥ i + 1]}

=
∞

∑
i=1
{i×Pr [X ≥ i]− i×Pr [X ≥ i + 1]}

=
∞

∑
i=1
{i×Pr [X ≥ i]− (i−1)×Pr [X ≥ i]}

=
∞

∑
i=1

Pr [X ≥ i].

Theorem: For a r.v. X that takes values in {0,1,2, . . .}, one has

E [X ] =
∞

∑
i=1

Pr [X ≥ i].

0 1 2 33

· · ·

Pr [X ≥ 1]

Pr [X ≥ 2]

Pr [X ≥ 3]
...

Probability mass at i , counted i times.

Same as ∑∞
i=1 i×Pr [X = i].



Poisson

Experiment: flip a coin n times. The coin is such that Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).

Poisson Distribution is distribution of X “for large n.”

Poisson

Experiment: flip a coin n times. The coin is such that Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).
Poisson Distribution is distribution of X “for large n.”
We expect X � n. For m� n one has

Pr [X = m] =

(
n
m

)
pm(1−p)n−m, with p = λ/n

=
n(n−1) · · ·(n−m + 1)

m!

(
λ
n

)m(
1− λ

n

)n−m

=
n(n−1) · · ·(n−m + 1)

nm
λ m

m!

(
1− λ

n

)n−m

≈(1) λ m

m!

(
1− λ

n

)n−m

≈(2) λ m

m!

(
1− λ

n

)n

≈ λ m

m!
e−λ .

For (1) we used m� n; for (2) we used (1−a/n)n ≈ e−a.

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Fact: E [X ] = λ .

Proof:

E [X ] =
∞

∑
m=1

m× λ m

m!
e−λ = e−λ

∞

∑
m=1

λ m

(m−1)!

= e−λ
∞

∑
m=0

λ m+1

m!
= e−λ λ

∞

∑
m=0

λ m

m!

= e−λ λeλ = λ .

Simeon Poisson

The Poisson distribution is named after:

Equal Time: B. Geometric

The geometric distribution is named after:

Prof. Walrand could not find a picture of D. Binomial, sorry.

Review: Distributions

I U[1, . . . ,n] : Pr [X = m] = 1
n ,m = 1, . . . ,n;

E [X ] = n+1
2 ;

I B(n,p) : Pr [X = m] =
(n

m

)
pm(1−p)n−m,m = 0, . . . ,n;

E [X ] = np;

I G(p) : Pr [X = n] = (1−p)n−1p,n = 1,2, . . . ;

E [X ] = 1
p ;

I P(λ ) : Pr [X = n] = λ n

n! e−λ ,n ≥ 0;

E [X ] = λ .



Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

Pr [Y = b|X = a] = Pr [Y = b], for all a and b.

Fact:

X ,Y are independent if and only if

Pr [X = a,Y = b] = Pr [X = a]Pr [Y = b], for all a and b.

Obvious.

Independence: Examples

Example 1
Roll two die. X ,Y = number of pips on the two dice. X ,Y are
independent.

Indeed: Pr [X = a,Y = b] = 1
36 ,Pr [X = a] = Pr [Y = b] = 1

6 .

Example 2
Roll two die. X = total number of pips, Y = number of pips on die 1
minus number on die 2. X and Y are not independent.

Indeed: Pr [X = 12,Y = 1] = 0 6= Pr [X = 12]Pr [Y = 1] > 0.

Example 3
Flip a fair coin five times, X = number of Hs in first three flips, Y =
number of Hs in last two flips. X and Y are independent.

Indeed:

Pr [X = a,Y = b] =

(
3
a

)(
2
b

)
2−5 =

(
3
a

)
2−3×

(
2
b

)
2−2 = Pr [X = a]Pr [Y = b].

A useful observation about independence
Theorem

X and Y are independent if and only if

Pr [X ∈ A,Y ∈ B] = Pr [X ∈ A]Pr [Y ∈ B] for all A,B ⊂ℜ.

Proof:
If (⇐): Choose A = {a} and B = {b}.
This shows that Pr [X = a,Y = b] = Pr [X = a]Pr [Y = b].

Only if (⇒):

Pr [X ∈ A,Y ∈ B]

= ∑
a∈A

∑
b∈B

Pr [X = a,Y = b] = ∑
a∈A

∑
b∈B

Pr [X = a]Pr [Y = b]

= ∑
a∈A

[ ∑
b∈B

Pr [X = a]Pr [Y = b]] = ∑
a∈A

Pr [X = a][ ∑
b∈B

Pr [Y = b]]

= ∑
a∈A

Pr [X = a]Pr [Y ∈ B] = Pr [X ∈ A]Pr [Y ∈ B].

Functions of Independent random Variables

Theorem Functions of independent RVs are independent
Let X ,Y be independent RV. Then

f (X ) and g(Y ) are independent, for all f (·),g(·).

Proof:
Recall the definition of inverse image:

h(z) ∈ C⇔ z ∈ h−1(C) := {z | h(z) ∈ C}. (1)

Now,

Pr [f (X ) ∈ A,g(Y ) ∈ B]

= Pr [X ∈ f−1(A),Y ∈ g−1(B)], by (1)

= Pr [X ∈ f−1(A)]Pr [Y ∈ g−1(B)], since X ,Y ind.
= Pr [f (X ) ∈ A]Pr [g(Y ) ∈ B], by (1).

Mean of product of independent RV

Theorem
Let X ,Y be independent RVs. Then

E [XY ] = E [X ]E [Y ].

Proof:
Recall that E [g(X ,Y )] = ∑x ,y g(x ,y)Pr [X = x ,Y = y ]. Hence,

E [XY ] = ∑
x ,y

xyPr [X = x ,Y = y ] = ∑
x ,y

xyPr [X = x ]Pr [Y = y ], by ind.

= ∑
x

[∑
y

xyPr [X = x ]Pr [Y = y ]] = ∑
x

[xPr [X = x ](∑
y

yPr [Y = y ])]

= ∑
x

[xPr [X = x ]E [Y ]] = E [X ]E [Y ].

Examples

(1) Assume that X ,Y ,Z are (pairwise) independent, with
E [X ] = E [Y ] = E [Z ] = 0 and E [X 2] = E [Y 2] = E [Z 2] = 1.

Then

E [(X + 2Y + 3Z )2] = E [X 2 + 4Y 2 + 9Z 2 + 4XY + 12YZ + 6XZ ]

= 1 + 4 + 9 + 4×0 + 12×0 + 6×0
= 14.

(2) Let X ,Y be independent and U[1,2, . . .n]. Then

E [(X −Y )2] = E [X 2 + Y 2−2XY ] = 2E [X 2]−2E [X ]2

=
1 + 3n + 2n2

3
− (n + 1)2

2
.



Mutually Independent Random Variables

Definition

X ,Y ,Z are mutually independent if

Pr [X = x ,Y = y ,Z = z] = Pr [X = x ]Pr [Y = y ]Pr [Z = z], for all x ,y ,z.

Theorem
The events A,B,C, . . . are pairwise (resp. mutually) independent iff
the random variables 1A,1B,1C , . . . are pairwise (resp. mutually)
independent.
Proof:

Pr [1A = 1,1B = 1,1C = 1] = Pr [A∩B∩C], . . .

Functions of pairwise independent RVs

If X ,Y ,Z are pairwise independent, but not mutually independent, it
may be that

f (X ) and g(Y ,Z ) are not independent.

Example 1: Flip two fair coins,
X = 1{coin 1 is H},Y = 1{coin 2 is H},Z = X ⊕Y . Then, X ,Y ,Z are
pairwise independent. Let g(Y ,Z ) = Y ⊕Z . Then g(Y ,Z ) = X is not
independent of X .

Example 2: Let A,B,C be pairwise but not mutually independent in a
way that A and B∩C are not independent. Let
X = 1A,Y = 1B,Z = 1C . Choose f (X ) = X ,g(Y ,Z ) = YZ .

Functions of mutually independent RVs
One has the following result:
Theorem
Functions of disjoint collections of mutually independent random
variables are mutually independent.
Example:
Let {Xn,n ≥ 1} be mutually independent. Then,

Y1 :=X1X2(X3+X4)
2,Y2 :=max{X5,X6}−min{X7,X8},Y3 :=X9 cos(X10+X11)

are mutually independent.
Proof:
Let B1 := {(x1,x2,x3,x4) | x1x2(x3 + x4)2 ∈ A1}. Similarly for B2,B2.
Then

Pr [Y1 ∈ A1,Y2 ∈ A2,Y3 ∈ A3]

= Pr [(X1, . . . ,X4) ∈ B1,(X5, . . . ,X8) ∈ B2,(X9, . . . ,X11) ∈ B3]

= Pr [(X1, . . . ,X4) ∈ B1]Pr [(X5, . . . ,X8) ∈ B2]Pr [(X9, . . . ,X11) ∈ B3]

= Pr [Y1 ∈ A1]Pr [Y2 ∈ A2]Pr [Y3 ∈ A3]

Operations on Mutually Independent Events
Theorem

Operations on disjoint collections of mutually independent events
produce mutually independent events.

For instance, if A,B,C,D,E are mutually independent, then
A∆B,C \D, Ē are mutually independent.

Proof:

1A∆B = f (1A,1B) where
f (0,0) = 0, f (1,0) = 1, f (0,1) = 1, f (1,1) = 0

1C\D = g(1C ,1D) where
g(0,0) = 0,g(1,0) = 1,g(0,1) = 0,g(1,1) = 0

1Ē = h(1E ) where
h(0) = 1 and h(1) = 0.

Hence, 1A∆B,1C\D,1Ē are functions of mutually independent RVs.
Thus, those RVs are mutually independent. Consequently, the events
of which they are indicators are mutually independent.

Product of mutually independent RVs

Theorem
Let X1, . . . ,Xn be mutually independent RVs. Then,

E [X1X2 · · ·Xn] = E [X1]E [X2] · · ·E [Xn].

Proof:

Assume that the result is true for n. (It is true for n = 2.)

Then, with Y = X1 · · ·Xn, one has

E [X1 · · ·XnXn+1] = E [YXn+1],

= E [Y ]E [Xn+1],

because Y ,Xn+1 are independent
= E [X1] · · ·E [Xn]E [Xn+1].

Summary.

Distributions; Independence

Distributions:

I G(p) : E [X ] = 1/p;

I B(n,p) : E [X ] = np;

I P(λ ) : E [X ] = λ

Independence:

I X ,Y independent⇔ Pr [X ∈ A,Y ∈ B] = Pr [X ∈ A]Pr [Y ∈ B]

I Then, f (X ),g(Y ) are independent

and E [XY ] = E [X ]E [Y ]

I Mutual independence ....


