CS70: Lecture 20.
Distributions; Independent RVs

1. Review: Expectation
2. Distributions
3. Independent RVs

Geometric Distribution

Let's flip a coin with $\operatorname{Pr}[H]=p$ until we get H.

For instance:

$$
\begin{aligned}
& \omega_{1}=H, \text { or } \\
& \omega_{2}=T H, \text { or } \\
& \omega_{3}=T T H, \text { or } \\
& \omega_{n}=T T T T \cdots T H .
\end{aligned}
$$

Note that $\Omega=\left\{\omega_{n}, n=1,2, \ldots\right\}$.
Let X be the number of flips until the first H. Then, $X\left(\omega_{n}\right)=n$. Also,

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1 .
$$

- $E[X]:=\sum_{x} x \operatorname{Pr}[X=x]=\sum_{\omega} X(\omega) \operatorname{Pr}[\omega]$.
- $E[g(X, Y)]=\sum_{x, y} g(x, y) \operatorname{Pr}[X=x, Y=y]$
$=\sum_{\omega} g(X(\omega), Y(\omega)) \operatorname{Pr}[\omega]$

Review: Expectation

$$
\text { - } E[a X+b Y+c]=a E[X]+b E[Y]+c
$$

Geometric Distribution

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1
$$

Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots).
Then X is equally likely to take any of the values $\{1,2, \ldots, 6\}$. We say Then X is equally likely to take any of the valu
that X is uniformly distributed in $\{1,2, \ldots, 6\}$.
More generally, we say that X is uniformly distributed in $\{1,2, \ldots, n\}$ if $\operatorname{Pr}[X=m]=1 / n$ for $m=1,2, \ldots, n$.
In that case,

$$
E[X]=\sum_{m=1}^{n} m \operatorname{Pr}[X=m]=\sum_{m=1}^{n} m \times \frac{1}{n}=\frac{1}{n} \frac{n(n+1)}{2}=\frac{n+1}{2} .
$$

Geometric Distribution

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1 .
$$

Note that

$$
\sum_{n=1}^{\infty} \operatorname{Pr}\left[X_{n}\right]=\sum_{n=1}^{\infty}(1-p)^{n-1} p=p \sum_{n=1}^{\infty}(1-p)^{n-1}=p \sum_{n=0}^{\infty}(1-p)^{n}
$$

Now, if $|a|<1$, then $S:=\sum_{n=0}^{\infty} a^{n}=\frac{1}{1-a}$. Indeed,

$$
\begin{array}{rc}
S & =1+a+a^{2}+a^{3}+\cdots \\
a S & =a+a^{2}+a^{3}+a^{4}+\cdots \\
(1-a) S & =1+a-a+a^{2}-a^{2}+\cdots=1 .
\end{array}
$$

Hence,

$$
\sum_{n=1}^{\infty} \operatorname{Pr}\left[X_{n}\right]=p \frac{1}{1-(1-p)}=1 .
$$

Geometric Distribution: Expectation

$$
X=D G(p) \text {, i.e., } \operatorname{Pr}[X=n]=(1-p)^{n-1} p, n \geq 1 .
$$

One has

$$
E[X]=\sum_{n=1}^{\infty} n P r[X=n]=\sum_{n=1}^{\infty} n(1-p)^{n-1} p .
$$

Thus,
$E[X]=p+2(1-p) p+3(1-p)^{2} p+4(1-p)^{3} p+\cdots$
$(1-p) E[X]=\quad(1-p) p+2(1-p)^{2} p+3(1-p)^{3} p+\cdots$
$p E[X]=p+(1-p) p+(1-p)^{2} p+(1-p)^{3} p+\cdots$
by subtracting the previous two identities

$$
=\sum_{n=1}^{\infty} \operatorname{Pr}[X=n]=1 \text {. }
$$

Hence,

$$
E[X]=\frac{1}{p} .
$$

Review: Harmonic sum

$$
H(n)=1+\frac{1}{2}+\cdots+\frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} d x=\ln (n) .
$$

A good approximation is
$H(n) \approx \ln (n)+\gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Coupon Collectors Problem.

Experiment: Get coupons at random from n until collect all n
coupons.
Outcomes: \{123145...,56765...\}
Random Variable: X - length of outcome.
Before: $\operatorname{Pr}[X \geq n \ln 2 n] \leq \frac{1}{2}$.
Today: $E[X]$?

Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend $H(n)$ to the right of the table. As n increases, you can go as far as you want!

Time to collect coupons

X-time to get n coupons.

X_{1} - time to get first coupon. Note: $X_{1}=1 . E\left(X_{1}\right)=1$
X_{2} - time to get second coupon after getting first.
Pr ["get second coupon"|"got milk first coupon"] $=\frac{n-1}{n}$
$E\left[X_{2}\right]$? Geometric ! ! ! $\Longrightarrow E\left[X_{2}\right]=\frac{1}{p}=\frac{1}{\frac{n-1}{n}}=\frac{n}{n-1}$.
$\operatorname{Pr}\left[\right.$ "getting j th coupon|"got $i-1$ rst coupons"] $=\frac{n-(i-1)}{n}=\frac{n-i+1}{n}$
$E\left[X_{i}\right]=\frac{1}{p}=\frac{n}{n-i+1}, i=1,2, \ldots, n$.
$E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]=\frac{n}{n}+\frac{n}{n-1}+\frac{n}{n-2}+\cdots+\frac{n}{1}$
$=n\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)=: n H(n) \approx n(\ln n+\gamma)$

Paradox

par•a•dox

/'pere,däks

noun
a statement or proposition that, despite sound (or apparently sound) reasoning from acceptable premises, leads to a conclusion that seems senseless, logically acceptable premises, leads to a con
unacceptable, or self-contradictory
"a potentially serious conflict between quantum mechanics and the general theory o
relativity known as the information paradox"

- a seemingly absurd or self-contradictory statement or proposition that when
investigated or explained may prove to be well founded or true.
"in a paradox, he has discovered that stepping back from his job has increased the
rewards he geans from it" synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency,
incongruity; More
- a situation, person, or thing that combines contradictory features or qualities. the mingling of deciduous trees with elements of desert flora forms a fascinating ecological paradox"

Stacking

The cards have width 2. Induction shows that the center of gravity after n cards is $H(n)$ away from the right-most edge.

Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values $\{0,1,2, \ldots\}$, one has

$$
E[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] .
$$

[See later for a proof.]
If $X=G(p)$, then $\operatorname{Pr}[X \geq i]=\operatorname{Pr}[X>i-1]=(1-p)^{i-1}$.
Hence,

$$
E[X]=\sum_{i=1}^{\infty}(1-p)^{i-1}=\sum_{i=0}^{\infty}(1-p)^{i}=\frac{1}{1-(1-p)}=\frac{1}{p} .
$$

Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,
$\operatorname{Pr}[X>n]=\operatorname{Pr}[$ first n flips are $T]=(1-p)^{n}$.
Theorem
$\operatorname{Pr}[X>n+m \mid X>n]=\operatorname{Pr}[X>m], m, n \geq 0$.
Proof:

$$
\begin{aligned}
\operatorname{Pr}[X>n+m \mid X>n] & =\frac{\operatorname{Pr}[X>n+m \text { and } X>n]}{\operatorname{Pr}[X>n]} \\
& =\frac{\operatorname{Pr}[X>n+m]}{\operatorname{Pr}[X>n]} \\
& =\frac{(1-p)^{n+m}}{(1-p)^{n}}=(1-p)^{m} \\
& =\operatorname{Pr}[X>m] .
\end{aligned}
$$

Expected Value of Integer RV
Theorem: For a r.v. X that takes values in $\{0,1,2, \ldots\}$, one has

Proof: One has

$E[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i]$.
$\sum_{i \times 1} \times \operatorname{Pr}[X=i]$
$=\sum_{i=1}^{\infty} i\{\operatorname{Pr}[X \geq i]-\operatorname{Pr}[X \geq i+1]\}$
$=\sum_{i=1}^{\infty}\{i \times \operatorname{Pr}[X \geq i]-i \times \operatorname{Pr}[X \geq i+1]\}$
$=\sum_{i=1}^{\infty}\{i \times \operatorname{Pr}[X \geq i]-(i-1) \times \operatorname{Pr}[X \geq i]\}$
$=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i]$.

Geometric Distribution: Memoryless - Interpretation
$\operatorname{Pr}[X>n+m \mid X>n]=\operatorname{Pr}[X>m], m, n \geq 0$.

$\operatorname{Pr}[X>n+m \mid X>n]=\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]=\operatorname{Pr}[X>m]$. The coin is memoryless, therefore, so is X.

Theorem: For a r.v. X that takes values in $\{0,1,2, \ldots\}$, one has

$$
E[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] .
$$

Poisson

Experiment: flip a coin n times. The coin is such that $\operatorname{Pr}[H]=\lambda / n$ Random Variable: X - number of heads. Thus, $X=B(n, \lambda / n)$.
Poisson Distribution is distribution of X "for large n."

Simeon Poisson

The Poisson distribution is named after:

Poisson

Experiment: flip a coin n times. The coin is such that $\operatorname{Pr}[H]=\lambda / n$ Random Variable: X - number of heads. Thus, $X=B(n, \lambda / n)$.
Poisson Distribution is distribution of X "for large n "
We expect $X<n$. For $m \ll n$ one has

$$
\begin{aligned}
\operatorname{Pr}[X=m] & =\binom{n}{m} p^{m}(1-p)^{n-m}, \text { with } p=\lambda / n \\
& =\frac{n(n-1) \cdots(n-m+1)}{m!}\left(\frac{\lambda}{n}\right)^{m}\left(1-\frac{\lambda}{n}\right)^{n-m} \\
& =\frac{n(n-1) \cdots(n-m+1)}{n^{m}} \frac{\lambda^{m}}{m!}\left(1-\frac{\lambda}{n}\right)^{n-m} \\
& \approx \frac{\lambda^{m}}{m!}\left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^{m}}{m!}\left(1-\frac{\lambda}{n}\right)^{n} \approx \frac{\lambda^{m}}{m!} e^{-\lambda} .
\end{aligned}
$$

For (1) we used $m<n$; for (2) we used $(1-a / n)^{n} \approx e^{-a}$

Equal Time: B. Geometric

The geometric distribution is named after:

Prof. Walrand could not find a picture of D. Binomial, sorry.

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda>0$

$$
X=P(\lambda) \Leftrightarrow \operatorname{Pr}[X=m]=\frac{\lambda^{m}}{m!} e^{-\lambda}, m \geq 0
$$

Fact: $E[X]=\lambda$.
Proof:

$$
\begin{aligned}
E[X] & =\sum_{m=1}^{\infty} m \times \frac{\lambda^{m}}{m!} e^{-\lambda}=e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^{m}}{(m-1)!} \\
& =e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}=e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^{m}}{m!} \\
& =e^{-\lambda} \lambda e^{\lambda}=\lambda .
\end{aligned}
$$

Review: Distributions

- $U[1, \ldots, n]: \operatorname{Pr}[X=m]=\frac{1}{n}, m=1, \ldots, n ;$ $E[X]=\frac{n+1}{2}$;
- $B(n, p): \operatorname{Pr}[X=m]=\binom{n}{m} p^{m}(1-p)^{n-m}, m=0, \ldots, n$ $E[X]=n p ;$
- $G(p): \operatorname{Pr}[X=n]=(1-p)^{n-1} p, n=1,2, \ldots ;$ $E[X]=\frac{1}{p} ;$
- $P(\lambda): \operatorname{Pr}[X=n]=\frac{\lambda^{n}}{n!} e^{-\lambda}, n \geq 0 ;$ $E[X]=\lambda$

Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

$$
\operatorname{Pr}[Y=b \mid X=a]=\operatorname{Pr}[Y=b] \text {, for all } a \text { and } b .
$$

Fact:
X, Y are independent if and only if

$$
\operatorname{Pr}[X=a, Y=b]=\operatorname{Pr}[X=a] \operatorname{Pr}[Y=b], \text { for all } a \text { and } b .
$$

Obvious.

Functions of Independent random Variables
Theorem Functions of independent RVs are independent Te X, Y be indions of
$f(X)$ and $g(Y)$ are independent, for all $f(\cdot), g(\cdot)$.

Proof:

Recall the definition of inverse image:

$$
\begin{equation*}
h(z) \in C \Leftrightarrow z \in h^{-1}(C):=\{z \mid h(z) \in C\} . \tag{1}
\end{equation*}
$$

Now,
$\operatorname{Pr}[f(X) \in A, g(Y) \in B]$
$\quad=\operatorname{Pr}\left[X \in f^{-1}(A), Y \in g^{-1}(B)\right]$, by (1)
$\quad=\operatorname{Pr}\left[X \in f^{-1}(A)\right] \operatorname{Pr}\left[Y \in g^{-1}(B)\right]$, since X, Y ind.
$\quad=\operatorname{Pr}[f(X) \in A] \operatorname{Pr}[g(Y) \in B]$, by (1).

Independence: Examples

Roll two die. $X, Y=$ number of pips on the two dice. X, Y are independent.
Indeed: $\operatorname{Pr}[X=a, Y=b]=\frac{1}{36}, \operatorname{Pr}[X=a]=\operatorname{Pr}[Y=b]=\frac{1}{6}$

Example 2

Roll two die. $X=$ total number of pips, $Y=$ number of pips on die 1 minus number on die 2. X and Y are not independent.
Indeed: $\operatorname{Pr}[X=12, Y=1]=0 \neq \operatorname{Pr}[X=12] \operatorname{Pr}[Y=1]>0$.

Example 3

Flip a fair coin five times, $X=$ number of $H \mathrm{~s}$ in first three flips, $Y=$ number of $H \mathrm{~s}$ in last two flips. X and Y are independent.

Indeed:
$\operatorname{Pr}[X=a, Y=b]=\binom{3}{a}\binom{2}{b} 2^{-5}=\binom{3}{a} 2^{-3} \times\binom{ 2}{b} 2^{-2}=\operatorname{Pr}[X=a] \operatorname{Pr}[Y=b]$.

Mean of product of independent RV

Theorem

Let X, Y be independent RVs. Then

$$
E[X Y]=E[X] E[Y] .
$$

Proof:
Recall that $E[g(X, Y)]=\sum_{x, y} g(x, y) \operatorname{Pr}[X=x, Y=y]$. Hence,
$E[X Y]=\sum_{x, y} x y \operatorname{Pr}[X=x, Y=y]=\sum_{x, y} x y \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]$, by ind.
$=\sum_{x}\left[\sum_{y} x y \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]\right]=\sum_{x}\left[x \operatorname{Pr}[X=x]\left(\sum_{y} y \operatorname{Pr}[Y=y]\right)\right]$
$=\sum_{X}[x \operatorname{Pr}[X=x] E[Y]]=E[X] E[Y]$.

A useful observation about independence Theorem
X and Y are independent if and only if

$$
\operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B] \text { for all } A, B \subset \Re
$$

Proof:
(ϵ) : Choose $A=\{a\}$ and $B=\{b\}$
This shows that $\operatorname{Pr}[X=a, Y=b]=\operatorname{Pr}[X=a] \operatorname{Pr}[Y=b]$.
Only if (\Rightarrow) :
$\operatorname{Pr}[X \in A, Y \in B]$
$=\sum_{a \in A} \sum_{b \in B} \operatorname{Pr}[X=a, Y=b]=\sum_{a \in A b \in B} \sum_{b} \operatorname{Pr}[X=a] \operatorname{Pr}[Y=b]$
$=\sum_{a \in A}\left[\sum_{b \in B} \operatorname{Pr}[X=a] \operatorname{Pr}[Y=b]\right]=\sum_{a \in A} \operatorname{Pr}[X=a]\left[\sum_{b \in B} \operatorname{Pr}[Y=b]\right]$
$=\sum_{a \in A} \operatorname{Pr}[X=a] \operatorname{Pr}[Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B]$.

Examples

1) Assume that X, Y, Z are (pairwise) independent, with $E[X]=E[Y]=E[Z]=0$ and $E\left[X^{2}\right]=E\left[Y^{2}\right]=E\left[Z^{2}\right]=1$. Then
$E\left[(X+2 Y+3 Z)^{2}\right]=E\left[X^{2}+4 Y^{2}+9 Z^{2}+4 X Y+12 Y Z+6 X Z\right]$
$=1+4+9+4 \times 0+12 \times 0+6 \times 0$
$=14$.
(2) Let X, Y be independent and $U[1,2, \ldots n]$. Then
$E\left[(X-Y)^{2}\right]=E\left[X^{2}+Y^{2}-2 X Y\right]=2 E\left[X^{2}\right]-2 E[X]^{2}$

$$
=\frac{1+3 n+2 n^{2}}{3}-\frac{(n+1)^{2}}{2} .
$$

Mutually Independent Random Variables

Definition

X, Y, Z are mutually independent if
$\operatorname{Pr}[X=x, Y=y, Z=z]=\operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \operatorname{Pr}[Z=z]$, for all x, y, z.

Theorem
The events A, B, C, \ldots are pairwise (resp. mutually) independent iff the random variables $1_{A}, 1_{B}, 1_{C}, \ldots$ are pairwise (resp. mutually) independent.
Proof:

$$
\operatorname{Pr}\left[1_{A}=1,1_{B}=1,1_{C}=1\right]=\operatorname{Pr}[A \cap B \cap C], \ldots
$$

Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.
For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \backslash D, \bar{E}$ are mutually independent.

Proof:

$1_{A \Delta B}=f\left(1_{A}, 1_{B}\right)$ where
$f(0,0)=0, f(1,0)=1, f(0,1)=1, f(1,1)=0$
$1_{C \backslash D}=g\left(1_{C}, 1_{D}\right)$ where
$g(0,0)=0, g(1,0)=1, g(0,1)=0, g(1,1)=0$
$1_{\bar{E}}=h\left(1_{E}\right)$ where
$h(0)=1$ and $h(1)=0$.
Hence, $1_{A \Delta B}, 1_{C \backslash D}, 1_{\bar{E}}$ are functions of mutually independent RVs. Thus, those RVs are mutually independent. Consequently, the event of which they are indicators are mutually independent.

Functions of pairwise independent RVs

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

$f(X)$ and $g(Y, Z)$ are not independent

Example 1: Flip two fair coins,
$X=1\{\operatorname{coin} 1$ is $H\}, Y=1\{\operatorname{coin} 2$ is $H\}, Z=X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z)=Y \oplus Z$. Then $g(Y, Z)=X$ is not independent of X
Example 2: Let A, B, C be pairwise but not mutually independent in a way that A and $B \cap C$ are not independent. Let
$X=1_{A}, Y=1_{B}, Z=1_{C}$. Choose $f(X)=X, g(Y, Z)=Y Z$

Product of mutually independent RVs

Theorem

Let X_{1}, \ldots, X_{n} be mutually independent RVs. Then,

$$
E\left[X_{1} X_{2} \cdots X_{n}\right]=E\left[X_{1}\right] E\left[X_{2}\right] \cdots E\left[X_{n}\right] .
$$

Proof:

Assume that the result is true for n. (It is true for $n=2$.)
Then, with $Y=X_{1} \cdots X_{n}$, one has

$$
E\left[X_{1} \cdots X_{n} X_{n+1}\right]=E\left[Y X_{n+1}\right],
$$

$=E[Y] E\left[X_{n+1}\right]$
because Y, X_{n+1} are independent
$=E\left[X_{1}\right] \cdots E\left[X_{n}\right] E\left[X_{n+1}\right]$.

Functions of mutually independent RVs

One has the following result:

Theorem
Functions of disjoint collections of mutually independent random variables are mutually independent.
Example:
et $\left\{X_{n}, n \geq 1\right\}$ be mutually independent. Then,
$Y_{1}:=X_{1} X_{2}\left(X_{3}+X_{4}\right)^{2}, Y_{2}:=\max \left\{X_{5}, X_{6}\right\}-\min \left\{X_{7}, X_{8}\right\}, Y_{3}:=X_{9} \cos \left(X_{10}+X_{11}\right)$ are mutually independent.
Proof:
et $B_{1}:=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1} x_{2}\left(x_{3}+x_{4}\right)^{2} \in A_{1}\right\}$. Similarly for B_{2}, B_{2} Then

$$
\operatorname{Pr}\left[Y_{1} \in A_{1}, Y_{2} \in A_{2}, Y_{3} \in A_{3}\right]
$$

$$
=\operatorname{Pr}\left[\left(X_{1}, \ldots, X_{4}\right) \in B_{1},\left(X_{5}, \ldots, X_{8}\right) \in B_{2},\left(X_{9}, \ldots, X_{11}\right) \in B_{3}\right]
$$

$$
=\operatorname{Pr}\left[\left(X_{1}, \ldots, X_{4}\right) \in B_{1}\right] \operatorname{Pr}\left[\left(X_{5}, \ldots, X_{8}\right) \in B_{2}\right] \operatorname{Pr}\left[\left(X_{9}, \ldots, X_{11}\right) \in B_{3}\right]
$$

$$
=\operatorname{Pr}\left[Y_{1} \in A_{1}\right] \operatorname{Pr}\left[Y_{2} \in A_{2}\right] \operatorname{Pr}\left[Y_{3} \in A_{3}\right]
$$

Summary.

Distributions; Independence
Distributions:

- $G(p): E[X]=1 / p ;$
- $B(n, p): E[X]=n p ;$
- $P(\lambda): E[X]=\lambda$

Independence:

- X, Y independent $\Leftrightarrow \operatorname{Pr}[X \in A, Y \in B]=\operatorname{Pr}[X \in A] \operatorname{Pr}[Y \in B$
- Then, $f(X), g(Y)$ are independent

$$
\text { and } E[X Y]=E[X] E[Y]
$$

- Mutual independence

