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Review: Distributions

I U[1, . . . ,n] : Pr [X = m] = 1
n ,m = 1, . . . ,n;

E [X ] = n+1
2 ;

I B(n,p) : Pr [X = m] =
(n

m

)
pm(1−p)n−m,m = 0, . . . ,n;

E [X ] = np;

I G(p) : Pr [X = n] = (1−p)n−1p,n = 1,2, . . . ;

E [X ] = 1
p ;

I P(λ ) : Pr [X = n] = λ n

n! e−λ ,n ≥ 0;

E [X ] = λ .
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Poission and Queueing.

Poission: Distribution of how many events in an interval?

Average: λ .

Idea: Cut into intervals so that “sum of Bernoulli (indicators)”.

n = 10 intervals. Binomial distribution.
Maybe more...
and more.

As n goes to infinity...analyse ...

.... Pr [X = i] =
(n

i

)
pi(1−p)n−i .

derive simple expression.
...And we get the Poisson distribution!
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Poisson

Experiment: flip a coin n times. The coin is such that Pr [H] = λ/n.
Random Variable: X - number of heads.

Thus, X = B(n,λ/n).

Poisson Distribution is distribution of X “for large n.”
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Experiment: flip a coin n times. The coin is such that Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).
Poisson Distribution is distribution of X “for large n.”

We expect X � n. For m� n one has

Pr [X = m] =

(
n
m

)
pm(1−p)n−m, with p = λ/n

=
n(n−1) · · ·(n−m+1)

m!

(
λ

n

)m(
1− λ

n

)n−m

=
n(n−1) · · ·(n−m+1)

nm
λ m

m!

(
1− λ

n

)n−m

≈(1) λ m

m!

(
1− λ

n

)n−m

≈(2) λ m

m!

(
1− λ

n

)n

≈ λ m

m!
e−λ .

For (1) we used m� n; for (2) we used (1−a/n)n ≈ e−a.
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Variance

The variance measures the deviation from the mean value.

Definition: The variance of X is

σ
2(X ) := var [X ] = E [(X −E [X ])2].

σ(X ) is called the standard deviation of X .
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Variance and Standard Deviation

Fact:
var [X ] = E [X 2]−E [X ]2.

Indeed:

var(X ) = E [(X −E [X ])2]

= E [X 2−2XE [X ]+E [X ]2)

= E [X 2]−2E [X ]E [X ]+E [X ]2, by linearity
= E [X 2]−E [X ]2.
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A simple example

This example illustrates the term ‘standard deviation.’

Consider the random variable X such that

X =

{
µ−σ , w.p. 1/2
µ +σ , w.p. 1/2.

Then, E [X ] = µ and (X −E [X ])2 = σ2. Hence,

var(X ) = σ
2 and σ(X ) = σ .
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Example

Consider X with

X =

{
−1, w. p. 0.99
99, w. p. 0.01.

Then

E [X ] = −1×0.99+99×0.01 = 0.
E [X 2] = 1×0.99+(99)2×0.01≈ 100.

Var(X ) ≈ 100 =⇒ σ(X )≈ 10.

Also,
E(|X |) = 1×0.99+99×0.01 = 1.98.

Thus, σ(X ) 6= E [|X −E [X ]|]!
Exercise: How big can you make σ(X )

E [|X−E [X ]|]?
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Uniform
Assume that Pr [X = i] = 1/n for i ∈ {1, . . . ,n}. Then

E [X ] =
n

∑
i=1

i×Pr [X = i] =
1
n

n

∑
i=1
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=
1
n

n(n+1)
2

=
n+1

2
.

Also,

E [X 2] =
n

∑
i=1

i2Pr [X = i] =
1
n

n

∑
i=1

i2

=
1+3n+2n2

6
, as you can verify.

This gives

var(X ) =
1+3n+2n2

6
− (n+1)2

4
=

n2−1
12
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Variance of geometric distribution.

X is a geometrically distributed RV with parameter p.

Thus, Pr [X = n] = (1−p)n−1p for n ≥ 1. Recall E [X ] = 1/p.

E [X 2] = p+4p(1−p)+9p(1−p)2 + ...

−

(1−p)E [X 2] =

−[

p(1−p)+4p(1−p)2 + ...

]

pE [X 2] = p+3p(1−p)+5p(1−p)2 + ...

= 2(p+2p(1−p)+3p(1−p)2 + ..)

E [X ]!

−(p+p(1−p)+p(1−p)2 + ...)

Distribution.

pE [X 2] = 2E [X ]−1

= 2(
1
p
)−1 =

2−p
p

=⇒ E [X 2] = (2−p)/p2 and
var [X ] = E [X 2]−E [X ]2 = 2−p

p2 − 1
p2 = 1−p

p2 .

σ(X ) =

√
1−p
p ≈ E [X ] when p is small(ish).
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Fixed points.
Number of fixed points in a random permutation of n items.

“Number of student that get homework back.”

X = X1 +X2 · · ·+Xn

where Xi is indicator variable for i th student getting hw back.

E(X 2) = ∑
i

E(X 2
i )+∑

i 6=j
E(XiXj).

=

n× 1
n

+

(n)(n−1)× 1
n(n−1)

= 1+1 = 2.

E(X 2
i ) = 1×Pr [Xi = 1]+0×Pr [Xi = 0]

= 1
n

E(XiXj) = 1×Pr [Xi = 1∩Xj = 1]+0×Pr [“anything else’′]
= 1×1×(n−2)!

n! = 1
n(n−1)

Var(X ) = E(X 2)− (E(X ))2 = 2−1 = 1.
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Variance: binomial.

E [X 2] =
n

∑
i=0

i2
(

n
i

)
pi(1−p)n−i .

= Really???!!##...

Too hard!

Ok.. fine.
Let’s do something else.
Maybe not much easier...but there is a payoff.
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Properties of variance.

1. Var(cX ) = c2Var(X ), where c is a constant.

Scales by c2.

2. Var(X +c) = Var(X ), where c is a constant.
Shifts center.

Proof:

Var(cX ) = E((cX )2)− (E(cX ))2

= c2E(X 2)−c2(E(X ))2 = c2(E(X 2)−E(X )2)

= c2Var(X )

Var(X +c) = E((X +c−E(X +c))2)

= E((X +c−E(X )−c)2)

= E((X −E(X ))2) = Var(X )
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Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

Var(X +Y ) = Var(X )+Var(Y ).

Proof:
Since shifting the random variables does not change their variance,
let us subtract their means.

That is, we assume that E(X ) = 0 and E(Y ) = 0.

Then, by independence,

E(XY ) = E(X )E(Y ) = 0.

Hence,

var(X +Y ) = E((X +Y )2) = E(X 2 +2XY +Y 2)

= E(X 2)+2E(XY )+E(Y 2) = E(X 2)+E(Y 2)

= var(X )+var(Y ).
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Variance of Binomial Distribution.

Flip coin with heads probability p.

X - how many heads?

Xi =

{
1 if i th flip is heads
0 otherwise

E(X 2
i ) = 12×p+02× (1−p) = p.

Var(Xi) = p− (E(X ))2 = p−p2 = p(1−p).

p = 0 =⇒ Var(Xi) = 0
p = 1 =⇒ Var(Xi) = 0

X = X1 +X2 + . . .Xn.

Xi and Xj are independent: Pr [Xi = 1|Xj = 1] = Pr [Xi = 1].

Var(X ) = Var(X1 + · · ·Xn) = np(1−p).
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Andrey Markov

Andrey Markov is best known for his work on
stochastic processes. A primary subject of his
research later became known as Markov
chains and Markov processes.

Pafnuty Chebyshev was one of his teachers.

Markov was an atheist. In 1912 he protested
Leo Tolstoy’s excommunication from the
Russian Orthodox Church by requesting his
own excommunication. The Church complied
with his request.
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Markov’s inequality

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality

Assume f : ℜ→ [0,∞) is nondecreasing. Then,

Pr [X ≥ a]≤ E [f (X )]

f (a)
, for all a such that f (a)> 0.

Proof:

Observe that
1{X ≥ a} ≤ f (X )

f (a)
.

Indeed, if X < a, the inequality reads 0≤ f (X )/f (a), which holds
since f (·)≥ 0. Also, if X ≥ a, it reads 1≤ f (X )/f (a), which holds since
f (·) is nondecreasing.

Taking the expectation yields the inequality, because expectation is
monotone.
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Markov Inequality Example: G(p)

Let X = G(p).

Recall that E [X ] = 1
p and E [X2] = 2−p

p2 .

Choosing f (x) = x , we
get

Pr [X ≥a]≤ E [X ]

a
=

1
ap

.

Choosing f (x) = x2,
we get

Pr [X ≥a]≤ E [X2]

a2 =
2−p
p2a2 .
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Chebyshev’s Inequality

This is Pafnuty’s inequality:

Theorem:

Pr [|X −E [X ]|> a]≤ var [X ]

a2 , for all a > 0.

Proof: Let Y = |X −E [X ]| and f (y) = y2. Then,

Pr [Y ≥ a]≤ E [f (Y )]

f (a)
=

var [X ]

a2 .

This result confirms that the variance measures the “deviations from
the mean.”
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n2 =
λ
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Chebyshev and Poisson (continued)
Let X = P(λ ). Then, E [X ] = λ and var [X ] = λ .

By Markov’s inequality,

Pr [X ≥ a]≤ E [X 2]

a2 =
λ +λ 2

a2 .

Also, if a > λ , then X ≥ a⇒ X −λ ≥ a−λ > 0⇒ |X −λ | ≥ a−λ .

Hence, for a > λ , Pr [X ≥ a]≤ Pr [|X −λ | ≥ a−λ ]≤ λ

(a−λ )2
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Fraction of H ’s
Here is a classical application of Chebyshev’s inequality.

How likely is it that the fraction of H ’s differs from 50%?

Let Xm = 1 if the m-th flip of a fair coin is H and Xm = 0 otherwise.

Define
Yn =

X1 + · · ·+Xn

n
, for n ≥ 1.

We want to estimate

Pr [|Yn−0.5| ≥ 0.1] = Pr [Yn ≤ 0.4 or Yn ≥ 0.6].

By Chebyshev,

Pr [|Yn−0.5| ≥ 0.1]≤ var [Yn]

(0.1)2 = 100var [Yn].

Now,

var [Yn] =
1
n2 (var [X1]+ · · ·+var [Xn]) =

1
n

var [X1] =
1

4n
.
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Fraction of H ’s

Yn =
X1 + · · ·+Xn

n
, for n ≥ 1.

Pr [|Yn−0.5| ≥ 0.1]≤ 25
n
.

For n = 1,000, we find that this probability is less than 2.5%.

As n→ ∞, this probability goes to zero.

In fact, for any ε > 0, as n→ ∞, the probability that the fraction of Hs
is within ε > 0 of 50% approaches 1:

Pr [|Yn−0.5| ≤ ε]→ 1.

This is an example of the Law of Large Numbers.

We look at a general case next.
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Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X1,X2, . . . be pairwise independent with the same distribution and
mean µ. Then, for all ε > 0,

Pr [|X1 + · · ·+Xn

n
−µ| ≥ ε]→ 0, as n→ ∞.

Proof:
Let Yn = X1+···+Xn

n . Then

Pr [|Yn−µ| ≥ ε] ≤ var [Yn]

ε2 =
var [X1 + · · ·+Xn]

n2ε2

=
nvar [X1]

n2ε2 =
var [X1]

nε2 → 0, as n→ ∞.
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Summary

Variance; Inequalities; WLLN

I Variance: var [X ] := E [(X −E [X ])2] = E [X 2]−E [X ]2

I Fact: var [aX +b]a2var [X ]

I Sum: X ,Y ,Z mutually ind. ⇒ var [X +Y +Z ] = · · ·
I Markov: Pr [X ≥ a]≤ E [f (X )]/f (a) where ...

I Chebyshev: Pr [|X −E [X ]| ≥ a]≤ var [X ]/a2

I WLLN: Xm i.i.d. ⇒ X1+···+Xn
n ≈ E [X ]
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