CS70: Jean Walrand: Lecture 22.

Confidence Intervals; Linear Regression

CS70: Jean Walrand: Lecture 22.

Confidence Intervals; Linear Regression

1. Review
2. Confidence Intervals
3. Motivation for LR
4. History of LR
5. Linear Regression
6. Derivation
7. More examples

Review: Probability Ideas Map

Review: Probability Ideas Map

Review: Probability Ideas Map - Details

Review: Probability Ideas Map - Details

Review: Probability Ideas Map - Today

Review: Probability Ideas Map - Today

Confidence Intervals: Example

Confidence Intervals: Example

- Flip a coin n times.

Confidence Intervals: Example

- Flip a coin n times. Let A_{n} be the fraction of Hs .

Confidence Intervals: Example

- Flip a coin n times. Let A_{n} be the fraction of Hs .
- We know that $p:=\operatorname{Pr}[H] \approx A_{n}$ for n large (WLLN).

Confidence Intervals: Example

- Flip a coin n times. Let A_{n} be the fraction of Hs .
- We know that $p:=\operatorname{Pr}[H] \approx A_{n}$ for n large (WLLN).
- Can we find a such that $\operatorname{Pr}\left[p \in\left[A_{n}-a, A_{n}+a\right]\right] \geq 95 \%$?

Confidence Intervals: Example

- Flip a coin n times. Let A_{n} be the fraction of Hs .
- We know that $p:=\operatorname{Pr}[H] \approx A_{n}$ for n large (WLLN).
- Can we find a such that $\operatorname{Pr}\left[p \in\left[A_{n}-a, A_{n}+a\right]\right] \geq 95 \%$?
- If so, we say that
$\left[A_{n}-a, A_{n}+a\right]$ is a 95% - Confidence Interval for p.

Confidence Intervals: Example

- Flip a coin n times. Let A_{n} be the fraction of Hs .
- We know that $p:=\operatorname{Pr}[H] \approx A_{n}$ for n large (WLLN).
- Can we find a such that $\operatorname{Pr}\left[p \in\left[A_{n}-a, A_{n}+a\right]\right] \geq 95 \%$?
- If so, we say that

$$
\left[A_{n}-a, A_{n}+a\right] \text { is a } 95 \% \text { - Confidence Interval for } p .
$$

Using Chebyshev, we will see that $a=2.25 \frac{1}{\sqrt{n}}$ works.

Confidence Intervals: Example

- Flip a coin n times. Let A_{n} be the fraction of Hs .
- We know that $p:=\operatorname{Pr}[H] \approx A_{n}$ for n large (WLLN).
- Can we find a such that $\operatorname{Pr}\left[p \in\left[A_{n}-a, A_{n}+a\right]\right] \geq 95 \%$?
- If so, we say that

$$
\left[A_{n}-a, A_{n}+a\right] \text { is a } 95 \% \text { - Confidence Interval for } p .
$$

Using Chebyshev, we will see that $a=2.25 \frac{1}{\sqrt{n}}$ works. Thus

$$
\left[A_{n}-\frac{2.25}{\sqrt{n}}, A_{n}+\frac{2.25}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p
$$

Confidence Intervals: Example

- Flip a coin n times. Let A_{n} be the fraction of Hs .
- We know that $p:=\operatorname{Pr}[H] \approx A_{n}$ for n large (WLLN).
- Can we find a such that $\operatorname{Pr}\left[p \in\left[A_{n}-a, A_{n}+a\right]\right] \geq 95 \%$?
- If so, we say that

$$
\left[A_{n}-a, A_{n}+a\right] \text { is a } 95 \% \text { - Confidence Interval for } p .
$$

Using Chebyshev, we will see that $a=2.25 \frac{1}{\sqrt{n}}$ works. Thus

$$
\left[A_{n}-\frac{2.25}{\sqrt{n}}, A_{n}+\frac{2.25}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p
$$

Example: If $n=1500$, then $\operatorname{Pr}\left[p \in\left[A_{n}-0.05, A_{n}+0.05\right]\right] \geq 95 \%$.

Confidence Intervals: Example

- Flip a coin n times. Let A_{n} be the fraction of Hs .
- We know that $p:=\operatorname{Pr}[H] \approx A_{n}$ for n large (WLLN).
- Can we find a such that $\operatorname{Pr}\left[p \in\left[A_{n}-a, A_{n}+a\right]\right] \geq 95 \%$?
- If so, we say that

$$
\left[A_{n}-a, A_{n}+a\right] \text { is a } 95 \% \text { - Confidence Interval for } p .
$$

Using Chebyshev, we will see that $a=2.25 \frac{1}{\sqrt{n}}$ works. Thus

$$
\left[A_{n}-\frac{2.25}{\sqrt{n}}, A_{n}+\frac{2.25}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p
$$

Example: If $n=1500$, then $\operatorname{Pr}\left[p \in\left[A_{n}-0.05, A_{n}+0.05\right]\right] \geq 95 \%$. In fact, we will see later that $a=\frac{1}{\sqrt{n}}$ works,

Confidence Intervals: Example

- Flip a coin n times. Let A_{n} be the fraction of Hs .
- We know that $p:=\operatorname{Pr}[H] \approx A_{n}$ for n large (WLLN).
- Can we find a such that $\operatorname{Pr}\left[p \in\left[A_{n}-a, A_{n}+a\right]\right] \geq 95 \%$?
- If so, we say that

$$
\left[A_{n}-a, A_{n}+a\right] \text { is a } 95 \% \text { - Confidence Interval for } p .
$$

Using Chebyshev, we will see that $a=2.25 \frac{1}{\sqrt{n}}$ works. Thus

$$
\left[A_{n}-\frac{2.25}{\sqrt{n}}, A_{n}+\frac{2.25}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p
$$

Example: If $n=1500$, then $\operatorname{Pr}\left[p \in\left[A_{n}-0.05, A_{n}+0.05\right]\right] \geq 95 \%$.
In fact, we will see later that $a=\frac{1}{\sqrt{n}}$ works, so that with $n=1,500$ one has $\operatorname{Pr}\left[p \in\left[A_{n}-0.02, A_{n}+0.02\right]\right] \geq 95 \%$.

Confidence Intervals: Result

Confidence Intervals: Result

Theorem:
Let X_{n} be i.i.d. with mean μ and variance σ^{2}.

Confidence Intervals: Result

Theorem:
Let X_{n} be i.i.d. with mean μ and variance σ^{2}.
Define $A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$.

Confidence Intervals: Result

Theorem:
Let X_{n} be i.i.d. with mean μ and variance σ^{2}.
Define $A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right] \geq 95 \% .
$$

Confidence Intervals: Result

Theorem:
Let X_{n} be i.i.d. with mean μ and variance σ^{2}.
Define $A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right] \geq 95 \%
$$

Thus, $\left.\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right]$ is a $95 \%-\mathrm{Cl}$ for μ.

Confidence Intervals: Result

Theorem:
Let X_{n} be i.i.d. with mean μ and variance σ^{2}.
Define $A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right] \geq 95 \% .
$$

Thus, $\left.\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right]$ is a $95 \%-\mathrm{Cl}$ for μ.

Example:

Confidence Intervals: Result

Theorem:
Let X_{n} be i.i.d. with mean μ and variance σ^{2}.
Define $A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right] \geq 95 \% .
$$

Thus, $\left.\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right]$ is a $95 \%-\mathrm{Cl}$ for μ.

Example: Let $X_{n}=1\{$ coin n yields $H\}$.

Confidence Intervals: Result

Theorem:
Let X_{n} be i.i.d. with mean μ and variance σ^{2}.
Define $A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right] \geq 95 \% .
$$

Thus, $\left.\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right]$ is a $95 \%-\mathrm{Cl}$ for μ.

Example: Let $X_{n}=1\{$ coin n yields $H\}$. Then

$$
\mu=E\left[X_{n}\right]=p:=\operatorname{Pr}[H] .
$$

Confidence Intervals: Result

Theorem:
Let X_{n} be i.i.d. with mean μ and variance σ^{2}.
Define $A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right] \geq 95 \% .
$$

Thus, $\left.\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right]$ is a $95 \%-\mathrm{Cl}$ for μ.

Example: Let $X_{n}=1\{$ coin n yields $H\}$. Then

$$
\mu=E\left[X_{n}\right]=p:=\operatorname{Pr}[H] . \text { Also, } \sigma^{2}=\operatorname{var}\left(X_{n}\right)=
$$

Confidence Intervals: Result

Theorem:
Let X_{n} be i.i.d. with mean μ and variance σ^{2}.
Define $A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right] \geq 95 \% .
$$

Thus, $\left.\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right]$ is a $95 \%-\mathrm{Cl}$ for μ.

Example: Let $X_{n}=1\{$ coin n yields $H\}$. Then

$$
\mu=E\left[X_{n}\right]=p:=\operatorname{Pr}[H] . \text { Also, } \sigma^{2}=\operatorname{var}\left(X_{n}\right)=p(1-p)
$$

Confidence Intervals: Result

Theorem:
Let X_{n} be i.i.d. with mean μ and variance σ^{2}.
Define $A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right] \geq 95 \% .
$$

Thus, $\left.\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right]$ is a $95 \%-\mathrm{Cl}$ for μ.

Example: Let $X_{n}=1\{$ coin n yields $H\}$. Then

$$
\mu=E\left[X_{n}\right]=p:=\operatorname{Pr}[H] \text {. Also, } \sigma^{2}=\operatorname{var}\left(X_{n}\right)=p(1-p) \leq \frac{1}{4}
$$

Confidence Intervals: Result

Theorem:
Let X_{n} be i.i.d. with mean μ and variance σ^{2}.
Define $A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right] \geq 95 \% .
$$

Thus, $\left.\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right]\right]$ is a $95 \%-\mathrm{Cl}$ for μ.

Example: Let $X_{n}=1\{$ coin n yields $H\}$. Then

$$
\mu=E\left[X_{n}\right]=p:=\operatorname{Pr}[H] \text {. Also, } \sigma^{2}=\operatorname{var}\left(X_{n}\right)=p(1-p) \leq \frac{1}{4}
$$

Hence, $\left.\left[A_{n}-4.5 \frac{1 / 2}{\sqrt{n}}, A_{n}+4.5 \frac{1 / 2}{\sqrt{n}}\right]\right]$ is a $95 \%-\mathrm{Cl}$ for p.

Confidence Interval: Analysis

Confidence Interval: Analysis

Proof:

Confidence Interval: Analysis

Proof:

We prove the theorem, i.e., that $A_{n} \pm 4.5 \sigma / \sqrt{n}$ is a $95 \%-\mathrm{Cl}$ for μ.

Confidence Interval: Analysis

Proof:

We prove the theorem, i.e., that $A_{n} \pm 4.5 \sigma / \sqrt{n}$ is a $95 \%-\mathrm{Cl}$ for μ.
From Chebyshev:

$$
\operatorname{Pr}\left[\left|A_{n}-\mu\right| \geq 4.5 \sigma / \sqrt{n}\right] \leq \frac{\operatorname{var}\left(A_{n}\right)}{[4.5 \sigma / \sqrt{n}]^{2}}
$$

Confidence Interval: Analysis

Proof:

We prove the theorem, i.e., that $A_{n} \pm 4.5 \sigma / \sqrt{n}$ is a $95 \%-\mathrm{Cl}$ for μ.
From Chebyshev:

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|A_{n}-\mu\right| \geq 4.5 \sigma / \sqrt{n}\right] \leq \frac{\operatorname{var}\left(A_{n}\right)}{[4.5 \sigma / \sqrt{n}]^{2}} \\
& \quad \leq \frac{\sigma^{2} / n}{20 \sigma^{2} / n}
\end{aligned}
$$

Confidence Interval: Analysis

Proof:

We prove the theorem, i.e., that $A_{n} \pm 4.5 \sigma / \sqrt{n}$ is a $95 \%-\mathrm{Cl}$ for μ.
From Chebyshev:

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|A_{n}-\mu\right| \geq 4.5 \sigma / \sqrt{n}\right] \leq \frac{\operatorname{var}\left(A_{n}\right)}{[4.5 \sigma / \sqrt{n}]^{2}} \\
& \quad \leq \frac{\sigma^{2} / n}{20 \sigma^{2} / n}=5 \% .
\end{aligned}
$$

Confidence Interval: Analysis

Proof:

We prove the theorem, i.e., that $A_{n} \pm 4.5 \sigma / \sqrt{n}$ is a $95 \%-\mathrm{Cl}$ for μ.
From Chebyshev:

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|A_{n}-\mu\right| \geq 4.5 \sigma / \sqrt{n}\right] \leq \frac{\operatorname{var}\left(A_{n}\right)}{[4.5 \sigma / \sqrt{n}]^{2}} \\
& \quad \leq \frac{\sigma^{2} / n}{20 \sigma^{2} / n}=5 \% .
\end{aligned}
$$

Thus,

$$
\operatorname{Pr}\left[\left|A_{n}-\mu\right| \leq 4.5 \sigma / \sqrt{n}\right] \geq 95 \%
$$

Confidence Interval: Analysis

Proof:

We prove the theorem, i.e., that $A_{n} \pm 4.5 \sigma / \sqrt{n}$ is a $95 \%-\mathrm{Cl}$ for μ.
From Chebyshev:

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|A_{n}-\mu\right| \geq 4.5 \sigma / \sqrt{n}\right] \leq \frac{\operatorname{var}\left(A_{n}\right)}{[4.5 \sigma / \sqrt{n}]^{2}} \\
& \quad \leq \frac{\sigma^{2} / n}{20 \sigma^{2} / n}=5 \%
\end{aligned}
$$

Thus,

$$
\operatorname{Pr}\left[\left|A_{n}-\mu\right| \leq 4.5 \sigma / \sqrt{n}\right] \geq 95 \%
$$

Hence,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-4.5 \sigma / \sqrt{n}, A_{n}+4.5 \sigma / \sqrt{n}\right]\right] \geq 95 \%
$$

Linear Regression: Preamble

Linear Regression: Preamble

Recall that the best guess about Y,

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.
Let's review one proof of that fact.

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.
Let's review one proof of that fact.
Let $\hat{Y}:=Y-E[Y]$.

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.
Let's review one proof of that fact.
Let $\hat{Y}:=Y-E[Y]$. Then, $E[\hat{Y}]=0$.

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.
Let's review one proof of that fact.
Let $\hat{Y}:=Y-E[Y]$. Then, $E[\hat{Y}]=0$. So, $E[\hat{Y} c]=0, \forall c$.

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.
Let's review one proof of that fact.
Let $\hat{Y}:=Y-E[Y]$. Then, $E[\hat{Y}]=0$. So, $E[\hat{Y} c]=0, \forall c$. Now,

$$
E\left[(Y-a)^{2}\right]=E\left[(Y-E[Y]+E[Y]-a)^{2}\right]
$$

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.
Let's review one proof of that fact.
Let $\hat{Y}:=Y-E[Y]$. Then, $E[\hat{Y}]=0$. So, $E[\hat{Y} c]=0, \forall c$. Now,

$$
\begin{aligned}
E\left[(Y-a)^{2}\right] & =E\left[(Y-E[Y]+E[Y]-a)^{2}\right] \\
& =E\left[(\hat{Y}+c)^{2}\right]
\end{aligned}
$$

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.
Let's review one proof of that fact.
Let $\hat{Y}:=Y-E[Y]$. Then, $E[\hat{Y}]=0$. So, $E[\hat{Y} c]=0, \forall c$. Now,

$$
\begin{aligned}
E\left[(Y-a)^{2}\right] & =E\left[(Y-E[Y]+E[Y]-a)^{2}\right] \\
& =E\left[(\hat{Y}+c)^{2}\right] \text { with } c=E[Y]-a
\end{aligned}
$$

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.
Let's review one proof of that fact.
Let $\hat{Y}:=Y-E[Y]$. Then, $E[\hat{Y}]=0$. So, $E[\hat{Y} c]=0, \forall c$. Now,

$$
\begin{aligned}
E\left[(Y-a)^{2}\right] & =E\left[(Y-E[Y]+E[Y]-a)^{2}\right] \\
& =E\left[(\hat{Y}+c)^{2}\right] \text { with } c=E[Y]-a \\
& =E\left[\hat{Y}^{2}+2 \hat{Y} c+c^{2}\right]
\end{aligned}
$$

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.
Let's review one proof of that fact.
Let $\hat{Y}:=Y-E[Y]$. Then, $E[\hat{Y}]=0$. So, $E[\hat{Y} c]=0, \forall c$. Now,

$$
\begin{aligned}
E\left[(Y-a)^{2}\right] & =E\left[(Y-E[Y]+E[Y]-a)^{2}\right] \\
& =E\left[(\hat{Y}+c)^{2}\right] \text { with } c=E[Y]-a \\
& =E\left[\hat{Y}^{2}+2 \hat{Y} c+c^{2}\right]=E\left[\hat{Y}^{2}\right]+2 E[\hat{Y} c]+c^{2}
\end{aligned}
$$

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.
Let's review one proof of that fact.
Let $\hat{Y}:=Y-E[Y]$. Then, $E[\hat{Y}]=0$. So, $E[\hat{Y} c]=0, \forall c$. Now,

$$
\begin{aligned}
E\left[(Y-a)^{2}\right] & =E\left[(Y-E[Y]+E[Y]-a)^{2}\right] \\
& =E\left[(\hat{Y}+c)^{2}\right] \text { with } c=E[Y]-a \\
& =E\left[\hat{Y}^{2}+2 \hat{Y} c+c^{2}\right]=E\left[\hat{Y}^{2}\right]+2 E[\hat{Y} c]+c^{2} \\
& =E\left[\hat{Y}^{2}\right]+0+c^{2}
\end{aligned}
$$

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.
Let's review one proof of that fact.
Let $\hat{Y}:=Y-E[Y]$. Then, $E[\hat{Y}]=0$. So, $E[\hat{Y} c]=0, \forall c$. Now,

$$
\begin{aligned}
E\left[(Y-a)^{2}\right] & =E\left[(Y-E[Y]+E[Y]-a)^{2}\right] \\
& =E\left[(\hat{Y}+c)^{2}\right] \text { with } c=E[Y]-a \\
& =E\left[\hat{Y}^{2}+2 \hat{Y} c+c^{2}\right]=E\left[\hat{Y}^{2}\right]+2 E[\hat{Y} c]+c^{2} \\
& =E\left[\hat{Y}^{2}\right]+0+c^{2} \geq E\left[\hat{Y}^{2}\right] .
\end{aligned}
$$

Linear Regression: Preamble

Recall that the best guess about Y, if we know only the distribution of Y, is $E[Y]$.
More precisely, the value of a that minimizes $E\left[(Y-a)^{2}\right]$ is $a=E[Y]$.
Let's review one proof of that fact.
Let $\hat{Y}:=Y-E[Y]$. Then, $E[\hat{Y}]=0$. So, $E[\hat{Y} c]=0, \forall c$. Now,

$$
\begin{aligned}
E\left[(Y-a)^{2}\right] & =E\left[(Y-E[Y]+E[Y]-a)^{2}\right] \\
& =E\left[(\hat{Y}+c)^{2}\right] \text { with } c=E[Y]-a \\
& =E\left[\hat{Y}^{2}+2 \hat{Y} c+c^{2}\right]=E\left[\hat{Y}^{2}\right]+2 E[\hat{Y} c]+c^{2} \\
& =E\left[\hat{Y}^{2}\right]+0+c^{2} \geq E\left[\hat{Y}^{2}\right] .
\end{aligned}
$$

Hence, $E\left[(Y-a)^{2}\right] \geq E\left[(Y-E[Y])^{2}\right], \forall a$.

Linear Regression: Preamble

Linear Regression: Preamble

Here is a picture that summarizes the calculation.

Linear Regression: Preamble

Here is a picture that summarizes the calculation.

$$
\begin{aligned}
& \underbrace{c}_{E[Y]} a \sim \begin{array}{r}
\hat{Y}=Y-E[Y] \\
c=E[Y]-a
\end{array} \\
& E[\hat{Y} c]=0 \Leftrightarrow \hat{Y} \perp c \\
& E\left[(Y-a)^{2}\right]=E\left[(\hat{Y}+c)^{2}\right] \\
& =E\left[\hat{Y}^{2}+2 c \hat{Y}+c^{2}\right] \\
& =E\left[\hat{Y}^{2}\right]+c^{2} \\
& \text { (Pythagoras) }
\end{aligned}
$$

Linear Regression: Preamble

Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose $E[Y]$.

Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y.

Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose $E[Y]$.
Now assume we make some observation X related to Y.
How do we use that observation to improve our guess about Y ?

Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y ?

The idea is to use a function $g(X)$ of the observation to estimate Y.

Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y ?
The idea is to use a function $g(X)$ of the observation to estimate Y.

The simplest function $g(X)$ is a constant that does not depend of X.

Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y ?
The idea is to use a function $g(X)$ of the observation to estimate Y.

The simplest function $g(X)$ is a constant that does not depend of X.

The next simplest function is linear: $g(X)=a+b X$.

Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y ?
The idea is to use a function $g(X)$ of the observation to estimate Y.

The simplest function $g(X)$ is a constant that does not depend of X.

The next simplest function is linear: $g(X)=a+b X$.
What is the best linear function?

Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y ?
The idea is to use a function $g(X)$ of the observation to estimate Y.

The simplest function $g(X)$ is a constant that does not depend of X.

The next simplest function is linear: $g(X)=a+b X$.
What is the best linear function? That is our next topic.

Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y ?
The idea is to use a function $g(X)$ of the observation to estimate Y.
The simplest function $g(X)$ is a constant that does not depend of X.
The next simplest function is linear: $g(X)=a+b X$.
What is the best linear function? That is our next topic.
A bit later, we will consider a general function $g(X)$.

Linear Regression: Motivation

Linear Regression: Motivation

Example 1: 100 people.

Linear Regression: Motivation

Example 1: 100 people.
Let $\left(X_{n}, Y_{n}\right)=$ (height, weight) of person n, for $n=1, \ldots, 100$:

Linear Regression: Motivation

Example 1: 100 people.
Let $\left(X_{n}, Y_{n}\right)=$ (height, weight) of person n, for $n=1, \ldots, 100$:

Fitted Line Plot
Weight $\mathrm{kg}=-114.3+106.5$ Height M

Linear Regression: Motivation

Example 1: 100 people.
Let $\left(X_{n}, Y_{n}\right)=$ (height, weight) of person n, for $n=1, \ldots, 100$:

Fitted Line Plot
Weight $\mathrm{kg}=-114.3+106.5$ Height M

The blue line is $Y=-114.3+106.5 X$. (X in meters, Y in kg.)

Linear Regression: Motivation

Example 1: 100 people.
Let $\left(X_{n}, Y_{n}\right)=$ (height, weight) of person n, for $n=1, \ldots, 100$:

Fitted Line Plot

The blue line is $Y=-114.3+106.5 X$. (X in meters, Y in kg.)
Best linear fit: Linear Regression.

Motivation

Example 2: 15 people.

Motivation

Example 2: 15 people.
We look at two attributes: $\left(X_{n}, Y_{n}\right)$ of person n, for $n=1, \ldots, 15$:

Motivation

Example 2: 15 people.
We look at two attributes: $\left(X_{n}, Y_{n}\right)$ of person n, for $n=1, \ldots, 15$:

Motivation

Example 2: 15 people.
We look at two attributes: $\left(X_{n}, Y_{n}\right)$ of person n, for $n=1, \ldots, 15$:

The line $Y=a+b X$ is the linear regression.

History

History

Galton produced over 340 papers and books. He created the statistical concept of correlation.

History

Galton produced over 340 papers and books. He created the statistical concept of correlation.
In an effort to reach a wider audience, Galton worked on a novel entitled Kantsaywhere.

History

Galton produced over 340 papers and books. He created the statistical concept of correlation.
In an effort to reach a wider audience, Galton worked on a novel entitled Kantsaywhere. The novel described a utopia organized by a eugenic religion, designed to breed fitter and smarter humans.

History

Galton produced over 340 papers and books. He created the statistical concept of correlation.
In an effort to reach a wider audience, Galton worked on a novel entitled Kantsaywhere. The novel described a utopia organized by a eugenic religion, designed to breed fitter and smarter humans.

The lesson is that smart people can also be stupid.

Covariance

Definition The covariance of X and Y is

$$
\operatorname{cov}(X, Y):=E[(X-E[X])(Y-E[Y])]
$$

Covariance

Definition The covariance of X and Y is

$$
\operatorname{cov}(X, Y):=E[(X-E[X])(Y-E[Y])]
$$

Fact

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

Covariance

Definition The covariance of X and Y is

$$
\operatorname{cov}(X, Y):=E[(X-E[X])(Y-E[Y])]
$$

Fact

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

Proof:

$$
E[(X-E[X])(Y-E[Y])]=E[X Y-E[X] Y-X E[Y]+E[X] E[Y]]
$$

Covariance

Definition The covariance of X and Y is

$$
\operatorname{cov}(X, Y):=E[(X-E[X])(Y-E[Y])]
$$

Fact

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

Proof:

$$
\begin{aligned}
& E[(X-E[X])(Y-E[Y])]=E[X Y-E[X] Y-X E[Y]+E[X] E[Y]] \\
& \quad=E[X Y]-E[X] E[Y]-E[X] E[Y]+E[X] E[Y]
\end{aligned}
$$

Covariance

Definition The covariance of X and Y is

$$
\operatorname{cov}(X, Y):=E[(X-E[X])(Y-E[Y])]
$$

Fact

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

Proof:

$$
\begin{aligned}
& E[(X-E[X])(Y-E[Y])]=E[X Y-E[X] Y-X E[Y]+E[X] E[Y]] \\
& \quad=E[X Y]-E[X] E[Y]-E[X] E[Y]+E[X] E[Y] \\
& \quad=E[X Y]-E[X] E[Y] .
\end{aligned}
$$

Examples of Covariance

Four equally likely pairs of values

Examples of Covariance

Four equally likely pairs of values

Note that $E[X]=0$ and $E[Y]=0$ in these examples. Then $\operatorname{cov}(X, Y)=E[X Y]$.

Examples of Covariance

Four equally likely pairs of values

Note that $E[X]=0$ and $E[Y]=0$ in these examples. Then $\operatorname{cov}(X, Y)=E[X Y]$.
When $\operatorname{cov}(X, Y)>0$, the RVs X and Y tend to be large or small together.

Examples of Covariance

Four equally likely pairs of values

Note that $E[X]=0$ and $E[Y]=0$ in these examples. Then $\operatorname{cov}(X, Y)=E[X Y]$.
When $\operatorname{cov}(X, Y)>0$, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.

Examples of Covariance

Four equally likely pairs of values

$$
\operatorname{cov}(X, Y)=1 / 2
$$

$$
\operatorname{cov}(X, Y)=-1 / 2
$$

$\operatorname{cov}(X, Y)=0$

Note that $E[X]=0$ and $E[Y]=0$ in these examples. Then $\operatorname{cov}(X, Y)=E[X Y]$.
When $\operatorname{cov}(X, Y)>0$, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.
When $\operatorname{cov}(X, Y)<0$, when X is larger, Y tends to be smaller.

Examples of Covariance

Four equally likely pairs of values

Note that $E[X]=0$ and $E[Y]=0$ in these examples. Then $\operatorname{cov}(X, Y)=E[X Y]$.
When $\operatorname{cov}(X, Y)>0$, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.
When $\operatorname{cov}(X, Y)<0$, when X is larger, Y tends to be smaller. X and Y are said to be negatively correlated.

Examples of Covariance

Four equally likely pairs of values

$$
\operatorname{cov}(X, Y)=1 / 2
$$

$\operatorname{cov}(X, Y)=-1 / 2$

$\operatorname{cov}(X, Y)=0$

Note that $E[X]=0$ and $E[Y]=0$ in these examples. Then $\operatorname{cov}(X, Y)=E[X Y]$.
When $\operatorname{cov}(X, Y)>0$, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.
When $\operatorname{cov}(X, Y)<0$, when X is larger, Y tends to be smaller. X and Y are said to be negatively correlated.
When $\operatorname{cov}(X, Y)=0$, we say that X and Y are uncorrelated.

Examples of Covariance

Examples of Covariance

$E[X]=1 \times 0.15+2 \times 0.4+3 \times 0.45=1.9$

Examples of Covariance

$E[X]=1 \times 0.15+2 \times 0.4+3 \times 0.45=1.9$
$E\left[X^{2}\right]=1^{2} \times 0.15+2^{2} \times 0.4+3^{2} \times 0.45=5.8$

Examples of Covariance

$E[X]=1 \times 0.15+2 \times 0.4+3 \times 0.45=1.9$
$E\left[X^{2}\right]=1^{2} \times 0.15+2^{2} \times 0.4+3^{2} \times 0.45=5.8$
$E[Y]=1 \times 0.2+2 \times 0.6+3 \times 0.2=2$

Examples of Covariance

$E[X]=1 \times 0.15+2 \times 0.4+3 \times 0.45=1.9$
$E\left[X^{2}\right]=1^{2} \times 0.15+2^{2} \times 0.4+3^{2} \times 0.45=5.8$
$E[Y]=1 \times 0.2+2 \times 0.6+3 \times 0.2=2$
$E[X Y]=1 \times 0.05+1 \times 2 \times 0.1+\cdots+3 \times 3 \times 0.2=4.85$

Examples of Covariance

$E[X]=1 \times 0.15+2 \times 0.4+3 \times 0.45=1.9$
$E\left[X^{2}\right]=1^{2} \times 0.15+2^{2} \times 0.4+3^{2} \times 0.45=5.8$
$E[Y]=1 \times 0.2+2 \times 0.6+3 \times 0.2=2$
$E[X Y]=1 \times 0.05+1 \times 2 \times 0.1+\cdots+3 \times 3 \times 0.2=4.85$ $\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=1.05$

Examples of Covariance

$E[X]=1 \times 0.15+2 \times 0.4+3 \times 0.45=1.9$
$E\left[X^{2}\right]=1^{2} \times 0.15+2^{2} \times 0.4+3^{2} \times 0.45=5.8$
$E[Y]=1 \times 0.2+2 \times 0.6+3 \times 0.2=2$
$E[X Y]=1 \times 0.05+1 \times 2 \times 0.1+\cdots+3 \times 3 \times 0.2=4.85$
$\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=1.05$
$\operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=2.19$.

Properties of Covariance

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y] .
$$

Properties of Covariance

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y] .
$$

Fact
(a) $\operatorname{var}[X]=\operatorname{cov}(X, X)$

Properties of Covariance

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

Fact

(a) $\operatorname{var}[X]=\operatorname{cov}(X, X)$
(b) X, Y independent $\Rightarrow \operatorname{cov}(X, Y)=$

Properties of Covariance

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

Fact

(a) $\operatorname{var}[X]=\operatorname{cov}(X, X)$
(b) X, Y independent $\Rightarrow \operatorname{cov}(X, Y)=0$

Properties of Covariance

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

Fact

(a) $\operatorname{var}[X]=\operatorname{cov}(X, X)$
(b) X, Y independent $\Rightarrow \operatorname{cov}(X, Y)=0$
(c) $\operatorname{cov}(a+X, b+Y)=\operatorname{cov}(X, Y)$

Properties of Covariance

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

Fact
(a) $\operatorname{var}[X]=\operatorname{cov}(X, X)$
(b) X, Y independent $\Rightarrow \operatorname{cov}(X, Y)=0$
(c) $\operatorname{cov}(a+X, b+Y)=\operatorname{cov}(X, Y)$
(d) $\operatorname{cov}(a X+b Y, c U+d V)=a c \cdot \operatorname{cov}(X, U)+a d \cdot \operatorname{cov}(X, V)$ $+b c \cdot \operatorname{cov}(Y, U)+b d \cdot \operatorname{cov}(Y, V)$.

Properties of Covariance

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

Fact
(a) $\operatorname{var}[X]=\operatorname{cov}(X, X)$
(b) X, Y independent $\Rightarrow \operatorname{cov}(X, Y)=0$
(c) $\operatorname{cov}(a+X, b+Y)=\operatorname{cov}(X, Y)$
(d) $\operatorname{cov}(a X+b Y, c U+d V)=a c \cdot \operatorname{cov}(X, U)+a d \cdot \operatorname{cov}(X, V)$ $+b c \cdot \operatorname{cov}(Y, U)+b d \cdot \operatorname{cov}(Y, V)$.

Proof:

(a)-(b)-(c) are obvious.

Properties of Covariance

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

Fact
(a) $\operatorname{var}[X]=\operatorname{cov}(X, X)$
(b) X, Y independent $\Rightarrow \operatorname{cov}(X, Y)=0$
(c) $\operatorname{cov}(a+X, b+Y)=\operatorname{cov}(X, Y)$
(d) $\operatorname{cov}(a X+b Y, c U+d V)=a c \cdot \operatorname{cov}(X, U)+a d \cdot \operatorname{cov}(X, V)$ $+b c \cdot \operatorname{cov}(Y, U)+b d \cdot \operatorname{cov}(Y, V)$.

Proof:

(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean.

Properties of Covariance

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

Fact
(a) $\operatorname{var}[X]=\operatorname{cov}(X, X)$
(b) X, Y independent $\Rightarrow \operatorname{cov}(X, Y)=0$
(c) $\operatorname{cov}(a+X, b+Y)=\operatorname{cov}(X, Y)$
(d) $\operatorname{cov}(a X+b Y, c U+d V)=a c \cdot \operatorname{cov}(X, U)+a d \cdot \operatorname{cov}(X, V)$ $+b c \cdot \operatorname{cov}(Y, U)+b d \cdot \operatorname{cov}(Y, V)$.

Proof:

(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean. Then,

$$
\operatorname{cov}(a X+b Y, c U+d V)=E[(a X+b Y)(c U+d V)]
$$

Properties of Covariance

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

Fact
(a) $\operatorname{var}[X]=\operatorname{cov}(X, X)$
(b) X, Y independent $\Rightarrow \operatorname{cov}(X, Y)=0$
(c) $\operatorname{cov}(a+X, b+Y)=\operatorname{cov}(X, Y)$
(d) $\operatorname{cov}(a X+b Y, c U+d V)=a c \cdot \operatorname{cov}(X, U)+a d \cdot \operatorname{cov}(X, V)$ $+b c \cdot \operatorname{cov}(Y, U)+b d \cdot \operatorname{cov}(Y, V)$.

Proof:

(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean. Then,

$$
\begin{aligned}
& \operatorname{cov}(a X+b Y, c U+d V)=E[(a X+b Y)(c U+d V)] \\
& \quad=a c \cdot E[X U]+a d \cdot E[X V]+b c \cdot E[Y U]+b d \cdot E[Y V]
\end{aligned}
$$

Properties of Covariance

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y] .
$$

Fact
(a) $\operatorname{var}[X]=\operatorname{cov}(X, X)$
(b) X, Y independent $\Rightarrow \operatorname{cov}(X, Y)=0$
(c) $\operatorname{cov}(a+X, b+Y)=\operatorname{cov}(X, Y)$
(d) $\operatorname{cov}(a X+b Y, c U+d V)=a c \cdot \operatorname{cov}(X, U)+a d \cdot \operatorname{cov}(X, V)$ $+b c \cdot \operatorname{cov}(Y, U)+b d \cdot \operatorname{cov}(Y, V)$.

Proof:

(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean. Then,

$$
\begin{aligned}
& \operatorname{cov}(a X+b Y, c U+d V)=E[(a X+b Y)(c U+d V)] \\
& \quad=a c \cdot E[X U]+a d \cdot E[X V]+b c \cdot E[Y U]+b d \cdot E[Y V] \\
& \quad=a c \cdot \operatorname{cov}(X, U)+a d \cdot \operatorname{cov}(X, V)+b c \cdot \operatorname{cov}(Y, U)+b d \cdot \operatorname{cov}(Y, V)
\end{aligned}
$$

Linear Regression: Non-Bayesian

Definition

Given the samples $\left\{\left(X_{n}, Y_{n}\right), n=1, \ldots, N\right\}$,

Linear Regression: Non-Bayesian

Definition

Given the samples $\left\{\left(X_{n}, Y_{n}\right), n=1, \ldots, N\right\}$, the Linear Regression of Y over X is

$$
\hat{Y}=a+b X
$$

Linear Regression: Non-Bayesian

Definition

Given the samples $\left\{\left(X_{n}, Y_{n}\right), n=1, \ldots, N\right\}$, the Linear Regression of Y over X is

$$
\hat{Y}=a+b X
$$

where (a, b) minimize

$$
\sum_{n=1}^{N}\left(Y_{n}-a-b X_{n}\right)^{2}
$$

Linear Regression: Non-Bayesian

Definition

Given the samples $\left\{\left(X_{n}, Y_{n}\right), n=1, \ldots, N\right\}$, the Linear Regression of Y over X is

$$
\hat{Y}=a+b X
$$

where (a, b) minimize

$$
\sum_{n=1}^{N}\left(Y_{n}-a-b X_{n}\right)^{2} .
$$

Thus, $\hat{Y}_{n}=a+b X_{n}$ is our guess about Y_{n} given X_{n}.

Linear Regression: Non-Bayesian

Definition

Given the samples $\left\{\left(X_{n}, Y_{n}\right), n=1, \ldots, N\right\}$, the Linear Regression of Y over X is

$$
\hat{Y}=a+b X
$$

where (a, b) minimize

$$
\sum_{n=1}^{N}\left(Y_{n}-a-b X_{n}\right)^{2} .
$$

Thus, $\hat{Y}_{n}=a+b X_{n}$ is our guess about Y_{n} given X_{n}. The squared error is $\left(Y_{n}-\hat{Y}_{n}\right)^{2}$.

Linear Regression: Non-Bayesian

Definition

Given the samples $\left\{\left(X_{n}, Y_{n}\right), n=1, \ldots, N\right\}$, the Linear Regression of Y over X is

$$
\hat{Y}=a+b X
$$

where (a, b) minimize

$$
\sum_{n=1}^{N}\left(Y_{n}-a-b X_{n}\right)^{2} .
$$

Thus, $\hat{Y}_{n}=a+b X_{n}$ is our guess about Y_{n} given X_{n}. The squared error is $\left(Y_{n}-\hat{Y}_{n}\right)^{2}$. The LR minimizes the sum of the squared errors.

Linear Regression: Non-Bayesian

Definition

Given the samples $\left\{\left(X_{n}, Y_{n}\right), n=1, \ldots, N\right\}$, the Linear
Regression of Y over X is

$$
\hat{Y}=a+b X
$$

where (a, b) minimize

$$
\sum_{n=1}^{N}\left(Y_{n}-a-b X_{n}\right)^{2}
$$

Thus, $\hat{Y}_{n}=a+b X_{n}$ is our guess about Y_{n} given X_{n}. The squared error is $\left(Y_{n}-\hat{Y}_{n}\right)^{2}$. The LR minimizes the sum of the squared errors.
Why the squares and not the absolute values?

Linear Regression: Non-Bayesian

Definition

Given the samples $\left\{\left(X_{n}, Y_{n}\right), n=1, \ldots, N\right\}$, the Linear
Regression of Y over X is

$$
\hat{Y}=a+b X
$$

where (a, b) minimize

$$
\sum_{n=1}^{N}\left(Y_{n}-a-b X_{n}\right)^{2}
$$

Thus, $\hat{Y}_{n}=a+b X_{n}$ is our guess about Y_{n} given X_{n}. The squared error is $\left(Y_{n}-\hat{Y}_{n}\right)^{2}$. The LR minimizes the sum of the squared errors.
Why the squares and not the absolute values? Main justification: much easier!

Linear Regression: Non-Bayesian

Definition

Given the samples $\left\{\left(X_{n}, Y_{n}\right), n=1, \ldots, N\right\}$, the Linear
Regression of Y over X is

$$
\hat{Y}=a+b X
$$

where (a, b) minimize

$$
\sum_{n=1}^{N}\left(Y_{n}-a-b X_{n}\right)^{2}
$$

Thus, $\hat{Y}_{n}=a+b X_{n}$ is our guess about Y_{n} given X_{n}. The squared error is $\left(Y_{n}-\hat{Y}_{n}\right)^{2}$. The LR minimizes the sum of the squared errors.
Why the squares and not the absolute values? Main justification: much easier!
Note: This is a non-Bayesian formulation: there is no prior.

Linear Least Squares Estimate

Linear Least Squares Estimate

Definition

Linear Least Squares Estimate

Definition

Given two RVs X and Y with known distribution $\operatorname{Pr}[X=x, Y=y]$,

Linear Least Squares Estimate

Definition

Given two RVs X and Y with known distribution $\operatorname{Pr}[X=x, Y=y]$, the Linear Least Squares Estimate of Y given X is

$$
\hat{Y}=a+b X=: L[Y \mid X]
$$

Linear Least Squares Estimate

Definition

Given two RVs X and Y with known distribution $\operatorname{Pr}[X=x, Y=y]$, the Linear Least Squares Estimate of Y given X is

$$
\hat{Y}=a+b X=: L[Y \mid X]
$$

where (a, b) minimize

$$
g(a, b):=E\left[(Y-a-b X)^{2}\right] .
$$

Linear Least Squares Estimate

Definition

Given two RVs X and Y with known distribution $\operatorname{Pr}[X=x, Y=y]$, the Linear Least Squares Estimate of Y given X is

$$
\hat{Y}=a+b X=: L[Y \mid X]
$$

where (a, b) minimize

$$
g(a, b):=E\left[(Y-a-b X)^{2}\right] .
$$

Thus, $\hat{Y}=a+b X$ is our guess about Y given X.

Linear Least Squares Estimate

Definition

Given two RVs X and Y with known distribution $\operatorname{Pr}[X=x, Y=y]$, the Linear Least Squares Estimate of Y given X is

$$
\hat{Y}=a+b X=: L[Y \mid X]
$$

where (a, b) minimize

$$
g(a, b):=E\left[(Y-a-b X)^{2}\right] .
$$

Thus, $\hat{Y}=a+b X$ is our guess about Y given X. The squared error is $(Y-\hat{Y})^{2}$.

Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution
$\operatorname{Pr}[X=x, Y=y]$, the Linear Least Squares Estimate of Y given X is

$$
\hat{Y}=a+b X=: L[Y \mid X]
$$

where (a, b) minimize

$$
g(a, b):=E\left[(Y-a-b X)^{2}\right] .
$$

Thus, $\hat{Y}=a+b X$ is our guess about Y given X. The squared error is $(Y-\hat{Y})^{2}$. The LLSE minimizes the expected value of the squared error.

Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution
$\operatorname{Pr}[X=x, Y=y]$, the Linear Least Squares Estimate of Y given X is

$$
\hat{Y}=a+b X=: L[Y \mid X]
$$

where (a, b) minimize

$$
g(a, b):=E\left[(Y-a-b X)^{2}\right] .
$$

Thus, $\hat{Y}=a+b X$ is our guess about Y given X. The squared error is $(Y-\hat{Y})^{2}$. The LLSE minimizes the expected value of the squared error.
Why the squares and not the absolute values?

Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution
$\operatorname{Pr}[X=x, Y=y]$, the Linear Least Squares Estimate of Y given X is

$$
\hat{Y}=a+b X=: L[Y \mid X]
$$

where (a, b) minimize

$$
g(a, b):=E\left[(Y-a-b X)^{2}\right] .
$$

Thus, $\hat{Y}=a+b X$ is our guess about Y given X. The squared error is $(Y-\hat{Y})^{2}$. The LLSE minimizes the expected value of the squared error.
Why the squares and not the absolute values? Main justification: much easier!

Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution
$\operatorname{Pr}[X=x, Y=y]$, the Linear Least Squares Estimate of Y given
X is

$$
\hat{Y}=a+b X=: L[Y \mid X]
$$

where (a, b) minimize

$$
g(a, b):=E\left[(Y-a-b X)^{2}\right]
$$

Thus, $\hat{Y}=a+b X$ is our guess about Y given X. The squared error is $(Y-\hat{Y})^{2}$. The LLSE minimizes the expected value of the squared error.
Why the squares and not the absolute values? Main justification: much easier!
Note: This is a Bayesian formulation: there is a prior.

LR: Non-Bayesian or Uniform?

LR: Non-Bayesian or Uniform?

Observe that

$$
\frac{1}{N} \sum_{n=1}^{N}\left(Y_{n}-a-b X_{n}\right)^{2}=E\left[(Y-a-b X)^{2}\right]
$$

where one assumes that

$$
(X, Y)=\left(X_{n}, Y_{n}\right), \text { w.p. } \frac{1}{N} \text { for } n=1, \ldots, N
$$

LR: Non-Bayesian or Uniform?

Observe that

$$
\frac{1}{N} \sum_{n=1}^{N}\left(Y_{n}-a-b X_{n}\right)^{2}=E\left[(Y-a-b X)^{2}\right]
$$

where one assumes that

$$
(X, Y)=\left(X_{n}, Y_{n}\right), \text { w.p. } \frac{1}{N} \text { for } n=1, \ldots, N
$$

That is, the non-Bayesian LR is equivalent to the Bayesian LLSE that assumes that (X, Y) is uniform on the set of observed samples.

LR: Non-Bayesian or Uniform?

Observe that

$$
\frac{1}{N} \sum_{n=1}^{N}\left(Y_{n}-a-b X_{n}\right)^{2}=E\left[(Y-a-b X)^{2}\right]
$$

where one assumes that

$$
(X, Y)=\left(X_{n}, Y_{n}\right), \text { w.p. } \frac{1}{N} \text { for } n=1, \ldots, N
$$

That is, the non-Bayesian LR is equivalent to the Bayesian LLSE that assumes that (X, Y) is uniform on the set of observed samples.

Thus, we can study the two cases LR and LLSE in one shot.

LR: Non-Bayesian or Uniform?

Observe that

$$
\frac{1}{N} \sum_{n=1}^{N}\left(Y_{n}-a-b X_{n}\right)^{2}=E\left[(Y-a-b X)^{2}\right]
$$

where one assumes that

$$
(X, Y)=\left(X_{n}, Y_{n}\right), \text { w.p. } \frac{1}{N} \text { for } n=1, \ldots, N
$$

That is, the non-Bayesian LR is equivalent to the Bayesian LLSE that assumes that (X, Y) is uniform on the set of observed samples.
Thus, we can study the two cases LR and LLSE in one shot. However, the interpretations are different!

LLSE

LLSE

Theorem

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) \text {. }
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) .
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) .
$$

$$
Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X]) .
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) .
$$

$$
Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[\hat{X}]}(X-E[X]) \text {. Hence, } E[Y-\hat{Y}]=0 \text {. }
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) .
$$

$$
Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[\hat{X}]}(X-E[X]) \text {. Hence, } E[Y-\hat{Y}]=0 \text {. }
$$

Also, $E[(Y-\hat{Y}) X]=0$,

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

$$
Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[\hat{X}]}(X-E[X]) \text {. Hence, } E[Y-\hat{Y}]=0 \text {. }
$$

Also, $E[(Y-\hat{Y}) X]=0$, after a bit of algebra.

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

$$
Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X]) \text {. Hence, } E[Y-\hat{Y}]=0 \text {. }
$$

Also, $E[(Y-\hat{Y}) X]=0$, after a bit of algebra. (See next slide.)

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) \text {. }
$$

$$
Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X]) \text {. Hence, } E[Y-\hat{Y}]=0 \text {. }
$$

Also, $E[(Y-\hat{Y}) X]=0$, after a bit of algebra. (See next slide.)
Hence, by combining the two brown equalities,
$E[(Y-\hat{Y})(c+d X)]=0$.

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) \text {. }
$$

$$
Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X]) \text {. Hence, } E[Y-\hat{Y}]=0 \text {. }
$$

Also, $E[(Y-\hat{Y}) X]=0$, after a bit of algebra. (See next slide.)
Hence, by combining the two brown equalities,
$E[(Y-\hat{Y})(c+d X)]=0$. Then, $E[(Y-\hat{Y})(\hat{Y}-a-b X)]=0, \forall a, b$.

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) \text {. }
$$

$Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])$. Hence, $E[Y-\hat{Y}]=0$.
Also, $E[(Y-\hat{Y}) X]=0$, after a bit of algebra. (See next slide.)
Hence, by combining the two brown equalities,
$E[(Y-\hat{Y})(c+d X)]=0$. Then, $E[(Y-\hat{Y})(\hat{Y}-a-b X)]=0, \forall a, b$.
Indeed: $\hat{Y}=\alpha+\beta X$ for some α, β,

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) \text {. }
$$

$Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])$. Hence, $E[Y-\hat{Y}]=0$.
Also, $E[(Y-\hat{Y}) X]=0$, after a bit of algebra. (See next slide.)
Hence, by combining the two brown equalities,
$E[(Y-\hat{Y})(c+d X)]=0$. Then, $E[(Y-\hat{Y})(\hat{Y}-a-b X)]=0, \forall a, b$.
Indeed: $\hat{Y}=\alpha+\beta X$ for some α, β, so that $\hat{Y}-a-b X=c+d X$ for some c, d.

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) \text {. }
$$

$Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])$. Hence, $E[Y-\hat{Y}]=0$.
Also, $E[(Y-\hat{Y}) X]=0$, after a bit of algebra. (See next slide.)
Hence, by combining the two brown equalities,
$E[(Y-\hat{Y})(c+d X)]=0$. Then, $E[(Y-\hat{Y})(\hat{Y}-a-b X)]=0, \forall a, b$.
Indeed: $\hat{Y}=\alpha+\beta X$ for some α, β, so that $\hat{Y}-a-b X=c+d X$ for some c, d. Now,

$$
E\left[(Y-a-b X)^{2}\right]=E\left[(Y-\hat{Y}+\hat{Y}-a-b X)^{2}\right]
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) \text {. }
$$

$Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])$. Hence, $E[Y-\hat{Y}]=0$.
Also, $E[(Y-\hat{Y}) X]=0$, after a bit of algebra. (See next slide.)
Hence, by combining the two brown equalities,
$E[(Y-\hat{Y})(c+d X)]=0$. Then, $E[(Y-\hat{Y})(\hat{Y}-a-b X)]=0, \forall a, b$.
Indeed: $\hat{Y}=\alpha+\beta X$ for some α, β, so that $\hat{Y}-a-b X=c+d X$ for some c, d. Now,

$$
\begin{gathered}
E\left[(Y-a-b X)^{2}\right]=E\left[(Y-\hat{Y}+\hat{Y}-a-b X)^{2}\right] \\
\quad=E\left[(Y-\hat{Y})^{2}\right]+E\left[(\hat{Y}-a-b X)^{2}\right]+0
\end{gathered}
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) \text {. }
$$

$Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])$. Hence, $E[Y-\hat{Y}]=0$.
Also, $E[(Y-\hat{Y}) X]=0$, after a bit of algebra. (See next slide.)
Hence, by combining the two brown equalities,
$E[(Y-\hat{Y})(c+d X)]=0$. Then, $E[(Y-\hat{Y})(\hat{Y}-a-b X)]=0, \forall a, b$.
Indeed: $\hat{Y}=\alpha+\beta X$ for some α, β, so that $\hat{Y}-a-b X=c+d X$ for some c, d. Now,

$$
\begin{aligned}
& E\left[(Y-a-b X)^{2}\right]=E\left[(Y-\hat{Y}+\hat{Y}-a-b X)^{2}\right] \\
& \quad=E\left[(Y-\hat{Y})^{2}\right]+E\left[(\hat{Y}-a-b X)^{2}\right]+0 \geq E\left[(Y-\hat{Y})^{2}\right] .
\end{aligned}
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) \text {. }
$$

$Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])$. Hence, $E[Y-\hat{Y}]=0$.
Also, $E[(Y-\hat{Y}) X]=0$, after a bit of algebra. (See next slide.)
Hence, by combining the two brown equalities,
$E[(Y-\hat{Y})(c+d X)]=0$. Then, $E[(Y-\hat{Y})(\hat{Y}-a-b X)]=0, \forall a, b$. Indeed: $\hat{Y}=\alpha+\beta X$ for some α, β, so that $\hat{Y}-a-b X=c+d X$ for some c, d. Now,

$$
\begin{aligned}
& E\left[(Y-a-b X)^{2}\right]=E\left[(Y-\hat{Y}+\hat{Y}-a-b X)^{2}\right] \\
& \quad=E\left[(Y-\hat{Y})^{2}\right]+E\left[(\hat{Y}-a-b X)^{2}\right]+0 \geq E\left[(Y-\hat{Y})^{2}\right] .
\end{aligned}
$$

This shows that $E\left[(Y-\hat{Y})^{2}\right] \leq E\left[(Y-a-b X)^{2}\right]$, for all (a, b).

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 1:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

$Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])$. Hence, $E[Y-\hat{Y}]=0$.
Also, $E[(Y-\hat{Y}) X]=0$, after a bit of algebra. (See next slide.)
Hence, by combining the two brown equalities,
$E[(Y-\hat{Y})(c+d X)]=0$. Then, $E[(Y-\hat{Y})(\hat{Y}-a-b X)]=0, \forall a, b$.
Indeed: $\hat{Y}=\alpha+\beta X$ for some α, β, so that $\hat{Y}-a-b X=c+d X$ for some c, d. Now,

$$
\begin{aligned}
& E\left[(Y-a-b X)^{2}\right]=E\left[(Y-\hat{Y}+\hat{Y}-a-b X)^{2}\right] \\
& \quad=E\left[(Y-\hat{Y})^{2}\right]+E\left[(\hat{Y}-a-b X)^{2}\right]+0 \geq E\left[(Y-\hat{Y})^{2}\right] .
\end{aligned}
$$

This shows that $E\left[(Y-\hat{Y})^{2}\right] \leq E\left[(Y-a-b X)^{2}\right]$, for all (a, b).
Thus \hat{Y} is the LLSE.

A Bit of Algebra

$$
Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X]) .
$$

A Bit of Algebra

$$
Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X]) .
$$

Hence, $E[Y-\hat{Y}]=0$.

A Bit of Algebra

$$
Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X]) .
$$

Hence, $E[Y-\hat{Y}]=0$. We want to show that $E[(Y-\hat{Y}) X]=0$.

A Bit of Algebra

$$
Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X]) .
$$

Hence, $E[Y-\hat{Y}]=0$. We want to show that $E[(Y-\hat{Y}) X]=0$.
Note that

$$
E[(Y-\hat{Y}) X]=E[(Y-\hat{Y})(X-E[X])],
$$

A Bit of Algebra

$Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])$.
Hence, $E[Y-\hat{Y}]=0$. We want to show that $E[(Y-\hat{Y}) X]=0$.
Note that

$$
E[(Y-\hat{Y}) X]=E[(Y-\hat{Y})(X-E[X])],
$$

because $E[(Y-\hat{Y}) E[X]]=0$.

A Bit of Algebra

$Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])$.
Hence, $E[Y-\hat{Y}]=0$. We want to show that $E[(Y-\hat{Y}) X]=0$.
Note that

$$
E[(Y-\hat{Y}) X]=E[(Y-\hat{Y})(X-E[X])]
$$

because $E[(Y-\hat{Y}) E[X]]=0$.
Now,

$$
\begin{aligned}
& E[(Y-\hat{Y})(X-E[X])] \\
& \quad=E[(Y-E[Y])(X-E[X])]-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]} E[(X-E[X])(X-E[X])]
\end{aligned}
$$

A Bit of Algebra

$Y-\hat{Y}=(Y-E[Y])-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])$.
Hence, $E[Y-\hat{Y}]=0$. We want to show that $E[(Y-\hat{Y}) X]=0$.
Note that

$$
E[(Y-\hat{Y}) X]=E[(Y-\hat{Y})(X-E[X])]
$$

because $E[(Y-\hat{Y}) E[X]]=0$.
Now,

$$
\begin{aligned}
& E[(Y-\hat{Y})(X-E[X])] \\
& \quad=E[(Y-E[Y])(X-E[X])]-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]} E[(X-E[X])(X-E[X])] \\
& \quad={ }^{(*)} \operatorname{cov}(X, Y)-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]} \operatorname{var}[X]=0 . \quad \square
\end{aligned}
$$

${ }^{(*)}$ Recall that $\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]$ and $\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]$.

A picture

The following picture explains the algebra:

A picture

The following picture explains the algebra:

A picture

The following picture explains the algebra:

We saw that $E[Y-\hat{Y}]=0$.

A picture

The following picture explains the algebra:

We saw that $E[Y-\hat{Y}]=0$. In the picture, this says that $Y-\hat{Y} \perp c$, for any c.

A picture

The following picture explains the algebra:

We saw that $E[Y-\hat{Y}]=0$. In the picture, this says that $Y-\hat{Y} \perp c$, for any c. We also saw that $E[(Y-\hat{Y}) X]=0$. In the picture, this says that $Y-\hat{Y} \perp X$.

A picture

The following picture explains the algebra:

We saw that $E[Y-\hat{Y}]=0$. In the picture, this says that $Y-\hat{Y} \perp c$, for any c. We also saw that $E[(Y-\hat{Y}) X]=0$. In the picture, this says that $Y-\hat{Y} \perp X$. Hence, $Y-\hat{Y}$ is orthogonal to the plane $\{c+d X, c, d \in \mathfrak{R}\}$.

A picture

The following picture explains the algebra:

We saw that $E[Y-\hat{Y}]=0$. In the picture, this says that $Y-\hat{Y} \perp c$, for any c. We also saw that $E[(Y-\hat{Y}) X]=0$. In the picture, this says that $Y-\hat{Y} \perp X$. Hence, $Y-\hat{Y}$ is orthogonal to the plane $\{c+d X, c, d \in \mathfrak{R}\}$.
Consequently, $Y-\hat{Y} \perp \hat{Y}-a-b X$. Pythagoras then says that \hat{Y} is closer to Y than $a+b X$.

A picture

The following picture explains the algebra:

We saw that $E[Y-\hat{Y}]=0$. In the picture, this says that $Y-\hat{Y} \perp c$, for any c. We also saw that $E[(Y-\hat{Y}) X]=0$. In the picture, this says that $Y-\hat{Y} \perp X$. Hence, $Y-\hat{Y}$ is orthogonal to the plane $\{c+d X, c, d \in \mathfrak{R}\}$.
Consequently, $Y-\hat{Y} \perp \hat{Y}-a-b X$. Pythagoras then says that \hat{Y} is closer to Y than $a+b X$.

That is, \hat{Y} is the projection of Y onto the plane.

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) .
$$

First assume that $E[X]=0$ and $E[Y]=0$.

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) .
$$

First assume that $E[X]=0$ and $E[Y]=0$. Then,

$$
g(a, b):=E\left[(Y-a-b X)^{2}\right]
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

First assume that $E[X]=0$ and $E[Y]=0$. Then,

$$
\begin{aligned}
g(a, b) & :=E\left[(Y-a-b X)^{2}\right] \\
& =E\left[Y^{2}+a^{2}+b^{2} X^{2}-2 a Y-2 b X Y+2 a b X\right]
\end{aligned}
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

First assume that $E[X]=0$ and $E[Y]=0$. Then,

$$
\begin{aligned}
g(a, b) & :=E\left[(Y-a-b X)^{2}\right] \\
& =E\left[Y^{2}+a^{2}+b^{2} X^{2}-2 a Y-2 b X Y+2 a b X\right] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 a E[Y]-2 b E[X Y]+2 a b E[X]
\end{aligned}
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

First assume that $E[X]=0$ and $E[Y]=0$. Then,

$$
\begin{aligned}
g(a, b) & :=E\left[(Y-a-b X)^{2}\right] \\
& =E\left[Y^{2}+a^{2}+b^{2} X^{2}-2 a Y-2 b X Y+2 a b X\right] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 a E[Y]-2 b E[X Y]+2 a b E[X] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 b E[X Y] .
\end{aligned}
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

First assume that $E[X]=0$ and $E[Y]=0$. Then,

$$
\begin{aligned}
g(a, b) & :=E\left[(Y-a-b X)^{2}\right] \\
& =E\left[Y^{2}+a^{2}+b^{2} X^{2}-2 a Y-2 b X Y+2 a b X\right] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 a E[Y]-2 b E[X Y]+2 a b E[X] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 b E[X Y]
\end{aligned}
$$

We set the derivatives of g w.r.t. a and b equal to zero.

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

First assume that $E[X]=0$ and $E[Y]=0$. Then,

$$
\begin{aligned}
g(a, b) & :=E\left[(Y-a-b X)^{2}\right] \\
& =E\left[Y^{2}+a^{2}+b^{2} X^{2}-2 a Y-2 b X Y+2 a b X\right] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 a E[Y]-2 b E[X Y]+2 a b E[X] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 b E[X Y]
\end{aligned}
$$

We set the derivatives of g w.r.t. a and b equal to zero.

$$
0=\frac{\partial}{\partial a} g(a, b)=2 a
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

First assume that $E[X]=0$ and $E[Y]=0$. Then,

$$
\begin{aligned}
g(a, b) & :=E\left[(Y-a-b X)^{2}\right] \\
& =E\left[Y^{2}+a^{2}+b^{2} X^{2}-2 a Y-2 b X Y+2 a b X\right] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 a E[Y]-2 b E[X Y]+2 a b E[X] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 b E[X Y]
\end{aligned}
$$

We set the derivatives of g w.r.t. a and b equal to zero.

$$
0=\frac{\partial}{\partial a} g(a, b)=2 a \Rightarrow a=0
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

First assume that $E[X]=0$ and $E[Y]=0$. Then,

$$
\begin{aligned}
g(a, b) & :=E\left[(Y-a-b X)^{2}\right] \\
& =E\left[Y^{2}+a^{2}+b^{2} X^{2}-2 a Y-2 b X Y+2 a b X\right] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 a E[Y]-2 b E[X Y]+2 a b E[X] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 b E[X Y]
\end{aligned}
$$

We set the derivatives of g w.r.t. a and b equal to zero.

$$
\begin{aligned}
& 0=\frac{\partial}{\partial a} g(a, b)=2 a \Rightarrow a=0 \\
& 0=\frac{\partial}{\partial b} g(a, b)=2 b E\left[X^{2}\right]-2 E[X Y]
\end{aligned}
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

First assume that $E[X]=0$ and $E[Y]=0$. Then,

$$
\begin{aligned}
g(a, b) & :=E\left[(Y-a-b X)^{2}\right] \\
& =E\left[Y^{2}+a^{2}+b^{2} X^{2}-2 a Y-2 b X Y+2 a b X\right] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 a E[Y]-2 b E[X Y]+2 a b E[X] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 b E[X Y]
\end{aligned}
$$

We set the derivatives of g w.r.t. a and b equal to zero.

$$
\begin{aligned}
& 0=\frac{\partial}{\partial a} g(a, b)=2 a \Rightarrow a=0 \\
& 0=\frac{\partial}{\partial b} g(a, b)=2 b E\left[X^{2}\right]-2 E[X Y] \\
& \Rightarrow b=E[X Y] / E\left[X^{2}\right]=\operatorname{cov}(X, Y) / \operatorname{var}(X)
\end{aligned}
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

First assume that $E[X]=0$ and $E[Y]=0$. Then,

$$
\begin{aligned}
g(a, b) & :=E\left[(Y-a-b X)^{2}\right] \\
& =E\left[Y^{2}+a^{2}+b^{2} X^{2}-2 a Y-2 b X Y+2 a b X\right] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 a E[Y]-2 b E[X Y]+2 a b E[X] \\
& =a^{2}+E\left[Y^{2}\right]+b^{2} E\left[X^{2}\right]-2 b E[X Y]
\end{aligned}
$$

We set the derivatives of g w.r.t. a and b equal to zero.

$$
\begin{aligned}
& 0=\frac{\partial}{\partial a} g(a, b)=2 a \Rightarrow a=0 \\
& 0=\frac{\partial}{\partial b} g(a, b)=2 b E\left[X^{2}\right]-2 E[X Y] \\
& \Rightarrow b=E[X Y] / E\left[X^{2}\right]=\operatorname{cov}(X, Y) / \operatorname{var}(X)
\end{aligned}
$$

LLSE

Theorem
Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$. Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

LLSE

Theorem
Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

In the general case (i.e., when $E[X]$ and $E[Y]$ may be nonzero),

LLSE

Theorem
Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

In the general case (i.e., when $E[X]$ and $E[Y]$ may be nonzero),

$$
Y-a-b X=Y-E[Y]-(a-E[Y])-b(X-E[X])+b E[X]
$$

LLSE

Theorem
Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

In the general case (i.e., when $E[X]$ and $E[Y]$ may be nonzero),

$$
\begin{aligned}
Y-a-b X & =Y-E[Y]-(a-E[Y])-b(X-E[X])+b E[X] \\
& =Y-E[Y]-(a-E[Y]+b E[X])-b(X-E[X])
\end{aligned}
$$

LLSE

Theorem
Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,
Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

In the general case (i.e., when $E[X]$ and $E[Y]$ may be nonzero),

$$
\begin{aligned}
Y-a-b X & =Y-E[Y]-(a-E[Y])-b(X-E[X])+b E[X] \\
& =Y-E[Y]-(a-E[Y]+b E[X])-b(X-E[X]) \\
& =Y-E[Y]-c-b(X-E[X])
\end{aligned}
$$

LLSE

Theorem
Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

In the general case (i.e., when $E[X]$ and $E[Y]$ may be nonzero),

$$
\begin{aligned}
Y-a-b X & =Y-E[Y]-(a-E[Y])-b(X-E[X])+b E[X] \\
& =Y-E[Y]-(a-E[Y]+b E[X])-b(X-E[X]) \\
& =Y-E[Y]-c-b(X-E[X])
\end{aligned}
$$

with $c=a-E[Y]+b E[X]$.

LLSE

Theorem
Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

In the general case (i.e., when $E[X]$ and $E[Y]$ may be nonzero),

$$
\begin{aligned}
Y-a-b X & =Y-E[Y]-(a-E[Y])-b(X-E[X])+b E[X] \\
& =Y-E[Y]-(a-E[Y]+b E[X])-b(X-E[X]) \\
& =Y-E[Y]-c-b(X-E[X])
\end{aligned}
$$

with $c=a-E[Y]+b E[X]$.
From the first part, we know that the best values of c and b are

LLSE

Theorem
Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,
Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

In the general case (i.e., when $E[X]$ and $E[Y]$ may be nonzero),

$$
\begin{aligned}
Y-a-b X & =Y-E[Y]-(a-E[Y])-b(X-E[X])+b E[X] \\
& =Y-E[Y]-(a-E[Y]+b E[X])-b(X-E[X]) \\
& =Y-E[Y]-c-b(X-E[X])
\end{aligned}
$$

with $c=a-E[Y]+b E[X]$.
From the first part, we know that the best values of c and b are

$$
c=0 \text { and } b=\operatorname{cov}(X-E[X], Y-E[Y]) / \operatorname{var}(X-E[X])=\operatorname{cov}(X, Y) / \operatorname{var}(X)
$$

LLSE

Theorem
Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,
Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

In the general case (i.e., when $E[X]$ and $E[Y]$ may be nonzero),

$$
\begin{aligned}
Y-a-b X & =Y-E[Y]-(a-E[Y])-b(X-E[X])+b E[X] \\
& =Y-E[Y]-(a-E[Y]+b E[X])-b(X-E[X]) \\
& =Y-E[Y]-c-b(X-E[X])
\end{aligned}
$$

with $c=a-E[Y]+b E[X]$.
From the first part, we know that the best values of c and b are

$$
c=0 \text { and } b=\operatorname{cov}(X-E[X], Y-E[Y]) / \operatorname{var}(X-E[X])=\operatorname{cov}(X, Y) / \operatorname{var}(X)
$$

Thus, $0=c=a-E[Y]+b E[X]$,

LLSE

Theorem
Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,
Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

In the general case (i.e., when $E[X]$ and $E[Y]$ may be nonzero),

$$
\begin{aligned}
Y-a-b X & =Y-E[Y]-(a-E[Y])-b(X-E[X])+b E[X] \\
& =Y-E[Y]-(a-E[Y]+b E[X])-b(X-E[X]) \\
& =Y-E[Y]-c-b(X-E[X])
\end{aligned}
$$

with $c=a-E[Y]+b E[X]$.
From the first part, we know that the best values of c and b are

$$
c=0 \text { and } b=\operatorname{cov}(X-E[X], Y-E[Y]) / \operatorname{var}(X-E[X])=\operatorname{cov}(X, Y) / \operatorname{var}(X)
$$

Thus, $0=c=a-E[Y]+b E[X]$, so that $a=E[Y]-b E[X]$.

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,
Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

In the general case (i.e., when $E[X]$ and $E[Y]$ may be nonzero),

$$
\begin{aligned}
Y-a-b X & =Y-E[Y]-(a-E[Y])-b(X-E[X])+b E[X] \\
& =Y-E[Y]-(a-E[Y]+b E[X])-b(X-E[X]) \\
& =Y-E[Y]-c-b(X-E[X])
\end{aligned}
$$

with $c=a-E[Y]+b E[X]$.
From the first part, we know that the best values of c and b are

$$
c=0 \text { and } b=\operatorname{cov}(X-E[X], Y-E[Y]) / \operatorname{var}(X-E[X])=\operatorname{cov}(X, Y) / \operatorname{var}(X)
$$

Thus, $0=c=a-E[Y]+b E[X]$, so that $a=E[Y]-b E[X]$. Hence,

$$
a+b X=E[Y]-b E[X]+b X=E[Y]+b(X-E[X])
$$

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\operatorname{Pr}[X=x, Y=y]$.
Then,

Proof 2:

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

In the general case (i.e., when $E[X]$ and $E[Y]$ may be nonzero),

$$
\begin{aligned}
Y-a-b X & =Y-E[Y]-(a-E[Y])-b(X-E[X])+b E[X] \\
& =Y-E[Y]-(a-E[Y]+b E[X])-b(X-E[X]) \\
& =Y-E[Y]-c-b(X-E[X])
\end{aligned}
$$

with $c=a-E[Y]+b E[X]$.
From the first part, we know that the best values of c and b are

$$
c=0 \text { and } b=\operatorname{cov}(X-E[X], Y-E[Y]) / \operatorname{var}(X-E[X])=\operatorname{cov}(X, Y) / \operatorname{var}(X)
$$

Thus, $0=c=a-E[Y]+b E[X]$, so that $a=E[Y]-b E[X]$. Hence,

$$
\begin{aligned}
a+b X & =E[Y]-b E[X]+b X=E[Y]+b(X-E[X]) \\
& =E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X]) .
\end{aligned}
$$

Estimation Error

We saw that the LLSE of Y given X is

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

Estimation Error

We saw that the LLSE of Y given X is

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

How good is this estimator?

Estimation Error

We saw that the LLSE of Y given X is

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

How good is this estimator? That is, what is the mean squared estimation error?

Estimation Error

We saw that the LLSE of Y given X is

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

How good is this estimator? That is, what is the mean squared estimation error?
We find

$$
E\left[|Y-L[Y \mid X]|^{2}\right]=E\left[(Y-E[Y]-(\operatorname{cov}(X, Y) / \operatorname{var}(X))(X-E[X]))^{2}\right]
$$

Estimation Error

We saw that the LLSE of Y given X is

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

How good is this estimator? That is, what is the mean squared estimation error?
We find

$$
\begin{aligned}
& E\left[|Y-L[Y \mid X]|^{2}\right]=E\left[(Y-E[Y]-(\operatorname{cov}(X, Y) / \operatorname{var}(X))(X-E[X]))^{2}\right] \\
& =E\left[(Y-E[Y])^{2}\right]-2(\operatorname{cov}(X, Y) / \operatorname{var}(X)) E[(Y-E[Y])(X-E[X])] \\
& \quad+(\operatorname{cov}(X, Y) / \operatorname{var}(X))^{2} E\left[(X-E[X])^{2}\right]
\end{aligned}
$$

Estimation Error

We saw that the LLSE of Y given X is

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

How good is this estimator? That is, what is the mean squared estimation error?
We find

$$
\begin{aligned}
& E\left[|Y-L[Y \mid X]|^{2}\right]=E\left[(Y-E[Y]-(\operatorname{cov}(X, Y) / \operatorname{var}(X))(X-E[X]))^{2}\right] \\
&= E\left[(Y-E[Y])^{2}\right]-2(\operatorname{cov}(X, Y) / \operatorname{var}(X)) E[(Y-E[Y])(X-E[X])] \\
&+(\operatorname{cov}(X, Y) / \operatorname{var}(X))^{2} E\left[(X-E[X])^{2}\right] \\
&= \operatorname{var}(Y)-\frac{\operatorname{cov}(X, Y)^{2}}{\operatorname{var}(X)} .
\end{aligned}
$$

Estimation Error

We saw that the LLSE of Y given X is

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

How good is this estimator? That is, what is the mean squared estimation error?
We find

$$
\begin{aligned}
& E\left[|Y-L[Y \mid X]|^{2}\right]=E\left[(Y-E[Y]-(\operatorname{cov}(X, Y) / \operatorname{var}(X))(X-E[X]))^{2}\right] \\
&= E\left[(Y-E[Y])^{2}\right]-2(\operatorname{cov}(X, Y) / \operatorname{var}(X)) E[(Y-E[Y])(X-E[X])] \\
&+(\operatorname{cov}(X, Y) / \operatorname{var}(X))^{2} E\left[(X-E[X])^{2}\right] \\
&= \operatorname{var}(Y)-\frac{\operatorname{cov}(X, Y)^{2}}{\operatorname{var}(X)} .
\end{aligned}
$$

Without observations, the estimate is $E[Y]=0$.

Estimation Error

We saw that the LLSE of Y given X is

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

How good is this estimator? That is, what is the mean squared estimation error?
We find

$$
\begin{aligned}
& E\left[|Y-L[Y \mid X]|^{2}\right]=E\left[(Y-E[Y]-(\operatorname{cov}(X, Y) / \operatorname{var}(X))(X-E[X]))^{2}\right] \\
&= E\left[(Y-E[Y])^{2}\right]-2(\operatorname{cov}(X, Y) / \operatorname{var}(X)) E[(Y-E[Y])(X-E[X])] \\
&+(\operatorname{cov}(X, Y) / \operatorname{var}(X))^{2} E\left[(X-E[X])^{2}\right] \\
&= \operatorname{var}(Y)-\frac{\operatorname{cov}(X, Y)^{2}}{\operatorname{var}(X)} .
\end{aligned}
$$

Without observations, the estimate is $E[Y]=0$. The error is $\operatorname{var}(Y)$.

Estimation Error

We saw that the LLSE of Y given X is

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

How good is this estimator? That is, what is the mean squared estimation error?
We find

$$
\begin{aligned}
& E\left[|Y-L[Y \mid X]|^{2}\right]=E\left[(Y-E[Y]-(\operatorname{cov}(X, Y) / \operatorname{var}(X))(X-E[X]))^{2}\right] \\
&= E\left[(Y-E[Y])^{2}\right]-2(\operatorname{cov}(X, Y) / \operatorname{var}(X)) E[(Y-E[Y])(X-E[X])] \\
&+(\operatorname{cov}(X, Y) / \operatorname{var}(X))^{2} E\left[(X-E[X])^{2}\right] \\
&= \operatorname{var}(Y)-\frac{\operatorname{cov}(X, Y)^{2}}{\operatorname{var}(X)} .
\end{aligned}
$$

Without observations, the estimate is $E[Y]=0$. The error is $\operatorname{var}(Y)$. Observing X reduces the error.

Estimation Error: A Picture

We saw that

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

Estimation Error: A Picture

We saw that

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

and

$$
E\left[|Y-L[Y \mid X]|^{2}\right]=\operatorname{var}(Y)-\frac{\operatorname{cov}(X, Y)^{2}}{\operatorname{var}(X)}
$$

Estimation Error: A Picture

We saw that

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

and

$$
E\left[|Y-L[Y \mid X]|^{2}\right]=\operatorname{var}(Y)-\frac{\operatorname{cov}(X, Y)^{2}}{\operatorname{var}(X)}
$$

Here is a picture when $E[X]=0, E[Y]=0$:

Estimation Error: A Picture

We saw that

$$
L[Y \mid X]=\hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

and

$$
E\left[|Y-L[Y \mid X]|^{2}\right]=\operatorname{var}(Y)-\frac{\operatorname{cov}(X, Y)^{2}}{\operatorname{var}(X)}
$$

Here is a picture when $E[X]=0, E[Y]=0$:

Linear Regression Examples

Example 1:

Linear Regression Examples

Example 1:

Linear Regression Examples

Example 2:

Linear Regression Examples

Example 2:

Linear Regression Examples

Example 2:

We find:

$$
E[X]=
$$

Linear Regression Examples

Example 2:

We find:

$$
E[X]=0
$$

Linear Regression Examples

Example 2:

We find:

$$
E[X]=0 ; E[Y]=
$$

Linear Regression Examples

Example 2:

We find:

$$
E[X]=0 ; E[Y]=0 ;
$$

Linear Regression Examples

Example 2:

We find:

$$
E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=
$$

Linear Regression Examples

Example 2:

We find:

$$
E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ;
$$

Linear Regression Examples

Example 2:

We find:

$$
E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=
$$

Linear Regression Examples

Example 2:

We find:

$$
E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=1 / 2 ;
$$

Linear Regression Examples

Example 2:

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=1 / 2 ; \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=
\end{aligned}
$$

Linear Regression Examples

Example 2:

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=1 / 2 ; \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ;
\end{aligned}
$$

Linear Regression Examples

Example 2:

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=1 / 2 \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ; \operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=
\end{aligned}
$$

Linear Regression Examples

Example 2:

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=1 / 2 \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ; \operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=1 / 2
\end{aligned}
$$

Linear Regression Examples

Example 2:

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=1 / 2 \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ; \operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=1 / 2 \\
& \text { LR: } \hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])=
\end{aligned}
$$

Linear Regression Examples

Example 2:

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=1 / 2 \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ; \operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=1 / 2 \\
& \text { LR: } \hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])=X
\end{aligned}
$$

Linear Regression Examples

Example 3:

Linear Regression Examples

Example 3:

Linear Regression Examples

Example 3:

We find:

$$
E[X]=
$$

Linear Regression Examples

Example 3:

We find:

$$
E[X]=0 ;
$$

Linear Regression Examples

Example 3:

We find:

$$
E[X]=0 ; E[Y]=
$$

Linear Regression Examples

Example 3:

We find:

$$
E[X]=0 ; E[Y]=0 ;
$$

Linear Regression Examples

Example 3:

We find:

$$
E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=
$$

Linear Regression Examples

Example 3:

We find:

$$
E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ;
$$

Linear Regression Examples

Example 3:

We find:

$$
E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=
$$

Linear Regression Examples

Example 3:

We find:

$$
E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=-1 / 2 ;
$$

Linear Regression Examples

Example 3:

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=-1 / 2 ; \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=
\end{aligned}
$$

Linear Regression Examples

Example 3:

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=-1 / 2 ; \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ;
\end{aligned}
$$

Linear Regression Examples

Example 3:

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=-1 / 2 ; \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ; \operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=
\end{aligned}
$$

Linear Regression Examples

Example 3:

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=-1 / 2 ; \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ; \operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=-1 / 2 ;
\end{aligned}
$$

Linear Regression Examples

Example 3:

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=-1 / 2 ; \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ; \operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=-1 / 2 ; \\
& \text { LR: } \hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])=
\end{aligned}
$$

Linear Regression Examples

Example 3:

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=-1 / 2 ; \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ; \operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=-1 / 2 ; \\
& \text { LR: } \hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])=-X .
\end{aligned}
$$

Linear Regression Examples

Example 4:

Linear Regression Examples

Example 4:

Linear Regression Examples

Example 4:

We find:
$E[X]=$

Linear Regression Examples

Example 4:

We find:
$E[X]=3 ;$

Linear Regression Examples

Example 4:

We find:
$E[X]=3 ; E[Y]=$

Linear Regression Examples

Example 4:

We find:
$E[X]=3 ; E[Y]=2.5 ;$

Linear Regression Examples

Example 4:

We find:

$$
E[X]=3 ; E[Y]=2.5 ; E\left[X^{2}\right]=(3 / 15)\left(1+2^{2}+3^{2}+4^{2}+5^{2}\right)=11 ;
$$

Linear Regression Examples

Example 4:

We find:

$$
\begin{aligned}
& E[X]=3 ; E[Y]=2.5 ; E\left[X^{2}\right]=(3 / 15)\left(1+2^{2}+3^{2}+4^{2}+5^{2}\right)=11 ; \\
& E[X Y]=(1 / 15)(1 \times 1+1 \times 2+\cdots+5 \times 4)=8.4 ;
\end{aligned}
$$

Linear Regression Examples

Example 4:

We find:

$$
\begin{aligned}
& E[X]=3 ; E[Y]=2.5 ; E\left[X^{2}\right]=(3 / 15)\left(1+2^{2}+3^{2}+4^{2}+5^{2}\right)=11 \\
& E[X Y]=(1 / 15)(1 \times 1+1 \times 2+\cdots+5 \times 4)=8.4 \\
& \operatorname{var}[X]=11-9=2
\end{aligned}
$$

Linear Regression Examples

Example 4:

We find:

$$
\begin{aligned}
& E[X]=3 ; E[Y]=2.5 ; E\left[X^{2}\right]=(3 / 15)\left(1+2^{2}+3^{2}+4^{2}+5^{2}\right)=11 ; \\
& E[X Y]=(1 / 15)(1 \times 1+1 \times 2+\cdots+5 \times 4)=8.4 ; \\
& \operatorname{var}[X]=11-9=2 ; \operatorname{cov}(X, Y)=8.4-3 \times 2.5=0.9 ;
\end{aligned}
$$

Linear Regression Examples

Example 4:

We find:

$$
\begin{aligned}
& E[X]=3 ; E[Y]=2.5 ; E\left[X^{2}\right]=(3 / 15)\left(1+2^{2}+3^{2}+4^{2}+5^{2}\right)=11 ; \\
& E[X Y]=(1 / 15)(1 \times 1+1 \times 2+\cdots+5 \times 4)=8.4 ; \\
& \operatorname{var}[X]=11-9=2 ; \operatorname{cov}(X, Y)=8.4-3 \times 2.5=0.9 ;
\end{aligned}
$$

$$
\mathrm{LR}: \hat{Y}=2.5+\frac{0.9}{2}(X-3)=1.15+0.45 X
$$

LR: Another Figure

LR: Another Figure

Note that

- the LR line goes through $(E[X], E[Y])$

LR: Another Figure

Note that

- the LR line goes through $(E[X], E[Y])$
- its slope is $\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}$.

Summary

Confidence Interval; Linear Regression

Summary

Confidence Interval; Linear Regression

1. 95%-Confidence Interval for $\mu: A_{n} \pm 4.5 \sigma / \sqrt{n}$

Summary

Confidence Interval; Linear Regression

1. 95\%-Confidence Interval for $\mu: A_{n} \pm 4.5 \sigma / \sqrt{n}$
2. Linear Regression: $L[Y \mid X]=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])$

Summary

Confidence Interval; Linear Regression

1. 95\%-Confidence Interval for $\mu: A_{n} \pm 4.5 \sigma / \sqrt{n}$
2. Linear Regression: $L[Y \mid X]=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])$
3. Non-Bayesian: minimize $\sum_{n}\left(Y_{n}-a-b X_{n}\right)^{2}$

Summary

Confidence Interval; Linear Regression

1. 95%-Confidence Interval for $\mu: A_{n} \pm 4.5 \sigma / \sqrt{n}$
2. Linear Regression: $L[Y \mid X]=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])$
3. Non-Bayesian: minimize $\sum_{n}\left(Y_{n}-a-b X_{n}\right)^{2}$
4. Bayesian: minimize $E\left[(Y-a-b X)^{2}\right]$
