
CS70: Jean Walrand: Lecture 23.

Conditional Expectation

1. Review: LR and LLSE
2. Conditional expectation
3. Applications: Diluting, Mixing, Rumors
4. CE = MMSE



Review: LLSE and LR
Definitions Let X and Y be RVs on Ω.

I Covariance: cov(X ,Y ) := E [XY ]−E [X ]E [Y ]

I LLSE: L[Y |X ] = a + bX where a,b minimize E [(Y −a−bX )2].

We saw that

L[Y |X ] = E [Y ] +
cov(X ,Y )

var [X ]
(X −E [X ]).

Then,
E [(Y −L[Y |X ])2] = var(Y )−cov(X ,Y )2/var(X ).

Non-Bayesian (LR): We are given samples (X1,Y1), . . . ,(XK ,YK ), no
distribution.

We define the RVs (X ,Y ) so that

Pr [(X ,Y ) = (Xk ,Yk )] = 1/K ,k = 1, . . . ,K .

Then, as before.



Review: LLSE and LR
Consider the non-Bayesian case: sample (X1,Y1), . . . ,(XK ,YK ).
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cov(X ,Y ) = E [XY ]−E [X ]E [Y ]

var(X ) = E [X 2]−E [X ]2.



Linear Regression Examples

Example 1:



Linear Regression Examples

Example 2: Four equally likely values of (X ,Y ), or four samples.

We find:

E [X ] = 0;E [Y ] = 0;E [X 2] = 1/2;E [XY ] = 1/2;

var [X ] = E [X 2]−E [X ]2 = 1/2;cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = 1/2;

LR: Ŷ = E [Y ] +
cov(X ,Y )

var [X ]
(X −E [X ]) = X .



Linear Regression Examples

Example 3: Four equally likely values of (X ,Y ), or four samples.

We find:

E [X ] = 0;E [Y ] = 0;E [X2] = 1/2;E [XY ] = −1/2;

var [X ] = E [X2]−E [X ]2 = 1/2;cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = −1/2;

LR: Ŷ = E [Y ]+
cov(X ,Y )

var [X ]
(X −E [X ]) =−X .



Linear Regression Examples
Example 4: Equally likely values of (X ,Y ), or samples.

We find:

E [X ] = 3;E [Y ] = 2.5;E [X 2] = (3/15)(1 + 22 + 32 + 42 + 52) = 11;

E [XY ] = (1/15)(1×1 + 1×2 + · · ·+ 5×4) = 8.4;

var [X ] = 11−9 = 2;cov(X ,Y ) = 8.4−3×2.5 = 0.9;

LR: Ŷ = 2.5 +
0.9
2

(X −3) = 1.15 + 0.45X .



LR: Another Figure

Note that

I the LR line goes through (E [X ],E [Y ])

I its slope is cov(X ,Y )
var(X) .



Conditional Expectation: Motivation

There are many situations where a good guess about Y given
X is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA
level, cancer risk).

Our goal: Derive the best estimate of Y given X !

That is, find the function g(·) so that g(X ) is the best guess
about Y given X .

Ambitious! Can it be done? Amazingly, yes!



Conditional Expectation: Intuition
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Without any observation, our guess for Y is E [Y ] = 2.3.

Assume now we observe X . We can calculate
L[Y |X ] = a + bX ≈ 2.1 + 0.1x . .

A better guess when X = 1 is 2; when X = 2: 3; when X = 3: 2.

.



Conditional Expectation: Intuition
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Here, E [Y |X = 1] is the mean value of Y given that X = 1. Also,
E [Y |X = 2] is the mean value of Y given that X = 2 and E [Y |X = 3]
is the mean value of Y given that X = 3.

When we know that X = 1, Y has a new distribution: Y is uniform in
{1,2,3}.
Thus, our guess is E [Y |X = 1] = 1(1/3) + 2(1/3) + 3(1/3) = 2.



Conditional Expectation

Definition Let X and Y be RVs on Ω. The conditional expectation of
Y given X is defined as

E [Y |X ] = g(X )

where
g(x) := E [Y |X = x ] := ∑

y
yPr [Y = y |X = x ],

with Pr [Y = y |X = x ] := Pr [X=x ,Y=y ]
Pr [X=x ] .

Theorem: E [Y |X ] is the best guess about Y given X .

That is, for any function h(·), one has

E [(Y −h(X ))2]≥ E [(Y −E [Y |X ])2].

Proof: Later.



Calculating E [Y |X ]

Let X ,Y ,Z be i.i.d. with mean 0 and variance 1. We want to
calculate

E [2 + 5X + 7XY + 11X 2 + 13X 3Z 2|X ].

We find

E [2 + 5X + 7XY + 11X 2 + 13X 3Z 2|X ]

= 2 + 5X + 7XE [Y |X ] + 11X 2 + 13X 3E [Z 2|X ]

= 2 + 5X + 7XE [Y ] + 11X 2 + 13X 3E [Z 2]

= 2 + 5X + 11X 2 + 13X 3(var [Z ] + E [Z ]2)

= 2 + 5X + 11X 2 + 13X 3.



Projection Property
The claim is that

E [(Y −E [Y |X ])f (X )] = 0,∀f (.).

That is,
E [Yf (X )] = E [E [Y |X ]f (X )]

.
In particular, choosing f (x) = 1, we get

E [Y ] = E [E [Y |X ]].

Proof:

E [E [Y |X ]f (X )] = ∑
x

E [Y |X = x ]f (x)Pr [X = x ]

= ∑
x

[∑
y

yf (x)Pr [Y = y |X = x ]]Pr [X = x ]

= ∑
x

∑
y

yf (x)Pr [X = x ,Y = y ]

= E [Yf (X )].



Application: Diluting

At each step, pick a ball from a well-mixed urn. Replace it with a blue
ball. Let Xn be the number of red balls in the urn at step n. What is
E [Xn]?

Given Xn = m, Xn+1 = m−1 w.p. m/N (if you pick a red ball) and
Xn+1 = m otherwise. Hence,

E [Xn+1|Xn = m] = m− (m/N) = m(N−1)/N = Xnρ,

with ρ := (N−1)/N. Consequently,

E [Xn+1] = E [E [Xn+1|Xn]] = ρE [Xn],n ≥ 1.

=⇒ E [Xn] = ρ
n−1E [X1] = N(

N−1
N

)n−1,n ≥ 1.



Diluting

Here is a plot:



Application: Mixing

At each step, pick a ball from each well-mixed urn. We transfer them
to the other urn. Let Xn be the number of red balls in the bottom urn
at step n. What is E [Xn]?

Given Xn = m, Xn+1 = m + 1 w.p. p and Xn+1 = m−1 w.p. q

where p = (1−m/N)2 (B goes up, R down) and q = (m/N)2 (R goes
up, B down).

Thus,
E [Xn+1|Xn] = Xn + p−q = Xn + 1−2Xn/N = 1 + ρXn, ρ := (1−2/N).



Mixing

We saw that E [Xn+1|Xn] = 1 + ρXn, ρ := (1−2/N). Hence,

E [Xn+1] = 1 + ρE [Xn]

E [X2] = 1 + ρN;E [X3] = 1 + ρ(1 + ρN) = 1 + ρ + ρ
2N

E [X4] = 1 + ρ(1 + ρ + ρ
2N) = 1 + ρ + ρ

2 + ρ
3N

E [Xn] = 1 + ρ + · · ·+ ρ
n−2 + ρ

n−1N.

Hence,

E [Xn] =
1−ρn−1

1−ρ
+ ρ

n−1N,n ≥ 1.



Application: Mixing

Here is the plot.



Application: Going Viral
Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

You have d friends. Each of your friend retweets w.p. p.

Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?

In this example, d = 4.



Application: Going Viral

Fact: Let X = ∑
∞

n=1 Xn. Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.



Application: Wald’s Identity

Theorem Wald’s Identity

Assume that X1,X2, . . . and Z are independent, where
Z takes values in {0,1,2, . . .}
and E [Xn] = µ for all n ≥ 1.

Then,
E [X1 + · · ·+ XZ ] = µE [Z ].

Proof:

E [X1 + · · ·+ XZ |Z = k ] = µk .

Thus, E [X1 + · · ·+ XZ |Z ] = µZ .

Hence, E [X1 + · · ·+ XZ ] = E [µZ ] = µE [Z ].



CE = MMSE
Theorem
E [Y |X ] is the ‘best’ guess about Y based on X .

Specifically, it is the function g(X ) of X that

minimizes E [(Y −g(X ))2].



CE = MMSE

Theorem CE = MMSE

g(X ) := E [Y |X ] is the function of X that minimizes
E [(Y −g(X ))2].
Proof:
Let h(X ) be any function of X . Then

E [(Y −h(X ))2] = E [(Y −g(X ) + g(X )−h(X ))2]

= E [(Y −g(X ))2] + E [(g(X )−h(X ))2]

+2E [(Y −g(X ))(g(X )−h(X ))].

But,

E [(Y −g(X ))(g(X )−h(X ))] = 0 by the projection property.

Thus, E [(Y −h(X ))2]≥ E [(Y −g(X ))2].



E [Y |X ] and L[Y |X ] as projections

L[Y |X ] is the projection of Y on {a + bX ,a,b ∈ℜ}: LLSE

E [Y |X ] is the projection of Y on {g(X ),g(·) : ℜ→ℜ}: MMSE.



Summary

Conditional Expectation

I Definition: E [Y |X ] := ∑y yPr [Y = y |X = x ]

I Properties: Linearity,
Y −E [Y |X ]⊥ h(X ); E [E [Y |X ]] = E [Y ]

I Some Applications:
I Calculating E [Y |X ]
I Diluting
I Mixing
I Rumors
I Wald

I MMSE: E [Y |X ] minimizes E [(Y −g(X ))2] over all g(·)


