CS70: Jean Walrand: Lecture 23.

Conditional Expectation

1. Review: LR and LLSE
2. Conditional expectation
3. Applications: Diluting, Mixing, Rumors
4. $C E=M M S E$

Review: LLSE and LR

Definitions Let X and Y be RVs on Ω.

- Covariance: $\operatorname{cov}(X, Y):=E[X Y]-E[X] E[Y]$
- LLSE: $L[Y \mid X]=a+b X$ where a, b minimize $E\left[(Y-a-b X)^{2}\right]$.

We saw that

$$
L[Y \mid X]=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])
$$

Then,

$$
E\left[(Y-L[Y \mid X])^{2}\right]=\operatorname{var}(Y)-\operatorname{cov}(X, Y)^{2} / \operatorname{var}(X)
$$

Non-Bayesian (LR): We are given samples $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{K}, Y_{K}\right)$, no distribution.
We define the RVs (X, Y) so that

$$
\operatorname{Pr}\left[(X, Y)=\left(X_{k}, Y_{k}\right)\right]=1 / K, k=1, \ldots, K
$$

Then, as before.

Review: LLSE and LR

Consider the non-Bayesian case: sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{K}, Y_{K}\right)$.
Then,

$$
L[Y \mid X]=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}(X-E[X])
$$

Here,

$$
\begin{array}{r}
E[X]=\frac{1}{K} \sum_{k=1}^{K} X_{k} \\
E[Y]=\frac{1}{K} \sum_{k=1}^{K} Y_{k} \\
E\left[X^{2}\right]=\frac{1}{K} \sum_{k=1}^{K} X_{k}^{2} \\
E[X Y]=\frac{1}{K} \sum_{k=1}^{K} X_{k} Y_{k} \\
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y] \\
\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2} .
\end{array}
$$

Linear Regression Examples

Example 1:

Linear Regression Examples

Example 2: Four equally likely values of (X, Y), or four samples.

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=1 / 2 \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ; \operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=1 / 2 ; \\
& \text { LR: } \hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])=X .
\end{aligned}
$$

Linear Regression Examples

Example 3: Four equally likely values of (X, Y), or four samples.

We find:

$$
\begin{aligned}
& E[X]=0 ; E[Y]=0 ; E\left[X^{2}\right]=1 / 2 ; E[X Y]=-1 / 2 ; \\
& \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 2 ; \operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=-1 / 2 ; \\
& \text { LR: } \hat{Y}=E[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}[X]}(X-E[X])=-X .
\end{aligned}
$$

Linear Regression Examples

Example 4: Equally likely values of (X, Y), or samples.

We find:

$$
\begin{aligned}
& E[X]=3 ; E[Y]=2.5 ; E\left[X^{2}\right]=(3 / 15)\left(1+2^{2}+3^{2}+4^{2}+5^{2}\right)=11 ; \\
& E[X Y]=(1 / 15)(1 \times 1+1 \times 2+\cdots+5 \times 4)=8.4 ; \\
& \operatorname{var}[X]=11-9=2 ; \operatorname{cov}(X, Y)=8.4-3 \times 2.5=0.9 ; \\
& \text { LR: } \hat{Y}=2.5+\frac{0.9}{2}(X-3)=1.15+0.45 X .
\end{aligned}
$$

LR: Another Figure

Note that

- the LR line goes through $(E[X], E[Y])$
- its slope is $\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}$.

Conditional Expectation: Motivation

There are many situations where a good guess about Y given X is not linear.
E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).

Our goal: Derive the best estimate of Y given X !
That is, find the function $g(\cdot)$ so that $g(X)$ is the best guess about Y given X.

Ambitious! Can it be done? Amazingly, yes!

Conditional Expectation: Intuition

Without any observation, our guess for Y is $E[Y]=2.3$.
Assume now we observe X. We can calculate $L[Y \mid X]=a+b X \approx 2.1+0.1 x$.
A better guess when $X=1$ is 2 ; when $X=2$: 3 ; when $X=3$: 2 .

Conditional Expectation: Intuition

Here, $E[Y \mid X=1]$ is the mean value of Y given that $X=1$. Also, $E[Y \mid X=2]$ is the mean value of Y given that $X=2$ and $E[Y \mid X=3]$ is the mean value of Y given that $X=3$.
When we know that $X=1, Y$ has a new distribution: Y is uniform in $\{1,2,3\}$.
Thus, our guess is $E[Y \mid X=1]=1(1 / 3)+2(1 / 3)+3(1 / 3)=2$.

Conditional Expectation

Definition Let X and Y be RVs on Ω. The conditional expectation of Y given X is defined as

$$
E[Y \mid X]=g(X)
$$

where

$$
g(x):=E[Y \mid X=x]:=\sum_{y} y \operatorname{Pr}[Y=y \mid X=x],
$$

with $\operatorname{Pr}[Y=y \mid X=x]:=\frac{\operatorname{Pr}[X=x, Y=y]}{\operatorname{Pr}[X=x]}$.
Theorem: $E[Y \mid X]$ is the best guess about Y given X.
That is, for any function $h(\cdot)$, one has

$$
E\left[(Y-h(X))^{2}\right] \geq E\left[(Y-E[Y \mid X])^{2}\right] .
$$

Proof: Later.

Calculating $E[Y \mid X]$

Let X, Y, Z be i.i.d. with mean 0 and variance 1 . We want to calculate

$$
E\left[2+5 X+7 X Y+11 X^{2}+13 X^{3} Z^{2} \mid X\right]
$$

We find

$$
\begin{aligned}
& E\left[2+5 X+7 X Y+11 X^{2}+13 X^{3} Z^{2} \mid X\right] \\
& \quad=2+5 X+7 X E[Y \mid X]+11 X^{2}+13 X^{3} E\left[Z^{2} \mid X\right] \\
& =2+5 X+7 X E[Y]+11 X^{2}+13 X^{3} E\left[Z^{2}\right] \\
& =2+5 X+11 X^{2}+13 X^{3}\left(\operatorname{var}[Z]+E[Z]^{2}\right) \\
& =2+5 X+11 X^{2}+13 X^{3} .
\end{aligned}
$$

Projection Property

The claim is that

$$
E[(Y-E[Y \mid X]) f(X)]=0, \forall f(.)
$$

That is,

$$
E[Y f(X)]=E[E[Y \mid X] f(X)]
$$

In particular, choosing $f(x)=1$, we get

$$
E[Y]=E[E[Y \mid X]]
$$

Proof:

$$
\begin{aligned}
E[E[Y \mid X] f(X)] & =\sum_{x} E[Y \mid X=x] f(x) \operatorname{Pr}[X=x] \\
& =\sum_{x}\left[\sum_{y} y f(x) \operatorname{Pr}[Y=y \mid X=x]\right] \operatorname{Pr}[X=x] \\
& =\sum_{x} \sum_{y} y f(x) \operatorname{Pr}[X=x, Y=y] \\
& =E[Y f(X)] .
\end{aligned}
$$

Application: Diluting

At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_{n} be the number of red balls in the urn at step n. What is $E\left[X_{n}\right]$?
Given $X_{n}=m, X_{n+1}=m-1$ w.p. m / N (if you pick a red ball) and $X_{n+1}=m$ otherwise. Hence,

$$
E\left[X_{n+1} \mid X_{n}=m\right]=m-(m / N)=m(N-1) / N=X_{n} \rho,
$$

with $\rho:=(N-1) / N$. Consequently,

$$
\begin{aligned}
& E\left[X_{n+1}\right]=E\left[E\left[X_{n+1} \mid X_{n}\right]\right]=\rho E\left[X_{n}\right], n \geq 1 . \\
\Longrightarrow & E\left[X_{n}\right]=\rho^{n-1} E\left[X_{1}\right]=N\left(\frac{N-1}{N}\right)^{n-1}, n \geq 1 .
\end{aligned}
$$

Diluting

Here is a plot:

Application: Mixing

At each step, pick a ball from each well-mixed urn. We transfer them to the other urn. Let X_{n} be the number of red balls in the bottom urn at step n. What is $E\left[X_{n}\right]$?
Given $X_{n}=m, X_{n+1}=m+1$ w.p. p and $X_{n+1}=m-1$ w.p. q
where $p=(1-m / N)^{2}$ (B goes up, R down) and $q=(m / N)^{2}$ (R goes up, B down).
Thus,
$E\left[X_{n+1} \mid X_{n}\right]=X_{n}+p-q=X_{n}+1-2 X_{n} / N=1+\rho X_{n}, \rho:=(1-2 / N)$.

Mixing

We saw that $E\left[X_{n+1} \mid X_{n}\right]=1+\rho X_{n}, \rho:=(1-2 / N)$. Hence,

$$
\begin{aligned}
& E\left[X_{n+1}\right]=1+\rho E\left[X_{n}\right] \\
& E\left[X_{2}\right]=1+\rho N ; E\left[X_{3}\right]=1+\rho(1+\rho N)=1+\rho+\rho^{2} N \\
& E\left[X_{4}\right]=1+\rho\left(1+\rho+\rho^{2} N\right)=1+\rho+\rho^{2}+\rho^{3} N \\
& E\left[X_{n}\right]=1+\rho+\cdots+\rho^{n-2}+\rho^{n-1} N
\end{aligned}
$$

Hence,

$$
E\left[X_{n}\right]=\frac{1-\rho^{n-1}}{1-\rho}+\rho^{n-1} N, n \geq 1
$$

Application: Mixing

Here is the plot.

Application: Going Viral

Consider a social network (e.g., Twitter).
You start a rumor (e.g., Walrand is really weird).
You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.
Does the rumor spread? Does it die out (mercifully)?

In this example, $d=4$.

Application: Going Viral

Fact: Let $X=\sum_{n=1}^{\infty} X_{n}$. Then, $E[X]<\infty$ iff $p d<1$.

Proof:

Given $X_{n}=k, X_{n+1}=B(k d, p)$. Hence, $E\left[X_{n+1} \mid X_{n}=k\right]=k p d$.
Thus, $E\left[X_{n+1} \mid X_{n}\right]=p d X_{n}$. Consequently, $E\left[X_{n}\right]=(p d)^{n-1}, n \geq 1$.
If $p d<1$, then $E\left[X_{1}+\cdots+X_{n}\right] \leq(1-p d)^{-1} \Longrightarrow E[X] \leq(1-p d)^{-1}$.
If $p d \geq 1$, then for all C one can find n s.t.

$$
E[X] \geq E\left[X_{1}+\cdots+X_{n}\right] \geq C
$$

In fact, one can show that $p d \geq 1 \Longrightarrow \operatorname{Pr}[X=\infty]>0$.

Application: Wald's Identity

Theorem Wald's Identity
Assume that X_{1}, X_{2}, \ldots and Z are independent, where
Z takes values in $\{0,1,2, \ldots\}$
and $E\left[X_{n}\right]=\mu$ for all $n \geq 1$.
Then,

$$
E\left[X_{1}+\cdots+X_{Z}\right]=\mu E[Z]
$$

Proof:

$E\left[X_{1}+\cdots+X_{Z} \mid Z=k\right]=\mu k$.
Thus, $E\left[X_{1}+\cdots+X_{Z} \mid Z\right]=\mu Z$.
Hence, $E\left[X_{1}+\cdots+X_{Z}\right]=E[\mu Z]=\mu E[Z]$.

$C E=M M S E$

Theorem

$E[Y \mid X]$ is the 'best' guess about Y based on X.
Specifically, it is the function $g(X)$ of X that

$$
\text { minimizes } E\left[(Y-g(X))^{2}\right] \text {. }
$$

CE = MMSE

Theorem CE = MMSE
$g(X):=E[Y \mid X]$ is the function of X that minimizes
$E\left[(Y-g(X))^{2}\right]$.
Proof:
Let $h(X)$ be any function of X. Then

$$
\begin{aligned}
E\left[(Y-h(X))^{2}\right]= & E\left[(Y-g(X)+g(X)-h(X))^{2}\right] \\
= & E\left[(Y-g(X))^{2}\right]+E\left[(g(X)-h(X))^{2}\right] \\
& \quad+2 E[(Y-g(X))(g(X)-h(X))] .
\end{aligned}
$$

But,

$$
E[(Y-g(X))(g(X)-h(X))]=0 \text { by the projection property. }
$$

Thus, $E\left[(Y-h(X))^{2}\right] \geq E\left[(Y-g(X))^{2}\right]$.
$E[Y \mid X]$ and $L[Y \mid X]$ as projections

$L[Y \mid X]$ is the projection of Y on $\{a+b X, a, b \in \Re\}$: LLSE $E[Y \mid X]$ is the projection of Y on $\{g(X), g(\cdot): \Re \rightarrow \Re\}$: MMSE.

Summary

Conditional Expectation

- Definition: $E[Y \mid X]:=\sum_{y} y \operatorname{Pr}[Y=y \mid X=x]$
- Properties: Linearity,

$$
Y-E[Y \mid X] \perp h(X) ; E[E[Y \mid X]]=E[Y]
$$

- Some Applications:
- Calculating $E[Y \mid X]$
- Diluting
- Mixing
- Rumors
- Wald
- MMSE: $E[Y \mid X]$ minimizes $E\left[(Y-g(X))^{2}\right]$ over all $g(\cdot)$

