CS70: Jean Walrand: Lecture 23.

Conditional Expectation

1. Review: LR and LLSE

2. Conditional expectation

3. Applications: Diluting, Mixing, Rumors
4. CE = MMSE

Review: LLSE and LR
Definitions Let X and Y be RVs on Q.
» Covariance: cov(X,Y) := E[XY] - E[X]E[Y]
» LLSE: L[Y|X] = a+ bX where a,b minimize E[(Y —a— bX)?].
We saw that

cov(X,Y)

LIYIX = EIY]+ =2

(X —E[X]).
Then,
E[(Y - L[Y|X])?] = var(Y) — cov(X, Y)? /var(X).

Non-Bayesian (LR): We are given samples (Xj, Y1),...,(Xk, Yk), no
distribution.

We define the RVs (X, Y) so that
Pri(X,Y) = (X, Yx)] =1/K,k=1,....K.

Then, as before.

Review: LLSE and LR

Consider the non-Bayesian case: sample (X1, Y1),...,(Xk, Yk)-

Then,
cov(X,Y)

LIY|X] = E[Y]+ T(X)(X’ E[X]).
Here,
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cov(X,Y) = E[XY]— E[X]E[Y]
var(X) = E[X?] - E[X]2.
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Linear Regression Examples

Example 2: Four equally likely values of (X, Y), or four samples.

We find:
E[X]=0;E[Y]=0;E[X?] =1/2;E[XY] =1/2;
var[X] = E[X?] — E[X]? = 1/2;cov(X, Y) = E[XY] — E[X]E[Y] = 1/2;

VX, ¥) % _ ELx]) = X.

LR: V:E[Y]-&-T[X]

Linear Regression Examples

Example 3: Four equally likely values of (X, Y), or four samples.

We find:

E[X] = 0;E[Y] = 0, E[X?] = 1/2, E[XY] = ~1/2,
var[X] = E[X?] - E[X]? = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] = —1/2;

o cov(X,Y) -
LR: Y = E[Y]+ var(X] (X—E[X])=—-X.




Linear Regression Examples
Example 4: Equally likely values of (X, Y), or samples.

}

We find:

E[X] =3;E[Y] =2.5; E[X?] = (3/15)(1 + 22 + 3% + 4% + 52) = 11;

E[XY]=(1/15)(1 x1+1x2+-.-+5x4)=8.4;
var[X]=11-9=2;cov(X,Y)=84-3x25=0.9;

LR: ¥ =25+ 0.9

S (X—3)=1.15+045X.

LR: Another Figure

slope — €ouXY)

var(X)

Note that
» the LR line goes through (E[X], E[Y])
> its slope is C‘Z%X‘;)

Conditional Expectation: Motivation

There are many situations where a good guess about Y given
X is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA
level, cancer risk).

v

Bettey estimate

Our goal: Derive the best estimate of Y given X!

That is, find the function g(-) so that g(X) is the best guess
about Y given X.

Ambitious! Can it be done? Amazingly, yes!

Conditional Expectation: Intuition

1 2

Without any observation, our guess for Y is E[Y] =2.3.

Assume now we observe X. We can calculate
LIY|X]=a+bX~21+0.1x..

A better guess when X =1 is 2; when X =2: 3; when X =3: 2.

Conditional Expectation: Intuition
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Here, E[Y|X = 1] is the mean value of Y given that X = 1. Also,
E[Y|X = 2] is the mean value of Y given that X =2 and E[Y|X = 3]
is the mean value of Y given that X = 3.

When we know that X =1, Y has a new distribution: Y is uniform in
{1,2,3}.
Thus, our guess is E[Y|X =1]=1(1/3)+2(1/3)+3(1/3) =2.

Conditional Expectation

Definition Let X and Y be RVs on Q. The conditional expectation of
Y given X is defined as

EY|X]=g(X)
where
g(x) = E[Y|X =x]:= Y yPrlY = y|X =x],
y
with Pr{Y = y|X = x] == PR,
Theorem: E[Y|X] is the best guess about Y given X.
That is, for any function h(-), one has

EI(Y = h(X))?] = E[(Y - E[YIX])?].

Proof: Later.




Calculating E[Y|X]
Let X,Y,Z be i.i.d. with mean 0 and variance 1. We want to
calculate

E[2+5X+7XY +11X2+13X322|X].

We find

E[2+5X+7XY +11X2+13X322|X]
=24 5X+7XE[Y|X]+11X2 +13X3E[Z2|X]
=24 5X+7XE[Y]+11X2+13X3E[Z3)

Projection Property
The claim is that

E[(Y — E[Y|X])f(X)] = 0,Vf(.).
That is,
E[YH(X)] = E[E[YIX]F(X)]
in particular, choosing f(x) = 1, we get
E[Y] = E[E[Y|X]].
Proof:

E[E[YIXIf(X)]

Y E[Y|X = x]f(x)Pr[X = x]

Application: DiIuting

=N

Xo=N-1
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X,=N-2
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At each step, pick a ball from a well-mixed urn. Replace it with a blue

ball. Let X, be the number of red balls in the urn at step n. What is

E[Xn]?

Given X, = m, Xp.1 = m—1w.p. m/N (if you pick a red ball) and

Xn+1 = m otherwise. Hence,

_ _ _ _ EXni1|Xn=ml=m—(m/N)=m(N—1)/N = Xqp,
= 245X +11X2 +183X3(var(Z] + E[Z]2) = LILy0PY =y X =xIPr{X =] o EPnalo == m e () = DN =
24 BX 4 11XE 413X X y with p := (N—1)/N. Consequently,
' = LLOPIX=x Y=y ElXpi1] = E[EKout Xl = pELXG] 0 > 1.
= E[YA)L — Dl =" B =Nz 1,
O
Diluting Application: Mixing Mixing
Here is a plot: red balls
100 . . . , , . . N {. {\: N =X, We saw that E[X1|Xn] =1+pXn, p :=(1—2/N). Hence,
90|\
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501 N\ At each step, pick a ball from each well-mixed urn. We transfer them EXa] =1+4p+--+p"2+p" 'N.
a0l AN to the other urn. Let X,, be the number of red balls in the bottom urn
sl at step n. What is E[X;]? Hence,
20l S Given X, =m, Xppq =m+1wp. pand X, g =m—1w.p. q E[X,] = 1 ;p +p" N, n>1.
10} \\\,\\ where p = (1—m/N)? (B goes up, R down) and g = (m/N)? (R goes P
0 . . M —— up, B down).
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Thus,
E[Xny11Xa] = Xo+P—q=Xo+1—2Xs/N=1+pXy, p:=(1—2/N).




Application: Mixing

Here is the plot.
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Application: Going Viral
Consider a social network (e.g., Twitter).
You start a rumor (e.g., Walrand is really weird).
You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.
Does the rumor spread? Does it die out (mercifully)?

X, =1

[0 0 po][op aofx=s
/
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X,=5

In this example, d = 4.

Application: Going Viral

[c 0 p o] [0 p e o] s

‘0.00”O0.0H.O..
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Fact: Let X =Y,_; Xi. Then, E[X] < iff pd < 1.

Proof:
Given X, = k, X511 = B(kd,p). Hence, E[X.1|Xnh = k] = kpd.

Thus, E[Xn41|Xn] = pdX,. Consequently, E[X,] = (pd)"',n>1.
If pd < 1,then E[X; +--+Xq] < (1 —pd)~ " = E[X] < (1 —pd)~".

If pd > 1, then for all C one can find n s.t.
E[X] > E[Xi +---+ Xa] > C. O

In fact, one can show that pd > 1 = Pr[X =] > 0.

Application: Wald’s Identity

Theorem Wald’s Identity

Assume that X, Xs,... and Z are independent, where
Z takes values in {0,1,2,...}
and E[Xp]=pu foralln>1.

Then,
E[Xi+---+ Xz] = uE[Z].

Proof:

E[Xi+---+Xz|Z = kK] = uk.

Thus, E[Xi +---+Xz|Z] = uZ.

Hence, E[Xi +---+ Xz] = E[uZ] = pE[Z]. O

CE = MMSE

Theorem
E[Y|X] is the ‘best’ guess about Y based on X.

Specifically, it is the function g(X) of X that

minimizes E[(Y — g(X))?].
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Linear Regression
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CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes

E[(Y - g(X))?].
Proof:
Let h(X) be any function of X. Then

EI(Y —h(X))?] EI(Y —9(X)+g(X) ~ h(X))?]
EI(Y —g(X))?] + E[(9(X) — h(X))?]

+2E[(Y = g(X)(9(X) — h(X))]

But,
E[(Y —g(X))(g(X)— h(X))] = 0 by the projection property.
Thus, E[(Y — h(X))?] > E[(Y — g(X))?]. O




E[Y|X] and L[Y|X] as projections Summary

‘ Conditional Expectation ‘

v

{4‘ +dX,e,de }l\} —
\ Definition: E[Y|X]: =Y, yPr[Y = y|X = x]

» Properties: Linearity,

Y — E[Y|X] L h(X); E[E[Y|X]] = E[Y]

Some Applications:

Calculating E[Y|X]

Diluting

Mixing

Rumors

Wald

MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)

v

h(X)

1

— : 7
V= LyIX] {9(X),9() : R R} -1
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L[Y|X] is the projection of Y on {a+ bX,a,b e R}: LLSE
E[Y|X] is the projection of Y on {g(X),g(:) : ® — R}: MMSE.
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