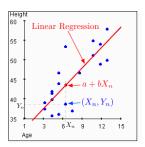
CS70: Jean Walrand: Lecture 23.

Conditional Expectation

- 1. Review: LR and LLSE
- 2. Conditional expectation
- 3. Applications: Diluting, Mixing, Rumors
- 4. CE = MMSE

Linear Regression Examples

Example 1:



Review: LLSE and LR

Definitions Let X and Y be RVs on Ω .

- ▶ Covariance: cov(X, Y) := E[XY] E[X]E[Y]
- ▶ LLSE: L[Y|X] = a + bX where a, b minimize $E[(Y a bX)^2]$.

We saw that

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var[X]}(X - E[X]).$$

Then.

$$E[(Y-L[Y|X])^2] = var(Y) - cov(X,Y)^2/var(X).$$

Non-Bayesian (LR): We are given samples $(X_1, Y_1), \dots, (X_K, Y_K)$, no distribution.

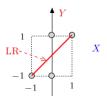
We define the RVs (X, Y) so that

$$Pr[(X, Y) = (X_k, Y_k)] = 1/K, k = 1, ..., K.$$

Then, as before.

Linear Regression Examples

Example 2: Four equally likely values of (X, Y), or four samples.



We find:

$$\begin{split} E[X] &= 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2; \\ var[X] &= E[X^2] - E[X]^2 = 1/2; cov(X,Y) = E[XY] - E[X]E[Y] = 1/2; \\ \mathrm{LR: } \ \hat{Y} &= E[Y] + \frac{cov(X,Y)}{var[X]} (X - E[X]) = X. \end{split}$$

Review: LLSE and LR

Consider the non-Bayesian case: sample $(X_1, Y_1), \dots, (X_K, Y_K)$.

Then

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

Here.

$$E[X] = \frac{1}{K} \sum_{k=1}^{K} X_k$$

$$E[Y] = \frac{1}{K} \sum_{k=1}^{K} Y_k$$

$$E[X^2] = \frac{1}{K} \sum_{k=1}^{K} X_k^2$$

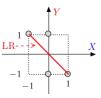
$$E[XY] = \frac{1}{K} \sum_{k=1}^{K} X_k Y_k$$

$$cov(X, Y) = E[XY] - E[X]E[Y]$$

$$var(X) = E[X^2] - E[X]^2.$$

Linear Regression Examples

Example 3: Four equally likely values of (X, Y), or four samples.

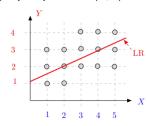


We find:

$$\begin{split} E[X] &= 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2; \\ var[X] &= E[X^2] - E[X]^2 = 1/2; cov(X,Y) = E[XY] - E[X]E[Y] = -1/2; \\ LR: & \hat{Y} = E[Y] + \frac{cov(X,Y)}{var[X]}(X - E[X]) = -X. \end{split}$$

Linear Regression Examples

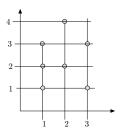
Example 4: Equally likely values of (X, Y), or samples.



We find:

$$\begin{split} E[X] &= 3; E[Y] = 2.5; E[X^2] = (3/15)(1+2^2+3^2+4^2+5^2) = 11; \\ E[XY] &= (1/15)(1\times1+1\times2+\dots+5\times4) = 8.4; \\ var[X] &= 11-9 = 2; cov(X,Y) = 8.4-3\times2.5 = 0.9; \\ \text{LR: } \hat{Y} &= 2.5 + \frac{0.9}{2}(X-3) = 1.15 + 0.45X. \end{split}$$

Conditional Expectation: Intuition



Without any observation, our guess for Y is E[Y] = 2.3.

Assume now we observe X. We can calculate $L[Y|X] = a + bX \approx 2.1 + 0.1x$.

A better guess when X = 1 is 2; when X = 2: 3; when X = 3: 2.

٠

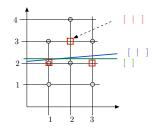
LR: Another Figure



Note that

- ▶ the LR line goes through (E[X], E[Y])
- ▶ its slope is $\frac{cov(X,Y)}{var(X)}$.

Conditional Expectation: Intuition



Here, E[Y|X=1] is the mean value of Y given that X=1. Also, E[Y|X=2] is the mean value of Y given that X=2 and E[Y|X=3] is the mean value of Y given that X=3.

When we know that X = 1, Y has a new distribution: Y is uniform in $\{1,2,3\}$.

Thus, our guess is E[Y|X=1] = 1(1/3) + 2(1/3) + 3(1/3) = 2.

Conditional Expectation: Motivation

There are many situations where a good guess about *Y* given *X* is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).



Our goal: Derive the best estimate of *Y* given *X*!

That is, find the function $g(\cdot)$ so that g(X) is the best guess about Y given X.

Ambitious! Can it be done? Amazingly, yes!

Conditional Expectation

Definition Let X and Y be RVs on Ω . The conditional expectation of Y given X is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x] := \sum_{y} y Pr[Y = y|X = x]$$

with
$$Pr[Y = y | X = x] := \frac{Pr[X = x, Y = y]}{Pr[X = x]}$$
.

Theorem: E[Y|X] is the best guess about Y given X.

That is, for any function $h(\cdot)$, one has

$$E[(Y - h(X))^2] \ge E[(Y - E[Y|X])^2].$$

Proof: Later.

Calculating E[Y|X]

Let X,Y,Z be i.i.d. with mean 0 and variance 1. We want to calculate

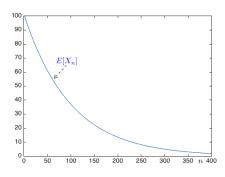
$$E[2+5X+7XY+11X^2+13X^3Z^2|X].$$

We find

$$E[2+5X+7XY+11X^2+13X^3Z^2|X]$$
= 2+5X+7XE[Y|X]+11X^2+13X^3E[Z^2|X]
= 2+5X+7XE[Y]+11X^2+13X^3E[Z^2]
= 2+5X+11X^2+13X^3(var[Z]+E[Z]^2)
= 2+5X+11X^2+13X^3.

Diluting

Here is a plot:



Projection Property

The claim is that

$$E[(Y - E[Y|X])f(X)] = 0, \forall f(.).$$

That is,

$$E[Yf(X)] = E[E[Y|X]f(X)]$$

In particular, choosing f(x) = 1, we get

$$E[Y] = E[E[Y|X]].$$

Proof:

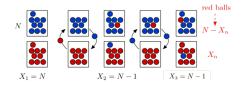
$$E[E[Y|X]f(X)] = \sum_{x} E[Y|X = x]f(x)Pr[X = x]$$

$$= \sum_{x} [\sum_{y} yf(x)Pr[Y = y|X = x]]Pr[X = x]$$

$$= \sum_{x} \sum_{y} yf(x)Pr[X = x, Y = y]$$

$$= E[Yf(X)].$$

Application: Mixing

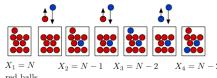


At each step, pick a ball from each well-mixed urn. We transfer them to the other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given
$$X_n=m$$
, $X_{n+1}=m+1$ w.p. p and $X_{n+1}=m-1$ w.p. q where $p=(1-m/N)^2$ (B goes up, R down) and $q=(m/N)^2$ (R goes up, B down).

Thus, $E[X_{n+1}|X_n] = X_n + p - q = X_n + 1 - 2X_n/N = 1 + \rho X_n, \ \rho := (1 - 2/N).$

Application: Diluting



At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m-1$ w.p. m/N (if you pick a red ball) and $X_{n+1} = m$ otherwise. Hence,

$$\begin{split} E[X_{n+1}|X_n = m] &= m - (m/N) = m(N-1)/N = X_n \rho, \\ \text{with } \rho := (N-1)/N. \text{ Consequently,} \\ E[X_{n+1}] &= E[E[X_{n+1}|X_n]] = \rho E[X_n], n \geq 1. \\ \Longrightarrow E[X_n] &= \rho^{n-1} E[X_1] = N(\frac{N-1}{N})^{n-1}, n \geq 1. \end{split}$$

Mixing

We saw that $E[X_{n+1}|X_n] = 1 + \rho X_n$, $\rho := (1 - 2/N)$. Hence,

$$E[X_{n+1}] = 1 + \rho E[X_n]$$

$$E[X_2] = 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N$$

$$E[X_4] = 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N$$

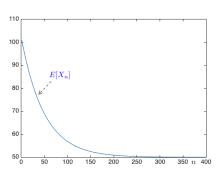
$$E[X_n] = 1 + \rho + \dots + \rho^{n-2} + \rho^{n-1} N.$$

Hence.

$$E[X_n] = \frac{1 - \rho^{n-1}}{1 - \rho} + \rho^{n-1} N, n \ge 1.$$

Application: Mixing

Here is the plot.



Application: Wald's Identity

Theorem Wald's Identity

Assume that X_1, X_2, \ldots and Z are independent, where Z takes values in $\{0,1,2,\ldots\}$

and $E[X_n] = \mu$ for all $n \ge 1$.

Then,

$$E[X_1 + \cdots + X_Z] = \mu E[Z].$$

Proof:

$$E[X_1+\cdots+X_Z|Z=k]=\mu k.$$

Thus, $E[X_1 + \cdots + X_Z | Z] = \mu Z$.

Hence, $E[X_1 + \cdots + X_Z] = E[\mu Z] = \mu E[Z]$

Application: Going Viral

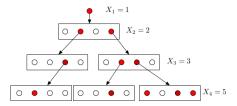
Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

You have d friends. Each of your friend retweets w.p. p.

Each of your friends has *d* friends, etc.

Does the rumor spread? Does it die out (mercifully)?



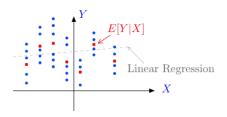
In this example, d = 4.

CE = MMSE

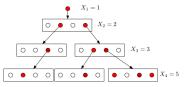
Theorem

E[Y|X] is the 'best' guess about Y based on X. Specifically, it is the function g(X) of X that

minimizes $E[(Y-g(X))^2]$.



Application: Going Viral



Fact: Let $X = \sum_{n=1}^{\infty} X_n$. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1} | X_n = k] = kpd$.

Thus, $E[X_{n+1}|X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}, n \ge 1$.

If pd < 1, then $E[X_1 + \cdots + X_n] \le (1 - pd)^{-1} \Longrightarrow E[X] \le (1 - pd)^{-1}$.

If pd > 1, then for all C one can find n s.t.

$$E[X] \geq E[X_1 + \cdots + X_n] \geq C.$$

In fact, one can show that $pd \ge 1 \implies Pr[X = \infty] > 0$.

CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y - g(X))^2]$.

Proof:

Let h(X) be any function of X. Then

$$E[(Y - h(X))^{2}] = E[(Y - g(X) + g(X) - h(X))^{2}]$$

$$= E[(Y - g(X))^{2}] + E[(g(X) - h(X))^{2}]$$

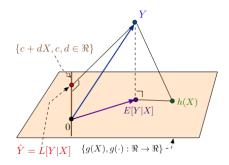
$$+2E[(Y - g(X))(g(X) - h(X))].$$

But,

E[(Y-g(X))(g(X)-h(X))]=0 by the projection property.

Thus,
$$E[(Y - h(X))^2] \ge E[(Y - g(X))^2].$$

E[Y|X] and L[Y|X] as projections



L[Y|X] is the projection of Y on $\{a+bX,a,b\in\Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X),g(\cdot):\Re \to \Re\}$: MMSE.

Summary

Conditional Expectation

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- ▶ Properties: Linearity, $Y E[Y|X] \perp h(X); E[E[Y|X]] = E[Y]$
- ▶ Some Applications:
 - ► Calculating *E*[*Y*|*X*]
 - Diluting
 - Mixing
 - ► Rumors
 - Wald
- ▶ MMSE: E[Y|X] minimizes $E[(Y-g(X))^2]$ over all $g(\cdot)$