CS70: Jean Walrand: Lecture 23.

Conditional Expectation

CS70: Jean Walrand: Lecture 23.

Conditional Expectation

- 1. Review: LR and LLSE
- 2. Conditional expectation
- 3. Applications: Diluting, Mixing, Rumors
- 4. CE = MMSE

Definitions Let X and Y be RVs on Ω .

Definitions Let X and Y be RVs on Ω .

► Covariance: cov(X, Y) := E[XY] - E[X]E[Y]

Definitions Let X and Y be RVs on Ω .

- ► Covariance: cov(X, Y) := E[XY] E[X]E[Y]
- LLSE: L[Y|X] = a + bX where a, b minimize $E[(Y a bX)^2]$.

Definitions Let X and Y be RVs on Ω .

- ► Covariance: cov(X, Y) := E[XY] E[X]E[Y]
- LLSE: L[Y|X] = a + bX where a, b minimize $E[(Y a bX)^2]$.

We saw that

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var[X]}(X - E[X]).$$

Definitions Let X and Y be RVs on Ω .

- ► Covariance: cov(X, Y) := E[XY] E[X]E[Y]
- LLSE: L[Y|X] = a + bX where a, b minimize $E[(Y a bX)^2]$.

We saw that

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var[X]}(X - E[X]).$$

Then,

$$E[(Y-L[Y|X])^2] = var(Y) - cov(X,Y)^2/var(X).$$

Definitions Let X and Y be RVs on Ω .

- ► Covariance: cov(X, Y) := E[XY] E[X]E[Y]
- LLSE: L[Y|X] = a + bX where a, b minimize $E[(Y a bX)^2]$.

We saw that

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var[X]}(X - E[X]).$$

Then,

$$E[(Y - L[Y|X])^2] = var(Y) - cov(X, Y)^2 / var(X).$$

Non-Bayesian (LR):

Definitions Let X and Y be RVs on Ω .

- ► Covariance: cov(X, Y) := E[XY] E[X]E[Y]
- LLSE: L[Y|X] = a + bX where a, b minimize $E[(Y a bX)^2]$.

We saw that

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var[X]}(X - E[X]).$$

Then,

$$E[(Y-L[Y|X])^2] = var(Y) - cov(X,Y)^2/var(X).$$

Non-Bayesian (LR): We are given samples $(X_1, Y_1), \dots, (X_K, Y_K)$, no distribution.

Definitions Let X and Y be RVs on Ω .

- ► Covariance: cov(X, Y) := E[XY] E[X]E[Y]
- ► LLSE: L[Y|X] = a + bX where a, b minimize $E[(Y a bX)^2]$.

We saw that

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var[X]}(X - E[X]).$$

Then,

$$E[(Y-L[Y|X])^2] = var(Y) - cov(X,Y)^2/var(X).$$

Non-Bayesian (LR): We are given samples $(X_1, Y_1), \dots, (X_K, Y_K)$, no distribution.

We define the RVs (X, Y) so that

$$Pr[(X, Y) = (X_k, Y_k)] = 1/K, k = 1, ..., K.$$

Definitions Let X and Y be RVs on Ω .

- ► Covariance: cov(X, Y) := E[XY] E[X]E[Y]
- LLSE: L[Y|X] = a + bX where a, b minimize $E[(Y a bX)^2]$.

We saw that

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var[X]}(X - E[X]).$$

Then,

$$E[(Y-L[Y|X])^2] = var(Y) - cov(X,Y)^2/var(X).$$

Non-Bayesian (LR): We are given samples $(X_1, Y_1), \dots, (X_K, Y_K)$, no distribution.

We define the RVs (X, Y) so that

$$Pr[(X, Y) = (X_k, Y_k)] = 1/K, k = 1, ..., K.$$

Then, as before.

Consider the non-Bayesian case: sample $(X_1, Y_1), \dots, (X_K, Y_K)$.

Consider the non-Bayesian case: sample $(X_1, Y_1), \dots, (X_K, Y_K)$.

Then,

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

Consider the non-Bayesian case: sample $(X_1, Y_1), \dots, (X_K, Y_K)$.

Then,

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

Here,

$$E[X] = \frac{1}{K} \sum_{k=1}^{K} X_k$$

Consider the non-Bayesian case: sample $(X_1, Y_1), \dots, (X_K, Y_K)$.

Then,

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

Here,

$$E[X] = \frac{1}{K} \sum_{k=1}^{K} X_k$$
$$E[Y] = \frac{1}{K} \sum_{k=1}^{K} Y_k$$

Consider the non-Bayesian case: sample $(X_1, Y_1), \dots, (X_K, Y_K)$.

Then,

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

Here,

$$E[Y] = \frac{1}{K} \sum_{k=1}^{K} Y_k$$
$$E[X^2] = \frac{1}{K} \sum_{k=1}^{K} X_k^2$$

 $E[X] = \frac{1}{K} \sum_{k=1}^{K} X_k$

Consider the non-Bayesian case: sample $(X_1, Y_1), \dots, (X_K, Y_K)$.

Then,

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

Here,

$$E[X] = \frac{1}{K} \sum_{k=1}^{K} X_k$$

$$E[Y] = \frac{1}{K} \sum_{k=1}^{K} Y_k$$

$$E[X^2] = \frac{1}{K} \sum_{k=1}^{K} X_k^2$$

$$E[XY] = \frac{1}{K} \sum_{k=1}^{K} X_k Y_k$$

Consider the non-Bayesian case: sample $(X_1, Y_1), \dots, (X_K, Y_K)$.

Then,

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

Here,

$$E[X] = \frac{1}{K} \sum_{k=1}^{K} X_k$$

$$E[Y] = \frac{1}{K} \sum_{k=1}^{K} Y_k$$

$$E[X^2] = \frac{1}{K} \sum_{k=1}^{K} X_k^2$$

$$E[XY] = \frac{1}{K} \sum_{k=1}^{K} X_k Y_k$$

$$cov(X, Y) = E[XY] - E[X]E[Y]$$

Consider the non-Bayesian case: sample $(X_1, Y_1), \dots, (X_K, Y_K)$.

Then,

$$L[Y|X] = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

Here.

$$E[X] = \frac{1}{K} \sum_{k=1}^{K} X_k$$

$$E[Y] = \frac{1}{K} \sum_{k=1}^{K} Y_k$$

$$E[X^2] = \frac{1}{K} \sum_{k=1}^{K} X_k^2$$

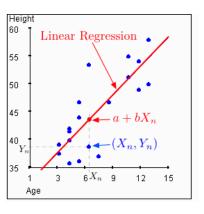
$$E[XY] = \frac{1}{K} \sum_{k=1}^{K} X_k Y_k$$

$$cov(X, Y) = E[XY] - E[X]E[Y]$$

 $var(X) = E[X^2] - E[X]^2.$

Example 1:

Example 1:

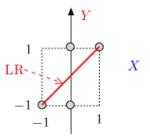


Example 2:

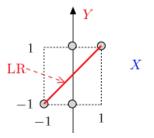
Example 2: Four equally likely values of (X, Y),

Example 2: Four equally likely values of (X, Y), or four samples.

Example 2: Four equally likely values of (X, Y), or four samples.

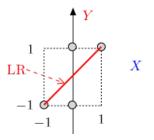


Example 2: Four equally likely values of (X, Y), or four samples.



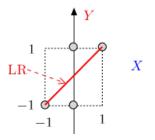
$$E[X] =$$

Example 2: Four equally likely values of (X, Y), or four samples.



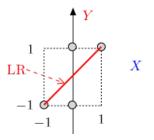
$$E[X] = 0$$

Example 2: Four equally likely values of (X, Y), or four samples.



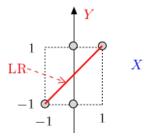
$$E[X] = 0; E[Y] =$$

Example 2: Four equally likely values of (X, Y), or four samples.



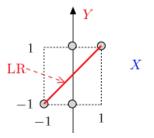
$$E[X] = 0; E[Y] = 0;$$

Example 2: Four equally likely values of (X, Y), or four samples.



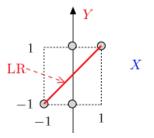
$$E[X] = 0; E[Y] = 0; E[X^2] =$$

Example 2: Four equally likely values of (X, Y), or four samples.



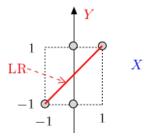
$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2;$$

Example 2: Four equally likely values of (X, Y), or four samples.



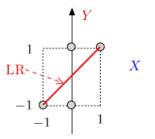
$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] =$$

Example 2: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2;$$

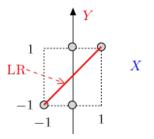
Example 2: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2;$$

 $var[X] = E[X^2] - E[X]^2 =$

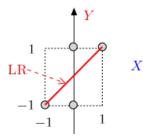
Example 2: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2;$$

 $var[X] = E[X^2] - E[X]^2 = 1/2;$

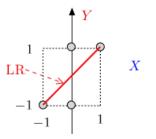
Example 2: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2;$$

 $var[X] = E[X^2] - E[X]^2 = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] =$

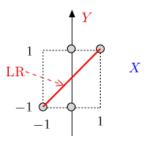
Example 2: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2;$$

 $var[X] = E[X^2] - E[X]^2 = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] = 1/2;$

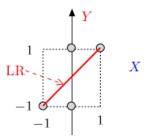
Example 2: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2;$$

 $var[X] = E[X^2] - E[X]^2 = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] = 1/2;$
 $LR: \hat{Y} = E[Y] + \frac{cov(X, Y)}{var[X]}(X - E[X]) =$

Example 2: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2;$$

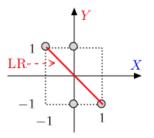
 $var[X] = E[X^2] - E[X]^2 = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] = 1/2;$
 $LR: \hat{Y} = E[Y] + \frac{cov(X, Y)}{var[X]}(X - E[X]) = X.$

Example 3:

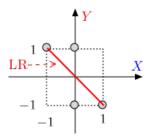
Example 3: Four equally likely values of (X, Y),

Example 3: Four equally likely values of (X, Y), or four samples.

Example 3: Four equally likely values of (X, Y), or four samples.

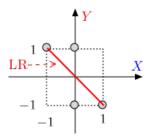


Example 3: Four equally likely values of (X, Y), or four samples.



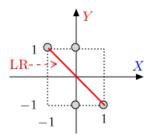
$$E[X] =$$

Example 3: Four equally likely values of (X, Y), or four samples.



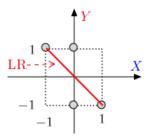
$$E[X] = 0;$$

Example 3: Four equally likely values of (X, Y), or four samples.



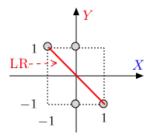
$$E[X] = 0; E[Y] =$$

Example 3: Four equally likely values of (X, Y), or four samples.



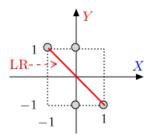
$$E[X] = 0; E[Y] = 0;$$

Example 3: Four equally likely values of (X, Y), or four samples.



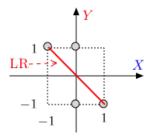
$$E[X] = 0; E[Y] = 0; E[X^2] =$$

Example 3: Four equally likely values of (X, Y), or four samples.



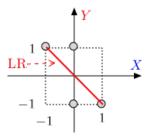
$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2;$$

Example 3: Four equally likely values of (X, Y), or four samples.



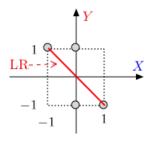
$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] =$$

Example 3: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2;$$

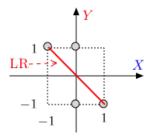
Example 3: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2;$$

 $var[X] = E[X^2] - E[X]^2 =$

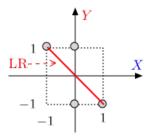
Example 3: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2;$$

 $var[X] = E[X^2] - E[X]^2 = 1/2;$

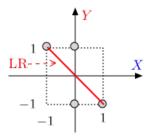
Example 3: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2;$$

 $var[X] = E[X^2] - E[X]^2 = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] =$

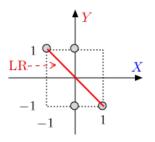
Example 3: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2;$$

 $var[X] = E[X^2] - E[X]^2 = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] = -1/2;$

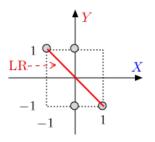
Example 3: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2;$$

 $var[X] = E[X^2] - E[X]^2 = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] = -1/2;$
 $LR: \hat{Y} = E[Y] + \frac{cov(X, Y)}{var[X]}(X - E[X]) =$

Example 3: Four equally likely values of (X, Y), or four samples.



$$E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2;$$

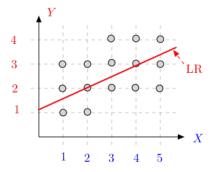
 $var[X] = E[X^2] - E[X]^2 = 1/2; cov(X, Y) = E[XY] - E[X]E[Y] = -1/2;$
 $LR: \hat{Y} = E[Y] + \frac{cov(X, Y)}{var[X]}(X - E[X]) = -X.$

Example 4:

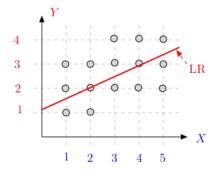
Example 4: Equally likely values of (X, Y),

Example 4: Equally likely values of (X, Y), or samples.

Example 4: Equally likely values of (X, Y), or samples.

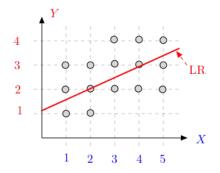


Example 4: Equally likely values of (X, Y), or samples.



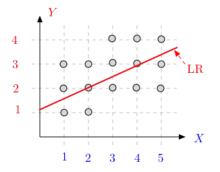
$$E[X] =$$

Example 4: Equally likely values of (X, Y), or samples.



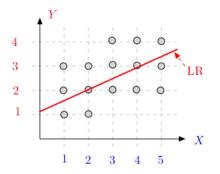
$$E[X] = 3;$$

Example 4: Equally likely values of (X, Y), or samples.



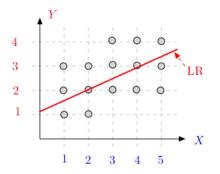
$$E[X] = 3; E[Y] =$$

Example 4: Equally likely values of (X, Y), or samples.



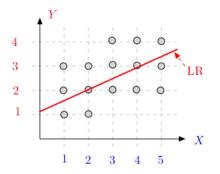
$$E[X] = 3; E[Y] = 2.5;$$

Example 4: Equally likely values of (X, Y), or samples.



$$E[X] = 3; E[Y] = 2.5; E[X^2] = (3/15)(1+2^2+3^2+4^2+5^2) = 11;$$

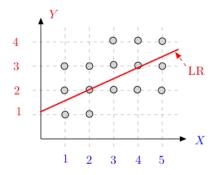
Example 4: Equally likely values of (X, Y), or samples.



$$E[X] = 3; E[Y] = 2.5; E[X^2] = (3/15)(1 + 2^2 + 3^2 + 4^2 + 5^2) = 11;$$

 $E[XY] = (1/15)(1 \times 1 + 1 \times 2 + \dots + 5 \times 4) = 8.4;$

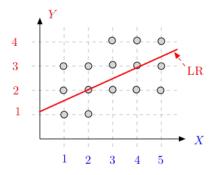
Example 4: Equally likely values of (X, Y), or samples.



$$E[X] = 3; E[Y] = 2.5; E[X^2] = (3/15)(1 + 2^2 + 3^2 + 4^2 + 5^2) = 11;$$

 $E[XY] = (1/15)(1 \times 1 + 1 \times 2 + \dots + 5 \times 4) = 8.4;$
 $var[X] = 11 - 9 = 2;$

Example 4: Equally likely values of (X, Y), or samples.



$$E[X] = 3; E[Y] = 2.5; E[X^2] = (3/15)(1 + 2^2 + 3^2 + 4^2 + 5^2) = 11;$$

 $E[XY] = (1/15)(1 \times 1 + 1 \times 2 + \dots + 5 \times 4) = 8.4;$
 $var[X] = 11 - 9 = 2; cov(X, Y) = 8.4 - 3 \times 2.5 = 0.9;$

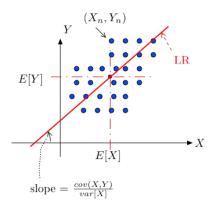
Example 4: Equally likely values of (X, Y), or samples.



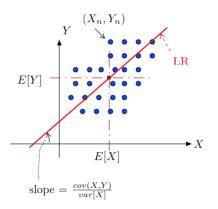
$$E[X] = 3; E[Y] = 2.5; E[X^2] = (3/15)(1 + 2^2 + 3^2 + 4^2 + 5^2) = 11;$$

 $E[XY] = (1/15)(1 \times 1 + 1 \times 2 + \dots + 5 \times 4) = 8.4;$
 $var[X] = 11 - 9 = 2; cov(X, Y) = 8.4 - 3 \times 2.5 = 0.9;$
 $LR: \hat{Y} = 2.5 + \frac{0.9}{2}(X - 3) = 1.15 + 0.45X.$

LR: Another Figure



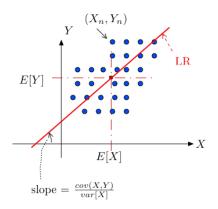
LR: Another Figure



Note that

▶ the LR line goes through (E[X], E[Y])

LR: Another Figure



Note that

- ▶ the LR line goes through (E[X], E[Y])
- ▶ its slope is $\frac{cov(X,Y)}{var(X)}$

There are many situations where a good guess about Y given X is not linear.

There are many situations where a good guess about Y given X is not linear.

E.g., (diameter of object, weight),

There are many situations where a good guess about Y given X is not linear.

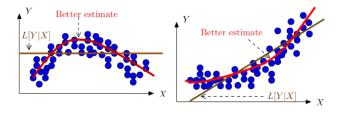
E.g., (diameter of object, weight), (school years, income),

There are many situations where a good guess about Y given X is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).

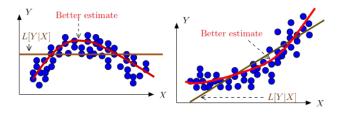
There are many situations where a good guess about *Y* given *X* is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).



There are many situations where a good guess about *Y* given *X* is not linear.

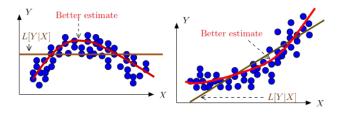
E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).



Our goal:

There are many situations where a good guess about *Y* given *X* is not linear.

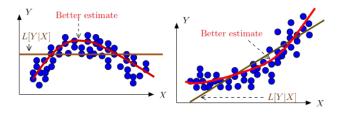
E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).



Our goal: Derive the best estimate of *Y* given *X*!

There are many situations where a good guess about *Y* given *X* is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).

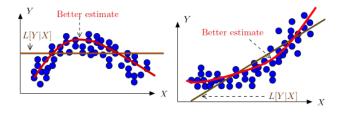


Our goal: Derive the best estimate of *Y* given *X*!

That is, find the function $g(\cdot)$ so that g(X) is the best guess about Y given X.

There are many situations where a good guess about *Y* given *X* is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).



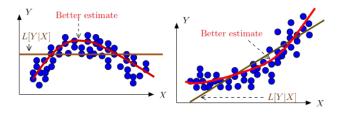
Our goal: Derive the best estimate of *Y* given *X*!

That is, find the function $g(\cdot)$ so that g(X) is the best guess about Y given X.

Ambitious!

There are many situations where a good guess about *Y* given *X* is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).



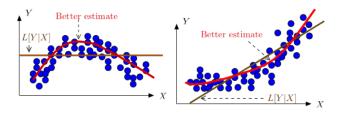
Our goal: Derive the best estimate of *Y* given *X*!

That is, find the function $g(\cdot)$ so that g(X) is the best guess about Y given X.

Ambitious! Can it be done?

There are many situations where a good guess about *Y* given *X* is not linear.

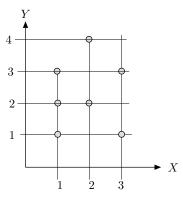
E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).

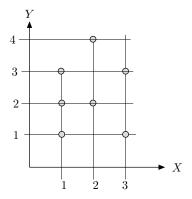


Our goal: Derive the best estimate of Y given X!

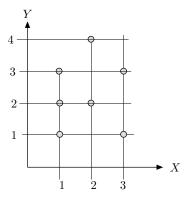
That is, find the function $g(\cdot)$ so that g(X) is the best guess about Y given X.

Ambitious! Can it be done? Amazingly, yes!

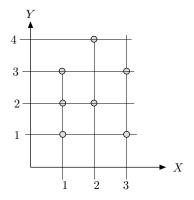




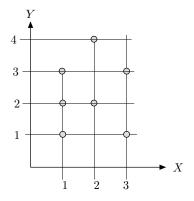
Without any observation, our guess for Y is



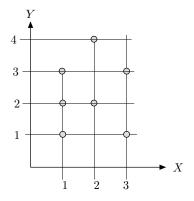
Without any observation, our guess for Y is E[Y] =



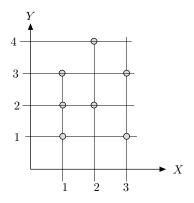
Without any observation, our guess for Y is E[Y] = 2.3.



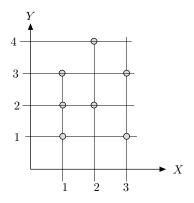
Without any observation, our guess for Y is E[Y] = 2.3. Assume now we observe X.



Without any observation, our guess for Y is E[Y] = 2.3. Assume now we observe X. We can calculate L[Y|X] = a + bX

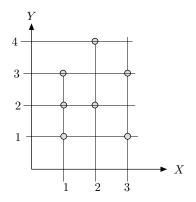


Without any observation, our guess for Y is E[Y] = 2.3. Assume now we observe X. We can calculate $L[Y|X] = a + bX \approx 2.1 + 0.1x$.



Without any observation, our guess for Y is E[Y] = 2.3.

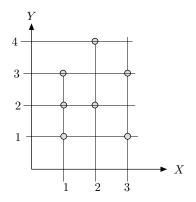
Assume now we observe X. We can calculate $L[Y|X] = a + bX \approx 2.1 + 0.1x$.



Without any observation, our guess for Y is E[Y] = 2.3.

Assume now we observe X. We can calculate $L[Y|X] = a + bX \approx 2.1 + 0.1x$.

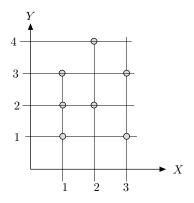
A better guess when X = 1 is



Without any observation, our guess for Y is E[Y] = 2.3.

Assume now we observe X. We can calculate $L[Y|X] = a + bX \approx 2.1 + 0.1x$.

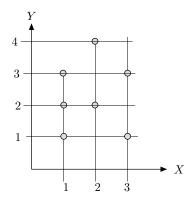
A better guess when X = 1 is 2;



Without any observation, our guess for Y is E[Y] = 2.3.

Assume now we observe X. We can calculate $L[Y|X] = a + bX \approx 2.1 + 0.1x$.

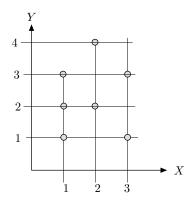
A better guess when X = 1 is 2; when X = 2:



Without any observation, our guess for Y is E[Y] = 2.3.

Assume now we observe X. We can calculate $L[Y|X] = a + bX \approx 2.1 + 0.1x$.

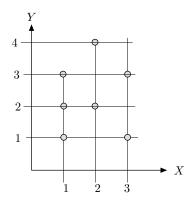
A better guess when X = 1 is 2; when X = 2: 3;



Without any observation, our guess for *Y* is E[Y] = 2.3.

Assume now we observe X. We can calculate $L[Y|X] = a + bX \approx 2.1 + 0.1x$.

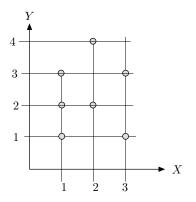
A better guess when X = 1 is 2; when X = 2: 3; when X = 3:



Without any observation, our guess for Y is E[Y] = 2.3.

Assume now we observe X. We can calculate $L[Y|X] = a + bX \approx 2.1 + 0.1x$.

A better guess when X = 1 is 2; when X = 2: 3; when X = 3: 2.

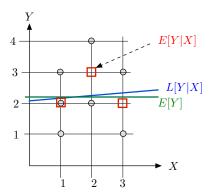


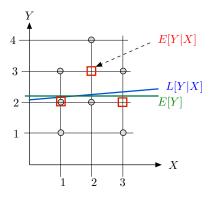
Without any observation, our guess for Y is E[Y] = 2.3.

Assume now we observe X. We can calculate $L[Y|X] = a + bX \approx 2.1 + 0.1x$.

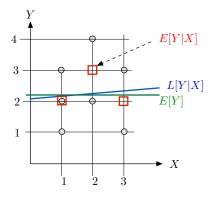
A better guess when X = 1 is 2; when X = 2: 3; when X = 3: 2.

.

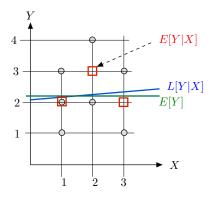




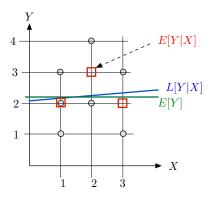
Here, E[Y|X=1] is the mean value of Y given that X=1.



Here, E[Y|X=1] is the mean value of Y given that X=1. Also, E[Y|X=2] is the mean value of Y given that X=2

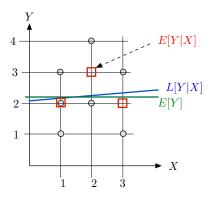


Here, E[Y|X=1] is the mean value of Y given that X=1. Also, E[Y|X=2] is the mean value of Y given that X=2 and E[Y|X=3] is the mean value of Y given that X=3.



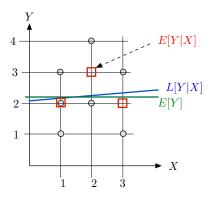
Here, E[Y|X=1] is the mean value of Y given that X=1. Also, E[Y|X=2] is the mean value of Y given that X=2 and E[Y|X=3] is the mean value of Y given that X=3.

When we know that X = 1, Y has a new distribution:



Here, E[Y|X=1] is the mean value of Y given that X=1. Also, E[Y|X=2] is the mean value of Y given that X=2 and E[Y|X=3] is the mean value of Y given that X=3.

When we know that X = 1, Y has a new distribution: Y is uniform in $\{1,2,3\}$.



Here, E[Y|X=1] is the mean value of Y given that X=1. Also, E[Y|X=2] is the mean value of Y given that X=2 and E[Y|X=3] is the mean value of Y given that X=3.

When we know that X = 1, Y has a new distribution: Y is uniform in $\{1,2,3\}$.

Thus, our guess is E[Y|X=1] = 1(1/3) + 2(1/3) + 3(1/3) = 2.

Definition Let X and Y be RVs on Ω .

Definition Let X and Y be RVs on Ω . The conditional expectation of Y given X is defined as

$$E[Y|X] = g(X)$$

Definition Let X and Y be RVs on Ω . The conditional expectation of Y given X is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x]$$

Definition Let X and Y be RVs on Ω . The conditional expectation of Y given X is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x] := \sum_{y} yPr[Y = y|X = x],$$

Definition Let X and Y be RVs on Ω . The conditional expectation of Y given X is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x] := \sum_{y} yPr[Y = y|X = x],$$

with
$$Pr[Y = y | X = x] := \frac{Pr[X = x, Y = y]}{Pr[X = x]}$$
.

Definition Let X and Y be RVs on Ω . The conditional expectation of Y given X is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x] := \sum_{y} yPr[Y = y|X = x],$$

with
$$Pr[Y = y | X = x] := \frac{Pr[X = x, Y = y]}{Pr[X = x]}$$
.

Theorem: E[Y|X] is the best guess about Y given X.

Definition Let X and Y be RVs on Ω . The conditional expectation of Y given X is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x] := \sum_{y} yPr[Y = y|X = x],$$

with
$$Pr[Y = y | X = x] := \frac{Pr[X = x, Y = y]}{Pr[X = x]}$$
.

Theorem: E[Y|X] is the best guess about Y given X.

That is, for any function $h(\cdot)$, one has

$$E[(Y - h(X))^2] \ge E[(Y - E[Y|X])^2].$$

Definition Let X and Y be RVs on Ω . The conditional expectation of Y given X is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x] := \sum_{y} yPr[Y = y|X = x],$$

with
$$Pr[Y = y | X = x] := \frac{Pr[X = x, Y = y]}{Pr[X = x]}$$
.

Theorem: E[Y|X] is the best guess about Y given X.

That is, for any function $h(\cdot)$, one has

$$E[(Y-h(X))^2] \ge E[(Y-E[Y|X])^2].$$

Definition Let X and Y be RVs on Ω . The conditional expectation of Y given X is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x] := \sum_{y} yPr[Y = y|X = x],$$

with
$$Pr[Y = y | X = x] := \frac{Pr[X = x, Y = y]}{Pr[X = x]}$$
.

Theorem: E[Y|X] is the best guess about Y given X.

That is, for any function $h(\cdot)$, one has

$$E[(Y - h(X))^2] \ge E[(Y - E[Y|X])^2].$$

Proof: Later.

Let X, Y, Z be i.i.d. with mean 0 and variance 1.

Let X, Y, Z be i.i.d. with mean 0 and variance 1. We want to calculate

$$E[2+5X+7XY+11X^2+13X^3Z^2|X].$$

Let X, Y, Z be i.i.d. with mean 0 and variance 1. We want to calculate

$$E[2+5X+7XY+11X^2+13X^3Z^2|X].$$

$$E[2+5X+7XY+11X^2+13X^3Z^2|X]$$

Let X, Y, Z be i.i.d. with mean 0 and variance 1. We want to calculate

$$E[2+5X+7XY+11X^2+13X^3Z^2|X].$$

$$E[2+5X+7XY+11X^2+13X^3Z^2|X]$$

= 2+5X+7XE[Y|X]+11X²+13X³E[Z²|X]

Let X, Y, Z be i.i.d. with mean 0 and variance 1. We want to calculate

$$E[2+5X+7XY+11X^2+13X^3Z^2|X].$$

$$E[2+5X+7XY+11X^2+13X^3Z^2|X]$$
= 2+5X+7XE[Y|X]+11X^2+13X^3E[Z^2|X]
= 2+5X+7XE[Y]+11X^2+13X^3E[Z^2]

Let X, Y, Z be i.i.d. with mean 0 and variance 1. We want to calculate

$$E[2+5X+7XY+11X^2+13X^3Z^2|X].$$

$$E[2+5X+7XY+11X^2+13X^3Z^2|X]$$

$$=2+5X+7XE[Y|X]+11X^2+13X^3E[Z^2|X]$$

$$=2+5X+7XE[Y]+11X^2+13X^3E[Z^2]$$

$$=2+5X+11X^2+13X^3(var[Z]+E[Z]^2)$$

Let X, Y, Z be i.i.d. with mean 0 and variance 1. We want to calculate

$$E[2+5X+7XY+11X^2+13X^3Z^2|X].$$

$$E[2+5X+7XY+11X^2+13X^3Z^2|X]$$

$$=2+5X+7XE[Y|X]+11X^2+13X^3E[Z^2|X]$$

$$=2+5X+7XE[Y]+11X^2+13X^3E[Z^2]$$

$$=2+5X+11X^2+13X^3(var[Z]+E[Z]^2)$$

$$=2+5X+11X^2+13X^3.$$

The claim is that

$$E[(Y - E[Y|X])f(X)] = 0, \forall f(.).$$

The claim is that

$$E[(Y - E[Y|X])f(X)] = 0, \forall f(.).$$

That is,

$$E[Yf(X)] = E[E[Y|X]f(X)]$$

.

The claim is that

$$E[(Y - E[Y|X])f(X)] = 0, \forall f(.).$$

That is,

$$E[Yf(X)] = E[E[Y|X]f(X)]$$

In particular, choosing f(x) = 1, we get

The claim is that

$$E[(Y - E[Y|X])f(X)] = 0, \forall f(.).$$

That is,

$$E[Yf(X)] = E[E[Y|X]f(X)]$$

.

In particular, choosing f(x) = 1, we get

$$E[Y] = E[E[Y|X]].$$

The claim is that

$$E[(Y - E[Y|X])f(X)] = 0, \forall f(.).$$

That is,

$$E[Yf(X)] = E[E[Y|X]f(X)]$$

.

In particular, choosing f(x) = 1, we get

$$E[Y]=E[E[Y|X]].$$

The claim is that

$$E[(Y - E[Y|X])f(X)] = 0, \forall f(.).$$

That is,

$$E[Yf(X)] = E[E[Y|X]f(X)]$$

.

In particular, choosing f(x) = 1, we get

$$E[Y] = E[E[Y|X]].$$

$$E[E[Y|X]f(X)] =$$

The claim is that

$$E[(Y - E[Y|X])f(X)] = 0, \forall f(.).$$

That is,

$$E[Yf(X)] = E[E[Y|X]f(X)]$$

.

In particular, choosing f(x) = 1, we get

$$E[Y] = E[E[Y|X]].$$

$$E[E[Y|X]f(X)] = \sum_{x} E[Y|X=x]f(x)Pr[X=x]$$

The claim is that

$$E[(Y - E[Y|X])f(X)] = 0, \forall f(.).$$

That is,

$$\boldsymbol{E}[\boldsymbol{Y}\boldsymbol{f}(\boldsymbol{X})] = \boldsymbol{E}[\boldsymbol{E}[\boldsymbol{Y}|\boldsymbol{X}]\boldsymbol{f}(\boldsymbol{X})]$$

.

In particular, choosing f(x) = 1, we get

$$E[Y] = E[E[Y|X]].$$

$$E[E[Y|X]f(X)] = \sum_{x} E[Y|X=x]f(x)Pr[X=x]$$
$$= \sum_{x} [\sum_{y} yf(x)Pr[Y=y|X=x]]Pr[X=x]$$

The claim is that

$$E[(Y - E[Y|X])f(X)] = 0, \forall f(.).$$

That is,

$$E[Yf(X)] = E[E[Y|X]f(X)]$$

.

In particular, choosing f(x) = 1, we get

$$E[Y] = E[E[Y|X]].$$

$$E[E[Y|X]f(X)] = \sum_{x} E[Y|X=x]f(x)Pr[X=x]$$

$$= \sum_{x} [\sum_{y} yf(x)Pr[Y=y|X=x]]Pr[X=x]$$

$$= \sum_{x} \sum_{y} yf(x)Pr[X=x, Y=y]$$

The claim is that

$$E[(Y-E[Y|X])f(X)]=0, \forall f(.).$$

That is,

$$E[Yf(X)] = E[E[Y|X]f(X)]$$

.

In particular, choosing f(x) = 1, we get

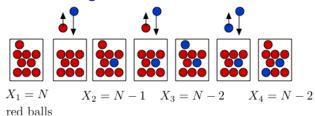
$$E[Y] = E[E[Y|X]].$$

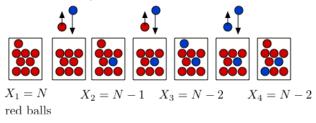
$$E[E[Y|X]f(X)] = \sum_{x} E[Y|X = x]f(x)Pr[X = x]$$

$$= \sum_{x} [\sum_{y} yf(x)Pr[Y = y|X = x]]Pr[X = x]$$

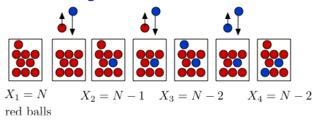
$$= \sum_{x} \sum_{y} yf(x)Pr[X = x, Y = y]$$

$$= E[Yf(X)].$$

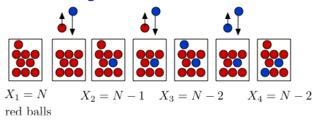




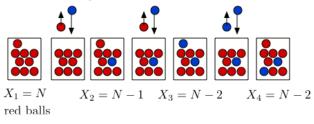
At each step, pick a ball from a well-mixed urn.



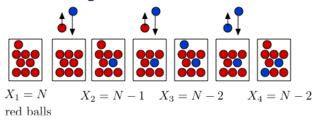
At each step, pick a ball from a well-mixed urn. Replace it with a blue ball.



At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n.

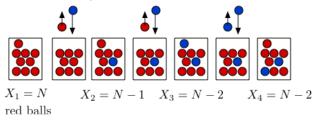


At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?



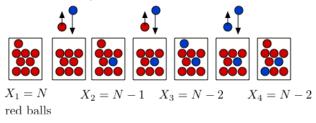
At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m - 1$ w.p. m/N



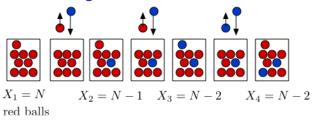
At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m-1$ w.p. m/N (if you pick a red ball)



At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

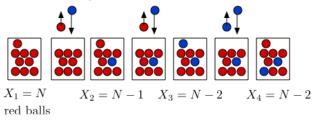
Given $X_n = m$, $X_{n+1} = m-1$ w.p. m/N (if you pick a red ball) and $X_{n+1} = m$ otherwise.



At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m-1$ w.p. m/N (if you pick a red ball) and $X_{n+1} = m$ otherwise. Hence,

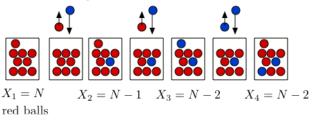
$$E[X_{n+1}|X_n=m]=m-(m/N)$$



At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m-1$ w.p. m/N (if you pick a red ball) and $X_{n+1} = m$ otherwise. Hence,

$$E[X_{n+1}|X_n = m] = m - (m/N) = m(N-1)/N = X_n \rho,$$
 with $\rho := (N-1)/N.$

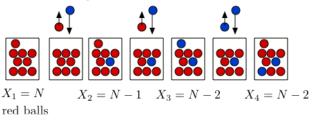


At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m-1$ w.p. m/N (if you pick a red ball) and $X_{n+1} = m$ otherwise. Hence,

$$E[X_{n+1}|X_n = m] = m - (m/N) = m(N-1)/N = X_n\rho,$$

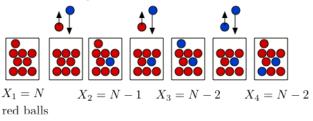
with $\rho := (N-1)/N$. Consequently,



At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m-1$ w.p. m/N (if you pick a red ball) and $X_{n+1} = m$ otherwise. Hence,

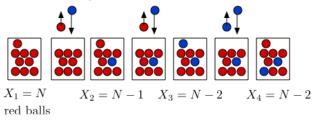
$$E[X_{n+1}|X_n=m]=m-(m/N)=m(N-1)/N=X_n\rho,$$
 with $\rho:=(N-1)/N$. Consequently,
$$E[X_{n+1}]=E[E[X_{n+1}|X_n]]$$



At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m-1$ w.p. m/N (if you pick a red ball) and $X_{n+1} = m$ otherwise. Hence,

$$E[X_{n+1}|X_n = m] = m - (m/N) = m(N-1)/N = X_n \rho,$$
 with $\rho := (N-1)/N$. Consequently,
$$E[X_{n+1}] = E[E[X_{n+1}|X_n]] = \rho E[X_n], n > 1.$$



At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m-1$ w.p. m/N (if you pick a red ball) and $X_{n+1} = m$ otherwise. Hence,

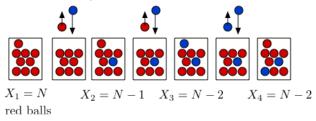
$$E[X_{n+1}|X_n = m] = m - (m/N) = m(N-1)/N = X_n\rho,$$

- $(N-1)/N$. Consequently

with $\rho := (N-1)/N$. Consequently,

$$E[X_{n+1}] = E[E[X_{n+1}|X_n]] = \rho E[X_n], n \ge 1.$$

$$\implies E[X_n] = \rho^{n-1}E[X_1]$$



At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m-1$ w.p. m/N (if you pick a red ball) and $X_{n+1} = m$ otherwise. Hence,

$$E[X_{n+1}|X_n = m] = m - (m/N) = m(N-1)/N = X_n\rho,$$

with $\rho := (N-1)/N$. Consequently,

$$E[X_{n+1}] = E[E[X_{n+1}|X_n]] = \rho E[X_n], n \ge 1.$$

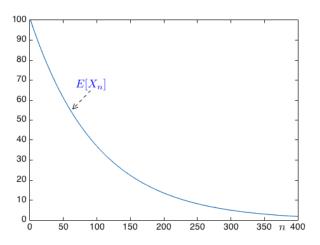
$$\implies E[X_n] = \rho^{n-1}E[X_1] = N(\frac{N-1}{N})^{n-1}, n \ge 1.$$

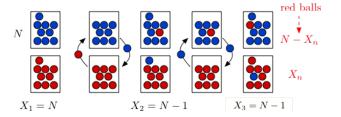
Diluting

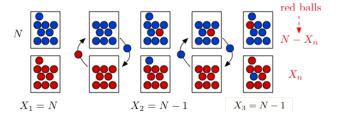
Here is a plot:

Diluting

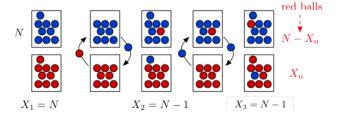
Here is a plot:



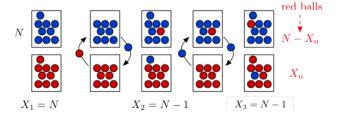




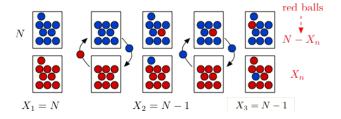
At each step, pick a ball from each well-mixed urn.



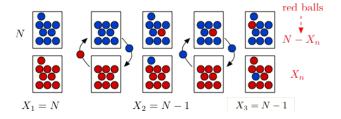
At each step, pick a ball from each well-mixed urn. We transfer them to the other urn.



At each step, pick a ball from each well-mixed urn. We transfer them to the other urn. Let X_n be the number of red balls in the bottom urn at step n.

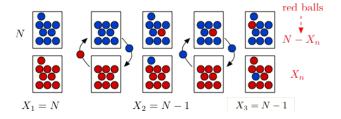


At each step, pick a ball from each well-mixed urn. We transfer them to the other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?



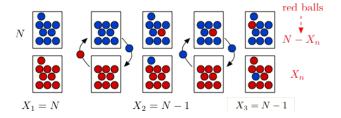
At each step, pick a ball from each well-mixed urn. We transfer them to the other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m+1$ w.p. p and $X_{n+1} = m-1$ w.p. q



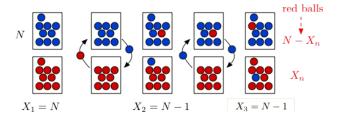
At each step, pick a ball from each well-mixed urn. We transfer them to the other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m+1$ w.p. p and $X_{n+1} = m-1$ w.p. q where $p = (1 - m/N)^2$ (B goes up, R down)



At each step, pick a ball from each well-mixed urn. We transfer them to the other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

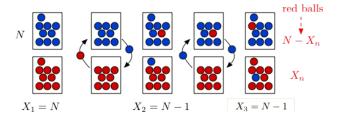
Given $X_n = m$, $X_{n+1} = m+1$ w.p. p and $X_{n+1} = m-1$ w.p. q where $p = (1 - m/N)^2$ (B goes up, R down) and $q = (m/N)^2$ (R goes up, B down).



At each step, pick a ball from each well-mixed urn. We transfer them to the other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m+1$ w.p. p and $X_{n+1} = m-1$ w.p. q where $p = (1 - m/N)^2$ (B goes up, R down) and $q = (m/N)^2$ (R goes up, B down).

Thus,
$$E[X_{n+1}|X_n] = X_n + p - q$$

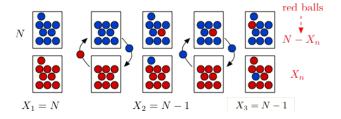


At each step, pick a ball from each well-mixed urn. We transfer them to the other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m+1$ w.p. p and $X_{n+1} = m-1$ w.p. q where $p = (1 - m/N)^2$ (B goes up, R down) and $q = (m/N)^2$ (R goes up, B down).

Thus,

$$E[X_{n+1}|X_n] = X_n + p - q = X_n + 1 - 2X_n/N$$



At each step, pick a ball from each well-mixed urn. We transfer them to the other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m+1$ w.p. p and $X_{n+1} = m-1$ w.p. q where $p = (1 - m/N)^2$ (B goes up, R down) and $q = (m/N)^2$ (R goes up, B down).

Thus, $E[X_{n+1}|X_n] = X_n + p - q = X_n + 1 - 2X_n/N = 1 + \rho X_n, \ \rho := (1 - 2/N).$

$$E[X_{n+1}] = 1 + \rho E[X_n]$$

$$\begin{split} E[X_{n+1}] &= 1 + \rho E[X_n] \\ E[X_2] &= 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N \end{split}$$

$$\begin{split} E[X_{n+1}] &= 1 + \rho E[X_n] \\ E[X_2] &= 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N \\ E[X_4] &= 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N \end{split}$$

$$\begin{split} E[X_{n+1}] &= 1 + \rho E[X_n] \\ E[X_2] &= 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N \\ E[X_4] &= 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N \\ E[X_n] &= 1 + \rho + \dots + \rho^{n-2} + \rho^{n-1} N. \end{split}$$

We saw that $E[X_{n+1}|X_n] = 1 + \rho X_n$, $\rho := (1 - 2/N)$. Hence,

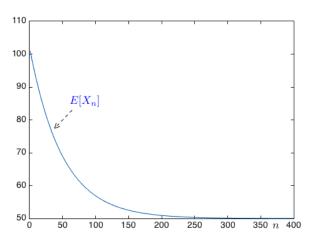
$$\begin{split} E[X_{n+1}] &= 1 + \rho E[X_n] \\ E[X_2] &= 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N \\ E[X_4] &= 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N \\ E[X_n] &= 1 + \rho + \dots + \rho^{n-2} + \rho^{n-1} N. \end{split}$$

Hence,

$$E[X_n] = \frac{1 - \rho^{n-1}}{1 - \rho} + \rho^{n-1} N, n \ge 1.$$

Here is the plot.

Here is the plot.



Consider a social network (e.g., Twitter).

Consider a social network (e.g., Twitter).

You start a rumor

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

You have *d* friends.

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

You have *d* friends. Each of your friend retweets w.p. *p*.

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

You have *d* friends. Each of your friend retweets w.p. *p*.

Each of your friends has *d* friends, etc.

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

You have d friends. Each of your friend retweets w.p. p.

Each of your friends has *d* friends, etc.

Does the rumor spread?

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

You have d friends. Each of your friend retweets w.p. p.

Each of your friends has *d* friends, etc.

Does the rumor spread? Does it die out

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

You have d friends. Each of your friend retweets w.p. p.

Each of your friends has *d* friends, etc.

Does the rumor spread? Does it die out (mercifully)?

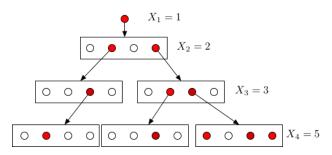
Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

You have *d* friends. Each of your friend retweets w.p. *p*.

Each of your friends has *d* friends, etc.

Does the rumor spread? Does it die out (mercifully)?



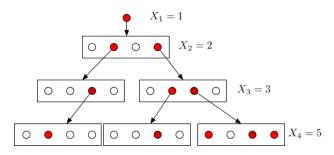
Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

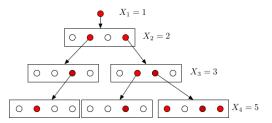
You have d friends. Each of your friend retweets w.p. p.

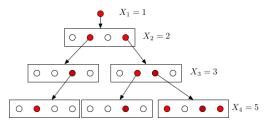
Each of your friends has *d* friends, etc.

Does the rumor spread? Does it die out (mercifully)?

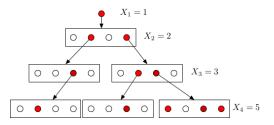


In this example, d = 4.

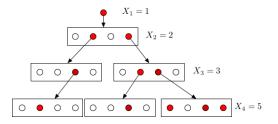




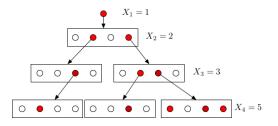
Fact:



Fact: Let $X = \sum_{n=1}^{\infty} X_n$.



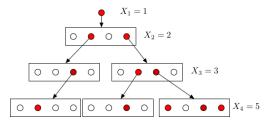
Fact: Let $X = \sum_{n=1}^{\infty} X_n$. Then, $E[X] < \infty$ iff pd < 1.



Fact: Let $X = \sum_{n=1}^{\infty} X_n$. Then, $E[X] < \infty$ iff pd < 1.

Proof:

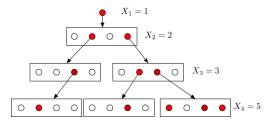
Given $X_n = k$, $X_{n+1} = B(kd, p)$.



Fact: Let $X = \sum_{n=1}^{\infty} X_n$. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.



Fact: Let $X = \sum_{n=1}^{\infty} X_n$. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

Thus, $E[X_{n+1}|X_n] = pdX_n$.

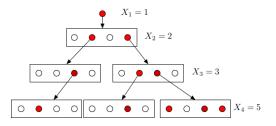


Fact: Let $X = \sum_{n=1}^{\infty} X_n$. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

Thus, $E[X_{n+1}|X_n]=pdX_n$. Consequently, $E[X_n]=(pd)^{n-1}, n\geq 1$.



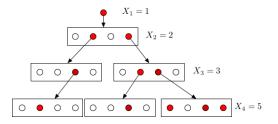
Fact: Let $X = \sum_{n=1}^{\infty} X_n$. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

Thus, $E[X_{n+1}|X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}, n \ge 1$.

If pd < 1, then $E[X_1 + \cdots + X_n] \le (1 - pd)^{-1}$



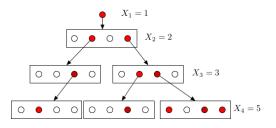
Fact: Let $X = \sum_{n=1}^{\infty} X_n$. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

Thus, $E[X_{n+1}|X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}, n \ge 1$.

If pd < 1, then $E[X_1 + \cdots + X_n] \le (1 - pd)^{-1} \Longrightarrow E[X] \le (1 - pd)^{-1}$.



Fact: Let $X = \sum_{n=1}^{\infty} X_n$. Then, $E[X] < \infty$ iff pd < 1.

Proof:

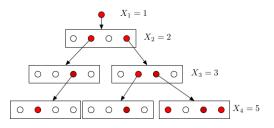
Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

Thus, $E[X_{n+1}|X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}, n \ge 1$.

If pd < 1, then $E[X_1 + \cdots + X_n] \le (1 - pd)^{-1} \Longrightarrow E[X] \le (1 - pd)^{-1}$.

If $pd \ge 1$, then for all C one can find n s.t.

$$E[X] \geq E[X_1 + \cdots + X_n] \geq C.$$



Fact: Let $X = \sum_{n=1}^{\infty} X_n$. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

Thus, $E[X_{n+1}|X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}, n \ge 1$.

If pd < 1, then $E[X_1 + \dots + X_n] \le (1 - pd)^{-1} \Longrightarrow E[X] \le (1 - pd)^{-1}$.

If $pd \ge 1$, then for all C one can find n s.t.

$$E[X] \geq E[X_1 + \cdots + X_n] \geq C.$$

In fact, one can show that $pd \ge 1 \implies Pr[X = \infty] > 0$.

Theorem Wald's Identity

Theorem Wald's Identity

Assume that X_1, X_2, \dots and Z are independent, where

Theorem Wald's Identity

Assume that $X_1, X_2, ...$ and Z are independent, where Z takes values in $\{0, 1, 2, ...\}$

Theorem Wald's Identity

Assume that $X_1, X_2,...$ and Z are independent, where Z takes values in $\{0,1,2,...\}$

and $E[X_n] = \mu$ for all $n \ge 1$.

Theorem Wald's Identity

Assume that X_1, X_2, \dots and Z are independent, where

$$Z$$
 takes values in $\{0,1,2,\ldots\}$

and
$$E[X_n] = \mu$$
 for all $n \ge 1$.

Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

Theorem Wald's Identity

Assume that $X_1, X_2,...$ and Z are independent, where Z takes values in $\{0,1,2,...\}$

and
$$E[X_n] = \mu$$
 for all $n \ge 1$.

Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

Theorem Wald's Identity

Assume that $X_1, X_2, ...$ and Z are independent, where

$$Z$$
 takes values in $\{0,1,2,\ldots\}$

and
$$E[X_n] = \mu$$
 for all $n \ge 1$.

Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

$$E[X_1+\cdots+X_Z|Z=k]=\mu k.$$

Theorem Wald's Identity

Assume that $X_1, X_2,...$ and Z are independent, where

Z takes values in
$$\{0,1,2,\ldots\}$$

and
$$E[X_n] = \mu$$
 for all $n \ge 1$.

Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

$$E[X_1+\cdots+X_Z|Z=k]=\mu k.$$

Thus,
$$E[X_1 + \cdots + X_Z | Z] = \mu Z$$
.

Theorem Wald's Identity

Assume that $X_1, X_2, ...$ and Z are independent, where Z takes values in $\{0, 1, 2, ...\}$ and $E[X_n] = \mu$ for all n > 1.

Then,

$$E[X_1+\cdots+X_Z]=\mu E[Z].$$

$$E[X_1+\cdots+X_Z|Z=k]=\mu k.$$

Thus,
$$E[X_1 + \cdots + X_Z | Z] = \mu Z$$
.

Hence,
$$E[X_1 + \cdots + X_Z] = E[\mu Z] = \mu E[Z]$$
.

Theorem

E[Y|X] is the 'best' guess about Y based on X.

Theorem

E[Y|X] is the 'best' guess about Y based on X.

Specifically, it is the function g(X) of X that

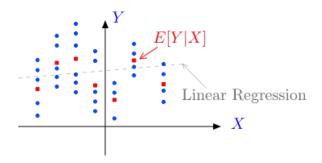
minimizes $E[(Y-g(X))^2]$.

Theorem

E[Y|X] is the 'best' guess about Y based on X.

Specifically, it is the function g(X) of X that

minimizes
$$E[(Y-g(X))^2]$$
.



Theorem CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$.

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$.

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$.

Proof:

Let h(X) be any function of X.

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$.

Proof:

Let h(X) be any function of X. Then

$$E[(Y - h(X))^2] =$$

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$.

Proof:

Let h(X) be any function of X. Then

$$E[(Y - h(X))^2] = E[(Y - g(X) + g(X) - h(X))^2]$$

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$.

Proof:

Let h(X) be any function of X. Then

$$E[(Y - h(X))^{2}] = E[(Y - g(X) + g(X) - h(X))^{2}]$$

$$= E[(Y - g(X))^{2}] + E[(g(X) - h(X))^{2}]$$

$$+2E[(Y - g(X))(g(X) - h(X))].$$

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$.

Proof:

Let h(X) be any function of X. Then

$$E[(Y - h(X))^{2}] = E[(Y - g(X) + g(X) - h(X))^{2}]$$

$$= E[(Y - g(X))^{2}] + E[(g(X) - h(X))^{2}]$$

$$+2E[(Y - g(X))(g(X) - h(X))].$$

But,

$$E[(Y-g(X))(g(X)-h(X))]=0$$
 by the projection property.

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$.

Proof:

Let h(X) be any function of X. Then

$$E[(Y - h(X))^{2}] = E[(Y - g(X) + g(X) - h(X))^{2}]$$

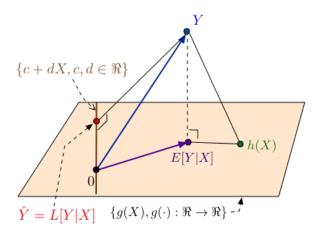
$$= E[(Y - g(X))^{2}] + E[(g(X) - h(X))^{2}]$$

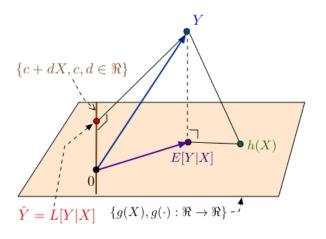
$$+2E[(Y - g(X))(g(X) - h(X))].$$

But,

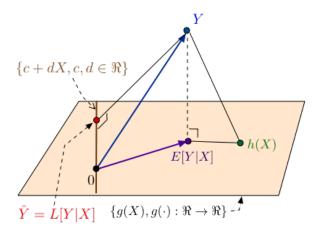
$$E[(Y-g(X))(g(X)-h(X))]=0$$
 by the projection property.

Thus,
$$E[(Y - h(X))^2] \ge E[(Y - g(X))^2]$$
.

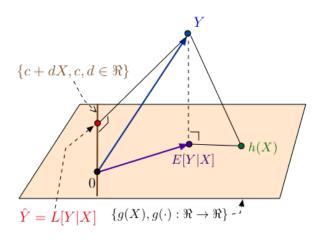




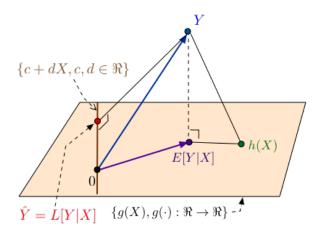
L[Y|X] is the projection of Y on $\{a+bX, a, b \in \Re\}$:



L[Y|X] is the projection of Y on $\{a+bX, a, b \in \Re\}$: LLSE



L[Y|X] is the projection of Y on $\{a+bX, a, b \in \Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X), g(\cdot) : \Re \to \Re\}$:



L[Y|X] is the projection of Y on $\{a+bX, a, b \in \Re\}$: LLSE E[Y|X] is the projection of Y on $\{g(X), g(\cdot) : \Re \to \Re\}$: MMSE.

Conditional Expectation

▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- Properties: Linearity, Y − E[Y|X] ⊥ h(X);

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- Properties: Linearity,

$$Y - E[Y|X] \perp h(X); E[E[Y|X]] = E[Y]$$

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- ► Properties: Linearity, $Y - E[Y|X] \perp h(X)$; E[E[Y|X]] = E[Y]
- Some Applications:

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- Properties: Linearity,

$$Y - E[Y|X] \perp h(X); E[E[Y|X]] = E[Y]$$

- Some Applications:
 - ▶ Calculating E[Y|X]

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- Properties: Linearity,

$$Y - E[Y|X] \perp h(X); E[E[Y|X]] = E[Y]$$

- Some Applications:
 - ▶ Calculating E[Y|X]
 - Diluting

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- Properties: Linearity,

$$Y - E[Y|X] \perp h(X); E[E[Y|X]] = E[Y]$$

- Some Applications:
 - ▶ Calculating E[Y|X]
 - Diluting
 - Mixing

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- Properties: Linearity,

$$Y - E[Y|X] \perp h(X); E[E[Y|X]] = E[Y]$$

- Some Applications:
 - ▶ Calculating E[Y|X]
 - Diluting
 - Mixing
 - Rumors

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- Properties: Linearity,

$$Y - E[Y|X] \perp h(X); E[E[Y|X]] = E[Y]$$

- Some Applications:
 - ▶ Calculating E[Y|X]
 - Diluting
 - Mixing
 - Rumors
 - Wald

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- Properties: Linearity,

$$Y - E[Y|X] \perp h(X); E[E[Y|X]] = E[Y]$$

- Some Applications:
 - ▶ Calculating E[Y|X]
 - Diluting
 - Mixing
 - Rumors
 - Wald
- ▶ MMSE: E[Y|X] minimizes $E[(Y-g(X))^2]$ over all $g(\cdot)$