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1. Review: LR and LLSE

2. Conditional expectation

3. Applications: Diluting, Mixing, Rumors
4. CE = MMSE
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Pri(X,Y)= (X, V)l =1/K.k=1,....K.

Then, as before.
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Consider the non-Bayesian case: sample (Xj, Y1),...,(Xk, Yk)-

Then,
cov(X,Y)

LIY|X]=E[Y]+ var(X) (X — E[X]).
Here,
1 K
E[X]ZR;Xk
K
E[Y]:Rk; |7

2 1 X 2
1 K
EIXY] = k; Xi Y

cov(X,Y) = E[XY] - E[X]E[Y]
var(X) = E[X?] - E[X]2.
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We find:
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y

2

We find:

E[X] =3 E[Y] = 2.5, E[X?] = (3/15)(1 +2° +3° +- 47 +5%) = 11;
EXY]=(1/15)(1 x1+1x2+---+5x4)=8.4;
var[X]=11-9=2;cov(X,Y)=84-3x25=0.9;

LR: V:2.5+%9(X—3) =1.15+0.45X.
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There are many situations where a good guess about Y given
X is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA
level, cancer risk).
1 Y [5--11--1" estimate

LIY|X] v
v

Our goal: Derive the best estimate of Y given X!

That is, find the function g(-) so that g(X) is the best guess
about Y given X.

Ambitious! Can it be done? Amazingly, yes!
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Here, E[Y|X = 1] is the mean value of Y given that X =1. Also,
E[Y|X =2] is the mean value of Y given that X =2 and E[Y|X = 3]
is the mean value of Y given that X = 3.

When we know that X =1, Y has a new distribution: Y is uniform in
{1,2,3}.
Thus, our guess is E[Y|X =1]=1(1/3)+2(1/3)+3(1/3) = 2.
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Definition Let X and Y be RVs on Q. The conditional expectation of
Y given X is defined as

E[Y[X]=9(X)
where
9(x):=E[Y|X=x]:=) yPr[Y =y|X =x],
y
with PrlY = y|X = x] := 2t

Theorem: E[Y|X] is the best guess about Y given X.
That is, for any function h(-), one has

E[(Y —h(X))?] = E[(Y — E[Y|X])?].

Proof: Later.
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calculate

E[2+5X+7XY +11X2 +13X322|X].

We find

E[24+5X+7XY +11X% +13X322|X]
=24+ 5X +7XE[Y|X]+11X? +13X3E[Z%| X]
=24+ 5X+7XE[Y]+11X2 +13X3E[Z?]
=24+ 5X+11X2+13X3(var[Z] + E[Z)?)
=245X+11X24+13X3,



Projection Property



Projection Property
The claim is that

E[(Y — E[Y|X])f(X)] = 0,¥f(.).



Projection Property
The claim is that

E[(Y — E[Y|X])f(X)] = 0,¥f(.).

That is,
E[Yf(X)] = E[E[Y|X]f(X)]



Projection Property
The claim is that

E[(Y — E[Y|X])f(X)] =0,Vf(.).
That is,
E[Yf(X)] = E[E[Y|X]f(X)]

In particular, choosing f(x) =1, we get



Projection Property
The claim is that

E[(Y - E[Y|X])f(X)] =0,Vf(.).
That is,
E[Y(X)] = E[E[Y|X]f(X)]
in particular, choosing f(x) =1, we get

E[Y] = E[E[Y|X]].



Projection Property
The claim is that

E[(Y - E[Y|X])f(X)] =0,Vf(.).
That is,
E[YH(X)] = E[E[Y|X]A(X)]
in particular, choosing f(x) =1, we get
E[Y]= E[E[Y|X]].
Proof:



Projection Property
The claim is that

E[(Y - E[Y|X])f(X)] =0,Vf(.).
That is,
E[YH(X)] = E[E[Y|X]A(X)]
in particular, choosing f(x) =1, we get
E[Y]= E[E[Y|X]].
Proof:

EIE[YIXI(X)] =



Projection Property
The claim is that

E[(Y - E[Y|X])f(X)] =0,Vf(.).
That is,
E[YH(X)] = E[E[Y|X]A(X)]
in particular, choosing f(x) =1, we get
E[Y]= E[E[Y|X]].
Proof:

EIEYIXIF(X)] = Y. ELYIX = xIf(x)Pr[X = x]



Projection Property
The claim is that

E[(Y - E[Y|X])f(X)] =0,Vf(.).
That is,
E[YH(X)] = E[E[Y|X]A(X)]
in particular, choosing f(x) =1, we get
E[Y]= E[E[Y|X]].
Proof:

E[E[YIX]H(X)]

Y E[YIX = x]f(x)Pr[X = X]

Z[ny(x)Pr[Y =y|X = x]]Pr[X = x]
Xy



Projection Property
The claim is that

E[(Y - E[Y|X])f(X)] =0,Vf(.).
That is,
E[YH(X)] = E[E[Y|X]A(X)]
in particular, choosing f(x) =1, we get
E[Y]= E[E[Y|X]].
Proof:

E[E[YIX]H(X)]

Y E[YIX = x]f(x)Pr[X = X]
Z[ny(x)Pr[Y: y|X = X]]Pr[X = x]
Xy

Y)Y () PriX=x,Y =y]
Xy
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The claim is that

E[(Y - E[Y|X])f(X)] =0,Vf(.).
That is,
E[YH(X)] = E[E[Y|X]A(X)]
in particular, choosing f(x) =1, we get
E[Y]= E[E[Y|X]].
Proof:

E[E[YIX]H(X)]

Y E[YIX = x]f(x)Pr[X = X]

= Z[ny(x)Pr[Y: y|X = X]]Pr[X = x]
Xy

= Y)Y vi(x)PriX=x,Y =y]
Xy

= E[YH(X)).
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We saw that E[X,.1|Xn] =1+ pXn, p:=(1—-2/N). Hence,

Hence,

E[Xn 1] =1+ pE[Xp]

E[Xe] =14pN;E[Xs] =1+p(1+pN)=1+p+p°N
EXs)=1+p(1+p+p°N)=1+p+p2+p°N
E[Xp]=1+p+---+p " 2+p"'N.

1 _pn—1

E[X,] = +p"'N,n>1.
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Does the rumor spread? Does it die out (mercifully)?

X1:1

[0 0 s o] [op e o]
/ VAR

‘ooooHooooHoooo

Xy=5H

In this example, d = 4.
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Fact: Let X =Y, _; X,. Then, E[X] < iff pd < 1.

Proof:
Given X, = k, Xp.1 = B(kd, p). Hence, E[X,,.1|Xn = k] = kpd.

Thus, E[X.1|Xn] = pdX,. Consequently, E[X,] = (pd)"",n>1.
If pd <1, then E[X; 4+ Xp] < (1 —pd) ' = E[X] < (1-pd)~".

If pd > 1, then for all C one can find n s.t.
E[X]>E[Xi+---+Xs] > C.

In fact, one can show that pd > 1 = Pr[X =] > 0.
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Theorem Wald’s Identity

Assume that Xi, X2,... and Z are independent, where
Z takes values in {0,1,2,...}

and E[X,]=pu foralln>1.

Then,
E[X1 —i-‘--—i-Xz] = LLE[Z]

Proof:
E[Xi+---+Xz|Z=K] = uk.
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Theorem Wald’s Identity

Assume that Xi, X2,... and Z are independent, where
Z takes values in {0,1,2,...}
and E[X,|=pu foralln>1.

Then,
E[X1 —i-‘--—i-Xz] = LLE[Z]

Proof:
E[Xi+---+Xz|Z=K] = uk.
Thus, E[X1+---+ Xz|Z] = uZ.



Application: Wald’s Identity

Theorem Wald’s Identity

Assume that Xi, X2,... and Z are independent, where
Z takes values in {0,1,2,...}

and E[X,]=pu foralln>1.

Then,
E[X1 —i-‘--—i-Xz] = LLE[Z]

Proof:

E[Xi+---+ Xz|Z = k] = uk.

Thus, E[Xi+---+ Xz|Z] = uZ.

Hence, E[Xi +-- -+ Xz| = E[uZ] = nE[Z].

O
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Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes
E[(Y - g(X))7.

Proof:

Let h(X) be any function of X. Then

EI(Y —g(X)+9(X) —h(X))?]
EI(Y = 9(X))?1+ El(g(X) — h(X))?]
+2E[(Y = g(X))(g(X) = h(X))].

EI(Y —h(X))?]

But,
E[(Y —g(X))(g(X) — h(X))] = 0 by the projection property.
Thus, E[(Y - h(X))?] = E[(Y —g(X))?].



E[Y|X] and L[Y|X] as projections

Y

{e+dX, e, d € R}

- Ly|x] {9(X),g0): R R}



E[Y|X] and L[Y|X] as projections

- Ly|x] {9(X),g0): R R}

L[Y|X] is the projection of Y on {a+ bX,a,b € R}:



E[Y|X] and L[Y|X] as projections

- Ly|x] {9(X),g0): R R}

L[Y|X] is the projection of Y on {a+ bX,a,b e R}: LLSE



E[Y|X] and L[Y|X] as projections

- Ly|x] {9(X),g0): R R}

L[Y|X] is the projection of Y on {a+ bX,a,b e R}: LLSE
E[Y|X] is the projection of Y on {g(X),g(:) : R — R}:



E[Y|X] and L[Y|X] as projections

%

{e+dX, e, d € R}

h(X)
E[Y|X]

- Ly|x] {9(X),g0): R R}

L[Y|X] is the projection of Y on {a+ bX,a,b e R}: LLSE
E[Y|X] is the projection of Y on {g(X),g(:) : ® — R}: MMSE.
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Summary

‘ Conditional Expectation ‘

v

Definition: E[Y[X]: =Y, yPr[Y = y|X = X]
Properties: Linearity,

Y —E[Y|X] L h(X); E[E[Y|X]] = E[Y]
Some Applications:

Calculating E[Y|X]

Diluting

Mixing

Rumors

Wald

MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)

v

v
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