CS70: Jean Walrand: Lecture 24.

Markov Chains

1. Examples

2. Definition
3. First Passage Time

Finite Markov Chain: Definition

- A finite set of states: $\mathscr{X}=\{1,2, \ldots, K\}$
- A probability distribution π_{0} on $\mathscr{X}: \pi_{0}(i) \geq 0, \sum_{i} \pi_{0}(i)=1$
- Transition probabilities: $P(i, j)$ for $i, j \in \mathscr{X}$

$$
P(i, j) \geq 0, \forall i, j ; \Sigma_{j} P(i, j)=1, \forall i
$$

- $\left\{X_{n}, n \geq 0\right\}$ is defined so that

$$
\operatorname{Pr}\left[X_{0}=i\right]=\pi_{0}(i), i \in \mathscr{X} \text { (initial distribution) }
$$

$\operatorname{Pr}\left[X_{n+1}=j \mid X_{0}, \ldots, X_{n}=i\right]=P(i, j), i, j \in \mathscr{X}$.

Two-State Markov Chain

Here is a symmetric two-state Markov chain. It describes a random motion in $\{0,1\}$. Here, a is the probability that the state changes in the next step.

Let's simulate the Markov chain:

First Passage Time - Example 1

Let's flip a coin with $\operatorname{Pr}[H]=p$ until we get H. How many flips, on average?
Let's define a Markov chain:

- $X_{0}=S$ (start)
- $X_{n}=S$ for $n \geq 1$, if last flip was T and no H yet
- $X_{n}=E$ for $n \geq 1$, if we already got H (end)

Five-State Markov Chain
At each step, the MC follows one of the outgoing arrows of the current state, with equal probabilities.

Let's simulate the Markov chain:

First Passage Time - Example 1
Let's flip a coin with $\operatorname{Pr}[H]=p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S
Then,

$$
\beta(S)=1+q \beta(S)+p 0 .
$$

(See next slide.) Hence,

$$
p \beta(S)=1 \text {, so that } \beta(S)=1 / p .
$$

Note: Time until E is $G(p)$. We have rediscovered that the mean of $G(p)$ is $1 / p$.

First Passage Time - Example 1
Let's flip a coin with $\operatorname{Pr}[H]=p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E.
Then,

$$
\beta(S)=1+q \beta(S)+p 0 .
$$

Justification: Let N be the random number of steps until E, starting from S. Let also N^{\prime} be the number of steps until E, after the second visit to S. Finally, let $Z=1\{$ first flip $=H\}$. Then,

$$
N=1+(1-Z) \times N^{\prime}+Z \times 0 .
$$

Now, Z and N^{\prime} are independent. Also, $E\left[N^{\prime}\right]=E[N]=\beta(S)$. Hence, taking expectation

$$
\beta(S)=E[N]=1+(1-p) E\left[N^{\prime}\right]+p 0=1+q \beta(S)+p 0 .
$$

First Passage Time - Example 2

 S: Start
$H:$ Last flip $=H$
T: Last flip $=T$
E: Done
Let us justify the first step equation for $\beta(T)$. The others are similar. Let $N(T)$ be the random number of steps, starting from T until the MC hits E. Let also $N(H)$ be defined similarly. Finally, let $N^{\prime}(T)$ be the hits E. Let also $N(H)$ be defined similarly. Finally, let $N(T)$ be the

$$
N(T)=1+Z \times N(H)+(1-Z) \times N^{\prime}(T)
$$

where $Z=1\{$ first flip in T is $H\}$. Since Z and $N(H)$ are independent, and Z and $N^{\prime}(T)$ are independent, taking expectations, we get

$$
E[N(T)]=1+p E[N(H)]+q E\left[N^{\prime}(T)\right],
$$

i.e.,
$\beta(T)=1+p \beta(H)+q \beta(T)$.

First Passage Time - Example 2

Let's flip a coin with $\operatorname{Pr}[H]=p$ until we get two consecutive Hs. How many flips, on average?

```
HTHTTTHTHTHTTHTHH
```

Let's define a Markov chain:

- $x_{0}=S$ (start)
- $X_{n}=E$, if we already got two consecutive H s (end)
- $X_{n}=T$, if last flip was T and we are not done
- $X_{n}=H$, if last flip was H and we are not done

First Passage Time - Example 3
You roll a balanced six-sided die until the sum of the last two rolls is 8 . How many times do you have to roll the die, on average?

$\beta(S)=1+\frac{1}{6} \sum_{j=1}^{6} \beta(j) ; \beta(1)=1+\frac{1}{6} \sum_{j=1}^{6} \beta(j) ; \beta(i)=1+\frac{1}{6} \sum_{j=1, \ldots, 6 ; j \neq 8-i} \beta(j), i=2, \ldots, 6$.
Symmetry: $\beta(2)=\cdots=\beta(6)=: \gamma$. Also, $\beta(1)=\beta(S)$. Thus,
$\beta(S)=1+(5 / 6) \gamma+\beta(S) / 6 ; \quad \gamma=1+(4 / 6) \gamma+(1 / 6) \beta(S)$.
$\Rightarrow \cdots \beta(S)=8.4$.

First Passage Time - Example 2

et's flip a coin with $\operatorname{Pr}[H]=p$ until we get two consecutive Hs . How many flips, on average? Here is a picture:

S: Start H : Last flip $=H$
T : Last flip $=T$
E: Done

Let $\beta(i)$ be the average time from state i until the MC hits state E.
We claim that (these are called the first step equations)

$$
\begin{aligned}
& \beta(S)=1+p \beta(H)+q \beta(T) \\
& \beta(H)=1+p 0+q \beta(T) \\
& \beta(T)=1+p \beta(H)+q \beta(T) .
\end{aligned}
$$

Solving, we find $\beta(S)=2+3 q p^{-1}+q^{2} p^{-2}$. (E.g., $\beta(S)=6$ if $p=1 / 2$.)

First Passage Time - Example 4

You try to go up a ladder that has 20 rungs. At each time step, you succeed in going up by one rung with probability $p=0.9$. Otherwise, you fall back to the ground. How many time steps does it take you to reach the top of the adder, on average?

$\beta(n)=1+p \beta(n+1)+q \beta(0), 0 \leq n<19$

$$
\beta(19)=1+p 0+q \beta(0)
$$

$$
\Rightarrow \beta(0)=\frac{p^{-20}-1}{1-p} \approx 72 .
$$

See Lecture Note 24 for algebra.

First Passage Time - Example 5
You play a game of "heads or tails" using a biased coin that yields 'heads' with probability $p<0.5$. You start with $\$ 10$. At each step, if heads' with probabiity $p<0.5$. You start with $\$ 10$. At each step, if the probability that you reach $\$ 100$ before $\$ 0$?

Let $\alpha(n)$ be the probability of reaching 100 before 0 , starting from n, for $n=0,1, \ldots, 100$
$\alpha(0)=0 ; \alpha(100)=1$.
$\alpha(n)=p \alpha(n+1)+q \alpha(n-1), 0<n<100$

$$
\Rightarrow \alpha(n)=\frac{1-\rho^{n}}{1-\rho^{100}} \text { with } \rho=q p^{-1} .(\text { See LN 24) }
$$

First Passage Time - Example 5
You play a game of "heads or tails" using a biased coin that yields 'heads with probability 0.48 . You start with $\$ 10$. At each step, if the flip yields 'heads', you earn $\$ 1$. Otherwise, you lose $\$ 1$. What is the probability that you reach $\$ 100$ before $\$ 0$?

Morale of example: Be careful!

Summary: First Step Equations
Let X be a MC on \mathscr{X} and $A, B \subset \mathscr{X}$ with $A \cap B=\emptyset$. Define
$T_{A}=\min \left\{n \geq 0 \mid X_{n} \in A\right\}$ and $T_{B}=\min \left\{n \geq 0 \mid X_{n} \in B\right\}$.
Let

$$
\beta(i)=E\left[T_{A} \mid X_{0}=i\right] \text { and } \alpha(i)=\operatorname{Pr}\left[T_{A}<T_{B} \mid X_{0}=i\right], i \in \mathscr{X} .
$$

he FSE are

$\beta(i)=0, i \in A$
$\beta(i)=1+\sum P(i, j) \beta(j), i \notin A$
$\alpha(i)=1, i \in A$
$\alpha(i)=0, i \in B$
$\alpha(i)=\sum P(i, j) \alpha(j), i \notin A \cup B$.

