
CS70: Jean Walrand: Lecture 25.

Markov Chains: Distributions

1. Review
2. Distribution
3. Irreducibility
4. Convergence



CS70: Jean Walrand: Lecture 25.

Markov Chains: Distributions

1. Review
2. Distribution
3. Irreducibility
4. Convergence



CS70: Jean Walrand: Lecture 25.

Markov Chains: Distributions

1. Review
2. Distribution
3. Irreducibility
4. Convergence



Review

I Markov Chain:

I Finite set X ; π0; P = {P(i , j), i , j ∈X };
I Pr [X0 = i] = π0(i), i ∈X
I Pr [Xn+1 = j | X0, . . . ,Xn = i] = P(i , j), i , j ∈X ,n ≥ 0.
I Note:

Pr [X0 = i0,X1 = i1, . . . ,Xn = in] = π0(i0)P(i0, i1) · · ·P(in−1, in).

I First Passage Time:

I A∩B = /0;β (i) = E [TA|X0 = i];α(i) = P[TA < TB|X0 = i]
I β (i) = 1+∑j P(i , j)β (j);α(i) = ∑j P(i , j)α(j).
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Let πm(i) = Pr [Xm = i], i ∈X . Note that

Pr [Xm+1 = j] = ∑
i

Pr [Xm+1 = j ,Xm = i]

= ∑
i

Pr [Xm = i]Pr [Xm+1 = j | Xm = i]

= ∑
i

πm(i)P(i , j).
Hence,

πm+1(j) = ∑
i

πm(i)P(i , j),∀j ∈X .

With πm,πm+1 as a row vectors, these identities are written as πm+1 = πmP.

Thus, π1 = π0P, π2 = π1P = π0PP = π0P2, . . . . Hence,

πn = π0Pn,n ≥ 0.
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Balance Equations

Question: Is there some π0 such that πm = π0,∀m?

Definition A distribution π0 such that πm = π0,∀m is said to be an
invariant distribution.

Theorem A distribution π0 is invariant iff π0P = π0. These equations
are called the balance equations.

Proof: πn = π0Pn, so that πn = π0,∀n iff π0P = π0.

Thus, if π0 is invariant, the distribution of Xn is always the same as
that of X0.

Of course, this does not mean that Xn does not move. It means that
the probability that it leaves a state i is equal to the probability that it
enters state i .

The balance equations say that ∑j π(j)P(j , i) = π(i).
That is,

∑
j 6=i

π(j)P(j , i) = π(i)(1−P(i , i)) = π(i)∑
j 6=i

P(i , j).

Thus, Pr [enter i] = Pr [leave i].
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Balance Equations

Theorem A distribution π0 is invariant iff π0P = π0. These equations
are called the balance equations.
Example 1:

πP = π ⇔ [π(1),π(2)]
[

1−a a
b 1−b

]
= [π(1),π(2)]

⇔ π(1)(1−a)+π(2)b = π(1) and π(1)a+π(2)(1−b) = π(2)
⇔ π(1)a = π(2)b.

These equations are redundant! We have to add an equation:
π(1)+π(2) = 1. Then we find

π = [
b

a+b
,

a
a+b

].
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Irreducibility

Definition A Markov chain is irreducible if it can go from every state i
to every state j (possibly in multiple steps).

Examples:

1

0.8

1

0.8

2

3 1

2

3 1

2

31

0.7

0.3

0.7

0.3

0.7

0.3

1

1

0.6

0.4

[A] [B] [C]

0.2

1

0.2

[A] is not irreducible. It cannot go from (2) to (1).

[B] is not irreducible. It cannot go from (2) to (1).

[C] is irreducible. It can go from every i to every j .

If you consider the graph with arrows when P(i , j)> 0, irreducible
means that there is a single connected component.
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Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only
one invariant distribution.

That is, there is a unique positive vector π = [π(1), . . . ,π(K )]
such that πP = π and ∑k π(k) = 1.

Proof: See EE126, or lecture note 24. (We will not expect you
to understand this proof.)
Note: We know already that some irreducible Markov chains
have multiple invariant distributions.

Fact: If a Markov chain has two different invariant distributions
π and ν , then it has infinitely many invariant distributions.
Indeed, pπ +(1−p)ν is then invariant since

[pπ +(1−p)ν]P = pπP +(1−p)νP = pπ +(1−p)ν .
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to understand this proof.)
Note: We know already that some irreducible Markov chains
have multiple invariant distributions.

Fact: If a Markov chain has two different invariant distributions
π and ν , then it has infinitely many invariant distributions.
Indeed, pπ +(1−p)ν is then invariant since

[pπ +(1−p)ν]P = pπP +(1−p)νP = pπ +(1−p)ν .
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Long Term Fraction of Time in States

Theorem Let Xn be an irreducible Markov chain with invariant
distribution π.

Then, for all i ,

1
n

n−1

∑
m=0

1{Xm = i}→ π(i), as n→ ∞.

The left-hand side is the fraction of time that Xm = i during
steps 0,1, . . . ,n−1. Thus, this fraction of time approaches π(i).

Proof: See EE126. Lecture note 24 gives a plausibility
argument.
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Example 1:

The fraction of time in state 1 converges to 1/2, which is π(1).
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Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does πn
approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

Assume X0 = 1. Then X1 = 2,X2 = 1,X3 = 2, . . ..

Thus, if π0 = [1,0], π1 = [0,1],π2 = [1,0],π3 = [0,1], etc.

Hence, πn does not converge to π = [1/2,1/2].
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Periodicity

Theorem Assume that the MC is irreducible. Then

d(i) := g.c.d.{n > 0 | Pr [Xn = i | X0 = i]> 0}

has the same value for all states i .

Proof: See Lecture notes 24.
Definition If d(i) = 1, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period d(i).
Example

[A]: {n > 0 | Pr [Xn = 1|X0 = 1]> 0}= {3,6,7,9,11, . . .}⇒ d(1) = 1.

{n > 0 | Pr [Xn = 2|X0 = 2]> 0}= {3,4, . . .}⇒ d(2) = 1.

[B]: {n > 0 | Pr [Xn = 1|X0 = 1]> 0}= {3,6,9, . . .}⇒ d(i) = 3.

{n > 0 | Pr [Xn = 5|X0 = 5]> 0}= {6,9, . . .}⇒ d(5) = 3.
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Convergence of πn

Theorem Let Xn be an irreducible and aperiodic Markov chain with
invariant distribution π. Then, for all i ∈X ,

πn(i)→ π(i), as n→ ∞.

Proof See EE126, or Lecture notes 24.
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Calculating π

Let P be irreducible. How do we find π?

Example: P =

 0.8 0.2 0
0 0.3 0.7

0.6 0.4 0

 .
One has πP = π, i.e., π[P− I] = 0 where I is the identity matrix:

π

 0.8−1 0.2 0
0 0.3−1 0.7

0.6 0.4 0−1

= [0,0,0].

However, the sum of the columns of P− I is 0. This shows that these
equations are redundant: If all but the last one hold, so does the last one. Let
us replace the last equation by π1 = 1, i.e., ∑j π(j) = 1:

π

 0.8−1 0.2 1
0 0.3−1 1

0.6 0.4 1

= [0,0,1].

Hence,

π = [0,0,1]

 0.8−1 0.2 1
0 0.3−1 1

0.6 0.4 1

−1

≈ [0.55,0.26,0.19]
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Summary

Markov Chains

I Markov Chain: Pr [Xn+1 = j |X0, . . . ,Xn = i] = P(i , j)
I FSE: β (i) = 1+∑j P(i , j)β (j);α(i) = ∑j P(i , j)α(j).
I πn = π0Pn

I π is invariant iff πP = π

I Irreducible⇒ one and only one invariant distribution π

I Irreducible⇒ fraction of time in state i approaches π(i)
I Irreducible + Aperiodic⇒ πn→ π.
I Calculating π: One finds π = [0,0. . . . ,1]Q−1 where Q = · · · .
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How to Gamble,

if You Must

Dubins and Savage, How to Gamble if You Must: Inequalities for Stochastic Processes. Dover Books on
Mathematics. Paperback - July 23, 2014. (Original Edition, 1965.)

Recall the ‘heads or tails game’:
At each step, you win 1 w.p. p and loose 1 w.p. q = 1−p.
You start with 10 and you want to maximize the probability of getting
to 100 before you get to 0.

In their celebrated masterpiece, Dubins and Savage proved that the
optimal strategy, if p ≤ 1/2, is the bold one, always betting the
maximum, and if p ≥ 1/2, then an optimal strategy is the timid one,
always betting the minimum.

There are relatively few problems for which one can prove such a
clean result. However, there is a systematic approach to calculate the
optimal strategy for many problems. We explain that approach next
on this problem.
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Original Strategy

Recall the original strategy: bet 1 each time. Then,

..... .....
0 1 nn � 1 n + 1

p

q q = 1 � p

p p p p p

q q q q q

100

Let α(n) be the probability of reaching 100 before 0, starting
from n, for n = 0,1, . . . ,100.

α(0) = 0;α(100) = 1.
α(n) = pα(n+1)+qα(n−1),0 < n < 100.

Solving, we find

α(n) =
1−ρn

1−ρ100 with ρ = qp−1.

For p = 0.46, we get α(10)≈ 3.5×10−6.
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Bold: Estimate

We can do better. Let us bet all we have. Then, with probability
p4 we have

10→ 20→ 40→ 80→ 160.

With p = 0.46, we see that we get to 100, at least with
probability (0.46)4 = 0.0448. This is much better than
3.5×10−6.

Thus, the probability of winning the game (i.e., getting to 100
before 0) is at least 0.0448 when playing bold.
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Bold: Analysis
What is the exact probability of winning when playing bold?

Here is
the corresponding MC:

The FSE for α(n) = Pr [T100 < T0 | X0 = n] are

α(10) = pα(20)+q0;α(20) = pα(40)+q0;α(40) = pα(80)+q0
α(80) = p1+qα(60);α(60) = p1+qα(20)

To solve, let α(10) = x . Then, we find

α(20) = p−1x ;α(40) = p−1
α(20) = p−2x

α(80) = p−1
α(40) = p−3x ;p−3x = p+qα(60);α(60) = p+qp−1x .

We solve the last two equations for x .
We find x = p2(1+q)/(p−2−q2)≈ 0.0735.
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Optimal Strategy

Note: The material on the remaining slides of this lecture will not be on the final.

We have seen that playing bold is much better than playing timid when
p = 0.46.

Intuition suggests that this may be the best strategy. However, intuition is
often misleading!

How do we calculate the optimal strategy?

Here is a systematic approach. Assume you can only play 0 time. Let V (0,n)
be you maximum probability of winning the game if you start with n. Clearly,
V (0,100) = 1. Also, for n = 0, . . . ,99, one has V (0,n) = 0.

Let V (k ,n) be the maximum probability of winning the game if we can play k
times and we start with n.

Then,

V (k +1,n) = max{pV (k ,n+m)+qV (k ,n−m) |m ≤ n and n+m ≤ 100}.

Also, the maximizing value of m is the best amount to bet when we have n
and there are k +1 steps to go.

We can solve successively for V (0, ·),V (1, ·),V (2, ·), . . .. In the limit, we find
the the best strategy. The program shows that bold is optimal when p < 0.5.
The finer result (Dubins and Savage) is to show this analytically.
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and there are k +1 steps to go.

We can solve successively for V (0, ·),V (1, ·),V (2, ·), . . .. In the limit, we find
the the best strategy. The program shows that bold is optimal when p < 0.5.
The finer result (Dubins and Savage) is to show this analytically.
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Another Game

Consider the following game. One has a perfectly shuffled 52-card deck. The
cards are turned over one at a time. You win if you can guess when the next
card will be an ace. You can only guess once. What is the best strategy?
Should you let a few cards go by, then decide that the next one will be an
ace?

For m ≤ n, let (n,m) mean that there are still n cards and m aces left in the
deck. Let also V (n,m) be the maximum probability of winning this game in
that situation. Then,

V (n,m) = max{m
n
,
m
n

V (n−1,m−1)+
n−m

n
V (n−1,m)}.

The first term corresponds to stating ‘the next card is an ace.’ The second
term corresponds to not deciding yet.

One boundary condition is V (n,0) = 0. The maximum term determines the
best decision in the situation (n,m).

Solving the equations, we find that V (n,m) = m/n and that the two terms are
equal as long as m ≥ 1.

Conclusion: You might as well stop at the first card!.
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Markov Decision Problems

The two games we discussed (‘heads or tails’, ‘guess an ace’)
are examples of Markov Decision Problems.

The approach is to look at the maximum value of the game
starting from a given state, with a number of steps to go. One
then calculates that value with one more step. This technique is
called Dynamic Programming. (Discovered by Richard Bellman
in 1953.)

See EE126, CS188, EE223.
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