CS70: Jean Walrand: Lecture 26.

## Continuous Probability

1. Examples
2. Events
3. Continuous Random Variables
4. Expectation
5. Bayes' Rule
6. Multiple Random Variables

## Shooting.

A James Bond example. In Spectre, Mr. Hinx
is chasing Bond who is in a Aston Martin DB10
Hinx shoots at the DB10 and hits it at a random spot
What is the chance Hinx hits the gas tank?
Assume the gas tank is a one foot circle and the DB10 is an expensive $4 \times 5$ rectangle.

## DB10

gas

## $\Omega=\{(x, y): x \in[0,4], y \in[0,5]\}$.

The size of the event is $\pi(1)^{2}=\pi$.
The "size" of the sample space which is $4 \times 5$
Since uniform, probability of event is $\frac{\pi}{20}$.

Continuous Probability - Pick a real number. Choose a real number $X$, uniformly at random in $[0,1000]$.

## What is the probability that $X$ is exactly equal to

$100 \pi=314.1592625 \ldots$ ? Well, $\ldots, 0$.

Let $[a, b]$ denote the event that the point $X$ is in the interval $[a, b]$.

$$
\operatorname{Pr}[[a, b]]=\frac{\text { length of }[a, b]}{\text { length of }[0, L]}=\frac{b-a}{L}=\frac{b-a}{1000} .
$$

Intervals like $[a, b] \subseteq \Omega=[0, L]$ are events.
More generally, events in this space are unions of intervals. Example: the event $A$ - "within 50 of 0 or 1000 " is
$A=[0,50] \cup[950,1000]$. Thus,

$$
\operatorname{Pr}[A]=\operatorname{Pr}[[0,50]]+\operatorname{Pr}[[950,10000]]=\frac{1}{10} .
$$

Continuous Random Variables: CDF
$\operatorname{Pr}[a<X \leq b]$ instead of $\operatorname{Pr}[X=a]$
For all $a$ and $b$ : specifies the behavior!
Simpler: $P[X \leq x]$ for all $x$.

## Cumulative probability Distribution Function of $X$ is

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]^{1}
$$

$\operatorname{Pr}[a<X \leq b]=\operatorname{Pr}[X \leq b]-\operatorname{Pr}[X \leq a]=F_{X}(b)-F_{X}(a)$.
Idea: two events $X \leq b$ and $X \leq a$
Difference is the event $a<X \leq b$.
Indeed: $\{X \leq b\} \backslash\{X \leq a\}=\{X \leq b\} \cap\{X>a\}=\{a<X \leq b\}$.

Continuous Probability - Pick a random real number.


Note: A radical change in approach. For a finite probability space, $\Omega=\{1,2, \ldots, N\}$, we started with $\operatorname{Pr}[\omega]=p_{\omega}$. We then defined $\operatorname{Pr}[A]=\sum_{\omega \in A} \mathcal{D}_{\omega}$ for $A \subset \Omega$. We used the same approach for countable $\Omega$.
For a continuous space, e.g., $\Omega=[0, L]$, we cannot start with $\operatorname{Pr}[\omega]$, because this will typically be 0 . Instead, we start with $\operatorname{Pr}[A]$ for some events $A$. Here, we started with $A=$ interval, or union of intervals
Thus, the probability is a function from events to $[0,1]$. Can any function make sense? No! At least, it should be additive!. In our example, $\operatorname{Pr}[[0,50] \cup[950,1000]]=\operatorname{Pr}[[0,50]]+\operatorname{Pr}[[950,1000]]$.

## Example: CDF

Example: Value of $X$ in $[0, L]$ with $L=1000$

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\left\{\begin{array}{lr}
0 & \text { for } x<0 \\
\frac{x}{1000} & \text { for } 0 \leq x \leq 1000 \\
1 & \text { for } x>1000
\end{array}\right.
$$

Probability that $X$ is within 50 of center:

$$
\begin{aligned}
\operatorname{Pr}[450<X \leq 550] & =\operatorname{Pr}[X \leq 550]-\operatorname{Pr}[X \leq 450] \\
& =\frac{550}{1000}-\frac{450}{1000} \\
& =\frac{100}{1000}=\frac{1}{10}
\end{aligned}
$$

## Example: CDF

Example: hitting random location on gas tank.
Random location on circle.


Random Variable: $Y$ distance from center.
Probability within $y$ of center:

$$
\begin{aligned}
\operatorname{Pr}[Y \leq y] & =\frac{\text { area of small circle }}{\text { area of dartboard }} \\
& =\frac{\pi y^{2}}{\pi}=y^{2}
\end{aligned}
$$

Hence,

$$
F_{Y}(y)=\operatorname{Pr}[Y \leq y]=\left\{\begin{array}{lr}
0 & \text { for } y<0 \\
y^{2} & \text { for } 0 \leq y \leq 1 \\
1 & \text { for } y>1
\end{array}\right.
$$

## Density

## Definition: (Density) A probability density function for a

 random variable $X$ with cdf $F_{X}(x)=\operatorname{Pr}[X \leq x]$ is the function $f_{X}(x)$ where$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u
$$

Thus,
$\operatorname{Pr}[X \in(x, x+\delta]]=F_{X}(x+\delta)-F_{X}(x) \approx f_{X}(x) \delta$.

## Calculation of event with dartboard..

Probability between .5 and .6 of center?
Recall CDF

$$
\begin{aligned}
& F_{Y}(y)=\operatorname{Pr}[Y \leq y]=\left\{\begin{array}{lr}
0 & \text { for } y<0 \\
y^{2} & \text { for } 0 \leq y \leq 1 \\
1 & \text { for } y>1
\end{array}\right. \\
& \begin{aligned}
\operatorname{Pr}[0.5<Y \leq 0.6] & =\operatorname{Pr}[Y \leq 0.6]-\operatorname{Pr}[Y \leq 0.5] \\
& =F_{Y}(0.6)-F_{Y}(0.5) \\
& =.36-.25 \\
& =.11
\end{aligned}
\end{aligned}
$$

## Examples: Density.

Example: uniform over interval $[0,1000]$

$$
f_{X}(x)=F_{X}^{\prime}(x)=\left\{\begin{array}{lr}
0 & \text { for } x<0 \\
\frac{1}{1000} & \text { for } 0 \leq x \leq 1000 \\
0 & \text { for } x>1000
\end{array}\right.
$$

Example: uniform over interval $[0, L]$

$$
f_{X}(x)=F_{X}^{\prime}(x)=\left\{\begin{array}{lr}
0 & \text { for } x<0 \\
\frac{1}{L} & \text { for } 0 \leq x \leq L \\
0 & \text { for } x>L
\end{array}\right.
$$

## Density function.

Is the dart more like to be (near) . 5 or . 1 ?
Probability of "Near x" is $\operatorname{Pr}[x<X \leq x+\delta]$ Goes to 0 as $\delta$ goes to zero.
Try

$$
\frac{\operatorname{Pr}[x<X \leq x+\delta]}{\delta} .
$$

The limit as $\delta$ goes to zero.

$$
\begin{aligned}
\lim _{\delta \rightarrow 0} \frac{\operatorname{Pr}[x<X \leq x+\delta]}{\delta} & =\lim _{\delta \rightarrow 0} \frac{\operatorname{Pr}[X \leq x+\delta]-\operatorname{Pr}[X \leq x]}{\delta} \\
& =\lim _{\delta \rightarrow 0} \frac{F_{X}(x+\delta)-F_{X}(x)}{\delta} \\
& =\frac{d\left(F_{X}(x)\right)}{d x} .
\end{aligned}
$$

Examples: Density.

Example: "Dart" board
Recall that

$$
\begin{gathered}
F_{Y}(y)=\operatorname{Pr}[Y \leq y]=\left\{\begin{array}{lr}
0 & \text { for } y<0 \\
y^{2} & \text { for } 0 \leq y \leq 1 \\
1 & \text { for } y>1
\end{array}\right. \\
f_{Y}(y)=F_{Y}^{\prime}(y)=\left\{\begin{array}{lr}
0 & \text { for } y<0 \\
2 y & \text { for } 0 \leq y \leq 1 \\
0 & \text { for } y>1
\end{array}\right.
\end{gathered}
$$

The cumulative distribution function (cdf) and probability distribution function (pdf) give full information.
Use whichever is convenient.

Target


## Random Variables

Continuous random variable $X$, specified by

1. $F_{X}(x)=\operatorname{Pr}[X \leq x]$ for all $x$.

## Cumulative Distribution Function (cdf).

$\operatorname{Pr}[a<X \leq b]=F_{X}(b)-F_{X}(a)$
$1.10 \leq F_{X}(x) \leq 1$ for all $x \in \Re$.
$1.2 F_{X}(x) \leq F_{X}(y)$ if $x \leq y$.
2. $\operatorname{Or} f_{X}(x)$, where $F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u$ or $f_{X}(x)=\frac{d\left(F_{X}(x)\right)}{d x}$. Probability Density Function (pdf).
$\operatorname{Pr}[a<X \leq b]=\int_{a}^{b} f_{X}(x) d x=F_{X}(b)-F_{X}(a)$
$2.1 f_{X}(x) \geq 0$ for all $x \in \mathfrak{R}$.
$2.2 \int_{-\infty}^{\infty} f_{X}(x) d x=1$.
Recall that $\operatorname{Pr}[X \in(x, x+\delta)] \approx f_{X}(x) \delta$. Think of $X$ taking discrete values $n \delta$ for $n=\ldots,-2,-1,0,1,2, \ldots$ with $\operatorname{Pr}[X=n \delta]=f_{X}(n \delta) \delta$

## $U[a, b]$



## A Picture



The pdf $f_{X}(x)$ is a nonnegative function that integrates to 1 .
The cdf $F_{X}(x)$ is the integral of $f_{X}$.
$\operatorname{Pr}[x<X<x+\delta] \approx f_{X}(x) \delta$
$\operatorname{Pr}[X \leq x]=F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u$

## $\operatorname{Expo}(\lambda)$

The exponential distribution with parameter $\lambda>0$ is defined by
$f_{X}(x)=\lambda e^{-\lambda x} 1\{x \geq 0\}$


Note that $\operatorname{Pr}[X>t]=e^{-\lambda t}$ for $t>0$.
Some Examples

1. Expo is memoryless. Let $X=\operatorname{Expo}(\lambda)$. Then, for $s, t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>t+s \mid X>s] & =\frac{\operatorname{Pr}[X>t+s]}{\operatorname{Pr}[X>s]} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =\operatorname{Pr}[X>t] .
\end{aligned}
$$

## 'Used is a good as new.'

2. Scaling Expo. Let $X=\operatorname{Expo}(\lambda)$ and $Y=a X$ for some $a>0$. Then $\operatorname{Pr}[Y>t]=\operatorname{Pr}[a X>t]=\operatorname{Pr}[X>t / a]$
$=e^{-\lambda(t / a)}=e^{-(\lambda / a) t}=\operatorname{Pr}[Z>t]$ for $Z=\operatorname{Expo}(\lambda / a)$
Thus, $a \times \operatorname{Expo}(\lambda)=\operatorname{Expo}(\lambda / a)$.

## Some More Examples

3. Scaling Uniform. Let $X=U[0,1]$ and $Y=a+b X$ where $b>0$

Then,
$\operatorname{Pr}[Y \in(y, y+\delta)]=\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right)\right]$
$=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right)\right]=\frac{1}{b} \delta$, for $0<\frac{y-a}{b}<1$
$=\frac{1}{b} \delta$, for $a<y<a+b$.
Thus, $f_{Y}(y)=\frac{1}{b}$ for $a<y<a+b$. Hence, $Y=U[a, a+b]$.
4. Scaling pdf. Let $f_{X}(x)$ be the pdf of $X$ and $Y=a+b X$ where
$b>0$. Then
$\operatorname{Pr}[Y \in(y, y+\delta)]=\operatorname{Pr}[a+b X \in(y, y+\delta)]=\operatorname{Pr}\left[X \in\left(\frac{y-a}{b}, \frac{y+\delta-a}{b}\right]\right.$

$$
=\operatorname{Pr}\left[\operatorname { P r } \left[X \in\left(\frac{y-a}{b}, \frac{y-a}{b}+\frac{\delta}{b}\right]=f_{X}\left(\frac{y-a}{b}\right) \frac{\delta}{b} .\right.\right.
$$

Now, the left-hand side is $f_{Y}(y) \delta$. Hence,

$$
f_{Y}(y)=\frac{1}{b} f_{X}\left(\frac{y-a}{b}\right) .
$$

## Variance

Definition: The variance of a continuous random variable $X$ is defined as

$$
\begin{aligned}
\operatorname{var}[X] & =E\left((X-E(X))^{2}\right)=E\left(X^{2}\right)-(E(X))^{2} \\
& =\int_{-\infty}^{\infty} x^{2} f(x) d x-\left(\int_{-\infty}^{\infty} x f(x) d x\right)^{2} .
\end{aligned}
$$

## Expectation

Definition The expectation of a random variable $X$ with $\operatorname{pdf} f(x)$ is

## defined as

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Justification: Say $X=n \delta$ w.p. $f_{X}(n \delta) \delta$. Then,

$$
E[X]=\sum_{n}(n \delta) \operatorname{Pr}[X=n \delta]=\sum_{n}(n \delta) f_{X}(n \delta) \delta=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Indeed, for any $g$, one has $\int g(x) d x \approx \sum_{n} g(n \delta) \delta$. Choose $g(x)=x f_{X}(x)$.


Motivation for Gaussian Distribution

Key fact: The sum of many small independent RVs has a Gaussian distribution
This is the Central Limit Theorem. (See later.)
Examples: Binomial and Poisson suitably scaled.
This explains why the Gaussian distribution (the bell curve) shows up everywhere.

## Expectation of function of RV

## Definition The expectation of a function of a random variable is

 defined as$$
E[h(X)]=\int_{-\infty}^{\infty} h(x) f_{X}(x) d x
$$

Justification: Say $X=n \delta$ w.p. $f_{X}(n \delta) \delta$. Then,
$E[h(X)]=\sum_{n} h(n \delta) \operatorname{Pr}[X=n \delta]=\sum_{n} h(n \delta) f_{X}(n \delta) \delta=\int_{-\infty}^{\infty} h(x) f_{X}(x) d x$.
Indeed, for any $g$, one has $\int g(x) d x \approx \sum_{n} g(n \delta) \delta$. Choose $g(x)=h(x) f_{X}(x)$.

Fact Expectation is linear. Proof: As in the discrete case.

## Summary

## Continuous Probability

1. pdf: $\operatorname{Pr}[X \in(x, x+\delta]]=f_{X}(x) \delta$.
2. $C D F: \operatorname{Pr}[X \leq x]=F_{X}(x)=\int_{-\infty}^{X} f_{X}(y) d y$.
3. $U[a, b], \operatorname{Expo}(\lambda)$, target
4. Expectation: $E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
5. Expectation of function: $E[h(X)]=\int_{-\infty}^{\infty} h(x) f_{X}(x) d x$
6. Variance: $\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}$.
7. Gaussian: $\mathscr{N}\left(\mu, \sigma^{2}\right): f_{X}(x)=\ldots$ "bell curve"
