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Continuous Probability

Examples

Events

Continuous Random Variables
Expectation

Bayes’ Rule

Multiple Random Variables
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Note: A radical change in approach. For a finite probability space,
Q={1,2,...,N}, we started with Pr[w] = p,. We then defined
PrlA] = Y ocaPo for AC Q. We used the same approach for
countable Q.

For a continuous space, e.g., Q = [0, L], we cannot start with Pr{m],
because this will typically be 0. Instead, we start with Pr[A] for some
events A. Here, we started with A = interval, or union of intervals.

Thus, the probability is a function from events to [0,1]. Can any
function make sense? No! At least, it should be additive!. In our
example, Pr[[0,50]U[950,1000]] = Pr|[[0,50]] + Pr[[950, 1000]].
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Since uniform, probability of event is %.
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Example: Value of X in [0, L] with L =1000.

Fx(x)=Pr[X<x]= {

0 forx <0
ﬁ for 0 < x <1000
1 for x > 1000

Probability that X is within 50 of center:

Pr[450 < X < 550]

Pr[X < 550] — Pr[X < 450]
550 450

1000 1000
100 1

1000 _ 10
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Example: hitting random location on gas tank.
Random location on circle.

Random Variable: Y distance from center.
Probability within y of center:

area of small circle

< =
Priy <] area of dartboard
_ A
= ==/~

Hence,

0 fory <0

Fy(y)=Prly <y]=g y? for0<y<i
1 fory >1
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Calculation of event with dartboard..

Probability between .5 and .6 of center?

Recall CDF.
0 fory <0
Fy(y)=Prl[Y<y]=< y? for0<y<f
1 fory >1
Prl0.5< Y <0.6] = Pr[Y<0.6]—Pr[Y <0.5]

= Fy(0.8) — Fy(0.5)
~ 36-.25
= 11
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Is the dart more like to be (near) .5 or .17
Probability of “Near x” is Prix < X < x+9].
Goes to 0 as 6 goes to zero.

Try
Prix < X <x+94]

1)

The limit as & goes to zero.

. Prix <X <x+39] . PriX <x+68]—Pr[X <x]
lim = lim
6—0 1) §—0 0

im Fx(X+56) - Fx(X)

= i
6—0




Density function.

Is the dart more like to be (near) .5 or .17
Probability of “Near x” is Prix < X < x+9].
Goes to 0 as 6 goes to zero.

Try
Prix < X <x+94]

1)

The limit as & goes to zero.

Prix < X < x+9]

. . PriX <x+438]—Pr[X <x]
lim = lim

5—0 é 5—0 1)
i Bt 8) = Fx()
6—0 o)
d(Fx(x))

ax
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Density

Definition: (Density) A probability density function for a
random variable X with cdf Fx(x) = Pr[X < x] is the function
fx(x) where

X
Fi(x) = / fe(u)au.
Thus,

PriX € (x,x+6]] = Fx(x+0) — Fx(x) = fx(x)d.
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Examples: Density.

Example: uniform over interval [0, 1000]

0 forx <0
fx(x)=Fx(x)=< 45 for0<x <1000
0 for x > 1000

Example: uniform over interval [0, L]

forx <0
forO<x<L
for x > L

fx(x) = Fx(x) = {

Or~—- O
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Examples: Density.

Example: “Dart” board.

Recall that
0 fory <0
Fy(y)=Prly <y]=< y? for0<y<i
1 fory >1
0 fory <0
fy(y)=Fy(y)=< 2y for0<y<f1
0 fory > 1

The cumulative distribution function (cdf) and probability
distribution function (pdf) give full information.
Use whichever is convenient.
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A
Uniform in |a, b
) S
Fy(x)
1h-a)-H-—-
pdt
0 > X
a b
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The exponential distribution with parameter A > 0 is defined by
fx(x) = A e 1{x > 0}

0, if x<0
FX(X):{ 1—e**  ifx>0.
1 4
03 |
ol A=1 Fx(z) 3'5 |
0.7 3 )" - 5
0.6 25
05 \ 2 fx I[l'\]
04
04 " Fx(x)
02 fx(z) '
0.1 05
05 1|:| 5 o l




Expo(1)

The exponential distribution with parameter A > 0 is defined by
fx(x) = A e 1{x > 0}

0,

Fx(x) = { 1 e,

0.8} |

oal A=1 Fy(x)
0.7

nak-

n&k

0.4}

04}

02| fx(z)

0.1}

Note that Pr[X > t] = e *!for t > 0.

35;

25}

15}

05t

if x<0
if x>0

on

Fxia)

Fix(x)
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Continuous random variable X, specified by
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Random Variables

Continuous random variable X, specified by

1. Fx(x)= Pr[X < x] for all x.
Cumulative Distribution Function (cdf).
Prla< X < b] = Fx(b)— Fx(a)
1.1 0 < Fx(x) <1 forall x € R.
1.2 Fx(x) < Fx(y)ifx<y.

2. Or fx(x) , where Fx(x) = [*_fx(u)du or fx(x) = w.
Probability Density Function (pdf).
Prla< X < b] = [ fx(x)dx = Fx(b) — Fx(a)
2.1 fx(x)>0forall x € R.
2.2 [Z fx(x)dx=1.

Recall that Pr[X € (x,x+ 8)] = fx(x)8. Think of X taking
discrete values né forn=...,—-2,—1,0,1,2,... with
Pr[X = nd] = fx(nd)4.
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The pdf fx(x) is a nonnegative function that integrates to 1.
The cdf Fx(x) is the integral of fx.

Prix < X < x+ 8] ~ fx(x)8
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The pdf fx(x) is a nonnegative function that integrates to 1.
The cdf Fx(x) is the integral of fx.

Prix < X < x+ 8] ~ fx(x)5
PrIX < x] = Fy(x) = /j fe(u)au
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1. Expo is memoryless. Let X = Expo(4). Then, for s,t > 0,

Pr[X > t+5]
Pr[X > s]

e—l(t+s)

T oen €

= Pr[X>1{].

PriX>t+s|X>s =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrlY >t] = PrlaX>t]=Pr[X>1t/q]
e M1/3) — =4/t — pr[Z > {] for Z = Expo(2/a).

Thus, ax Expo(A) = Expo(A/a).



Some More Examples



Some More Examples
3. Scaling Uniform.



Some More Examples
3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.



Some More Examples
3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

PrlY e (y,y+906)] = Prla+bXe(y,y+6)]=



Some More Examples
3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

y—ay+dé—a

PriY e(y,y+98)] = Pr[a+bXe(y,y+8)]:Pr[Xe(T,T)]



Some More Examples
3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

PIY c(r.y+8)] = PriatbXe(yy+o)=Prixe (Y 2 Y073

yaya6

= PriXe(Tp= 5t pl=



Some More Examples
3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

yay+6 a

b )
yayaé

b b +B)] = 55, for

PriYe(y,y+96)] = Prla+bXe(y,y+906)]="Pr[Xe(—

= PriXe(=—



Some More Examples
3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

PV ey +8) = Pr[a+bXe(yy+6)1—Pr[Xe(ybay+2 &)

yoay-a oy 1 y—a
b b +B)]—b5,for0< 5 <1

= PriXe(——



Some More Examples

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

6 —

PY e(y.y+8)] = Pf[a+bX€(yy+5)]—Pr[X€(ybay+b &)
= yoay-a oy 1 y-a

= PriXe(=— b b +b)]_b6,for0< 5 <1

= 557 fora<y<a+b.



Some More Examples

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

S —
PIY vy +3) = Pr[a+bXe(yy+6)1—Pr[Xe(ybay+b 2
_ y-ay-a &, 1 y-a
= PriXe(—— b b +b)]—b5,for0< 5 <1
= 567fora<y<a+b.

Thus, fy(y) =1 fora<y < a+b.



Some More Examples

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

S —
PIY vy +3) = Pr[a+bXe(yy+6)1—Pr[Xe(ybay+b 2
_ y-ay-a &, 1 y-a
= PriXe(—— b b +b)]—b5,for0< 5 <1
= 567fora<y<a+b.

Thus, fy(y) = 1 fora< y < a+b. Hence, Y = Ula,a+b].



Some More Examples

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

S —
PIY vy +3) = Pr[a+bXe(yy+6)1—Pr[Xe(ybay+b 2
_ y-ay-a &, 1 y-a
= PriXe(—— b b +b)]—b5,for0< 5 <1
= 567fora<y<a+b.

Thus, fy(y) = 1 fora< y < a+b. Hence, Y = Ula,a+b].
4, Scaling pdf.



Some More Examples
3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
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3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,
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Thus, fy(y) = 1 fora< y < a+b. Hence, Y = Ula,a+b].
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Expectation of function of RV

Definition The expectation of a function of a random variable is
defined as

E[h(X)] = / " h(x) f (x)dx.
Justification: Say X = nd w.p. fx(né)d. Then,

E[h(X)] = ¥ h(n8)Pr[X = n8] = ¥ h(n)fx(n8)S = /_ " hOx) f(x)dx.

n

Indeed, for any g, one has [g(x)dx ~Y ,g(nd)d. Choose
g(x) = h(x)fx(x).

Fact Expectation is linear. Proof: As in the discrete case.
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Motivation for Gaussian Distribution

Key fact: The sum of many small independent RVs has a
Gaussian distribution.

This is the Central Limit Theorem. (See later.)
Examples: Binomial and Poisson suitably scaled.

This explains why the Gaussian distribution (the bell curve)
shows up everywhere.
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