Pre-Lecture

- Homework party and office hour schedule is online. http://inst.eecs.berkeley.edu/~cs70/sp16/weekly.html. Check the time and location..will be updating. First homework party tonight: 6-9pm Cory 521!
- Homework 1 is due Thursday 10pm (with an additional one-hour buffer period).
 Check Gradescope today to see if you have access to the course.

If not, email name/SID/email to cs70@inst.eecs.berkeley.edu All students must do this homework, regardless of grading option choice.

3. Exam conflict? Please fill out the following the form on piazza at @105 by Feb 1, 2016.

 $P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$

 $P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$

 $P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$

And we get...

$$P(0) \land (\forall n \in \mathbb{N})P(n) \implies P(n+1)$$

And we get...

 $(\forall n \in \mathbb{N})P(n).$

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N})P(n) \implies P(n+1)$$

And we get...
 $(\forall n \in \mathbb{N})P(n).$
....Yes for 0,

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

 $(\forall n \in \mathbb{N})P(n).$

...Yes for 0, and we can conclude

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

 $(\forall n \in \mathbb{N})P(n).$

...Yes for 0, and we can conclude Yes for 1...

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

 $(\forall n \in \mathbb{N})P(n).$

...Yes for 0, and we can conclude Yes for 1... and we can conclude

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

 $(\forall n \in \mathbb{N})P(n).$

...Yes for 0, and we can conclude Yes for 1... and we can conclude Yes for 2...

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

 $(\forall n \in \mathbb{N})P(n).$

...Yes for 0, and we can conclude Yes for 1... and we can conclude Yes for 2......

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

 $(\forall n \in \mathbb{N})P(n).$

...Yes for 0, and we can conclude Yes for 1... and we can conclude Yes for 2......

Child Gauss:
$$(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

 $\sum_{i=1}^{k+1} i$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

 $\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1)$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

 $\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k + 2.

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k + 2. Same argument starting at k + 1 works!

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k + 2. Same argument starting at k + 1 works! Induction Step.

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof?

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step. Need to start somewhere.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step. Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step. Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step. Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0 P(0) is true

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 ($P(0) \land (P(0) \implies P(1))) \implies P(1)$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

. . .

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$...

true for n = k

. . .

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0 P(0) is true

plus inductive step \implies true for n = 1 (P(0) \land (P(0) \implies P(1))) \implies P(1)

plus inductive step \implies true for $n = 2 (P(1) \land (P(1) \implies P(2))) \implies P(2)$

true for $n = k \implies$ true for n = k + 1

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$...

true for $n = k \implies$ true for $n = k + 1 (P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

. . .

. . .

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 ($P(0) \land (P(0) \implies P(1))) \implies P(1)$

plus inductive step \implies true for $n = 2 (P(1) \land (P(1) \implies P(2))) \implies P(2)$

true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

. . .

. . .

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 ($P(0) \land (P(0) \implies P(1))) \implies P(1)$

plus inductive step \implies true for $n = 2 (P(1) \land (P(1) \implies P(2))) \implies P(2)$

true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

. . .

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$... true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

Predicate, P(n), True for all natural numbers!

. . .

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$...

true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

Predicate, P(n), True for all natural numbers! **Proof by Induction.**

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- ▶ For all $n \in N$, $n^3 n$ is divisible by 3.

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

Prove P(0). "Base Case".

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- ▶ For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

- Prove P(0). "Base Case".
- $\blacktriangleright P(k) \Longrightarrow P(k+1)$

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- ▶ For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

- Prove P(0). "Base Case".
- $\blacktriangleright P(k) \Longrightarrow P(k+1)$
 - Assume P(k), "Induction Hypothesis"

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- ▶ For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

- Prove P(0). "Base Case".
- $\blacktriangleright P(k) \Longrightarrow P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- ▶ For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

- Prove P(0). "Base Case".
- $\blacktriangleright P(k) \Longrightarrow P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- ▶ For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

- Prove P(0). "Base Case".
- $\blacktriangleright P(k) \Longrightarrow P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- ▶ For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

- Prove P(0). "Base Case".
- $\blacktriangleright P(k) \Longrightarrow P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- ▶ For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

- Prove P(0). "Base Case".
- $\blacktriangleright P(k) \Longrightarrow P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!!

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- ▶ For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

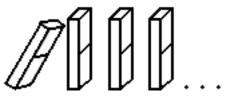
- Prove P(0). "Base Case".
- $\blacktriangleright P(k) \Longrightarrow P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!!!!

Note's visualization: an infinite sequence of dominos.

Prove they all fall down;

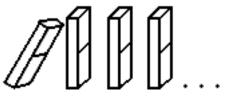
Note's visualization: an infinite sequence of dominos.



Prove they all fall down;

P(0) = "First domino falls"

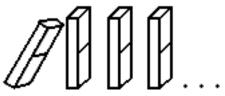
Note's visualization: an infinite sequence of dominos.



Prove they all fall down;

- P(0) = "First domino falls"
- $\blacktriangleright (\forall k) P(k) \Longrightarrow P(k+1):$

Note's visualization: an infinite sequence of dominos.

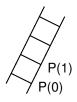


Prove they all fall down;

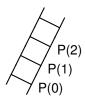
- P(0) = "First domino falls"
- $(\forall k) P(k) \implies P(k+1):$ "*k*th domino falls implies that *k*+1st domino falls"

P(0)

$$orall k, P(k) \Longrightarrow P(k+1)$$

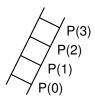


$$P(0) \forall k, P(k) \Longrightarrow P(k+1) P(0) \Longrightarrow P(1) \Longrightarrow P(2)$$

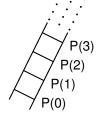


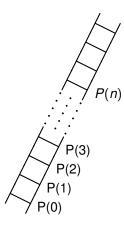
$$P(0)$$

 $\forall k, P(k) \Longrightarrow P(k+1)$
 $P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3)$



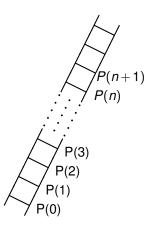
$$\begin{array}{c} P(0) \\ \forall k, P(k) \Longrightarrow P(k+1) \\ P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots \end{array}$$



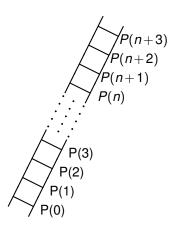


$$P(0)$$

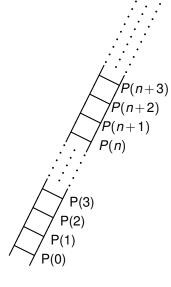
 $\forall k, P(k) \Longrightarrow P(k+1)$
 $P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots$



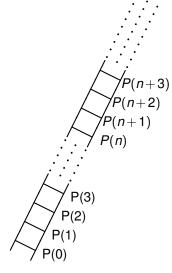
 $\forall k, P(k) \Longrightarrow P(k+1)$ $P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots$



 $\forall k, P(k) \Longrightarrow P(k+1)$ $P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots$



$$P(0) \forall k, P(k) \Longrightarrow P(k+1) P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots (\forall n \in N)P(n)$$



$$P(0)$$

$$\forall k, P(k) \Longrightarrow P(k+1)$$

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots$$

$$(\forall n \in N) P(n)$$

Your favorite example of forever..

$$P(n+3)$$

$$P(n+2)$$

$$P(n+1)$$

$$P(n)$$

$$P(0) \Rightarrow P(1) \Rightarrow P(2) \Rightarrow P(3) \dots$$

$$(\forall n \in N)P(n)$$

$$P(0)$$

Your favorite example of forever..or the natural numbers...

Theorem: For all natural numbers $n, 0+1+2\cdots n=\frac{n(n+1)}{2}$

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$ Base Case: Does $0 = \frac{0(0+1)}{2}$?

Theorem: For all natural numbers $n, 0+1+2\cdots n = \frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$ Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes. Induction Step: Show $\forall k \ge 0, P(k) \implies P(k+1)$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$ Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes. Induction Step: Show $\forall k \ge 0$, $P(k) \implies P(k+1)$ Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

P(k+1)!.

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$ Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes. Induction Step: Show $\forall k \ge 0$, $P(k) \implies P(k+1)$ Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

P(k+1)!. By principle of induction...

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$ Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes. Induction Step: Show $\forall k \ge 0$, $P(k) \implies P(k+1)$ Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

P(k+1)!. By principle of induction...

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$. **Proof:**

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$. **Proof:** By induction.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q. $(k+1)^3 - (k+1)$

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $= (k^3 - k) + 3k^2 + 3k$

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $= (k^3 - k) + 3k^2 + 3k$ Subtract/add k

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $= (k^3 - k) + 3k^2 + 3k$ Subtract/add k $= 3q + 3(k^2 + k)$

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $= (k^3 - k) + 3k^2 + 3k$ Subtract/add k $= 3q + 3(k^2 + k)$ Induction Hyp.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $= (k^3 - k) + 3k^2 + 3k$ Subtract/add k $= 3q + 3(k^2 + k)$ Induction Hyp. Factor.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $= (k^3 - k) + 3k^2 + 3k$ Subtract/add k $= 3q + 3(k^2 + k)$ Induction Hyp. Factor. $= 3(q + k^2 + k)$

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3q$ for some integer q. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $= (k^3 - k) + 3k^2 + 3k$ Subtract/add k $= 3q + 3(k^2 + k)$ Induction Hyp. Factor. $= 3(q + k^2 + k)$ (Un)Distributive + over ×

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3a$ for some integer a. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $=(k^3-k)+3k^2+3k$ Subtract/add k $= 3q + 3(k^2 + k)$ Induction Hyp. Factor. $= 3(a+k^2+k)$ (Un)Distributive + over ×

Or $(k+1)^3 - (k+1) = 3(q+k^2+k)$.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3a$ for some integer a. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $=(k^3-k)+3k^2+3k$ Subtract/add k $= 3q + 3(k^2 + k)$ Induction Hyp. Factor. $= 3(q+k^2+k)$ (Un)Distributive + over × Or $(k+1)^3 - (k+1) = 3(a+k^2+k)$.

 $(q+k^2+k)$ is integer (closed under addition and multiplication).

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3a$ for some integer a. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $=(k^3-k)+3k^2+3k$ Subtract/add k $= 3q + 3(k^2 + k)$ Induction Hyp. Factor. $= 3(q+k^2+k)$ (Un)Distributive + over × Or $(k+1)^3 - (k+1) = 3(a+k^2+k)$. $(q+k^2+k)$ is integer (closed under addition and multiplication). $\implies (k+1)^3 - (k+1)$ is divisible by 3.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3a$ for some integer a. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $=(k^3-k)+3k^2+3k$ Subtract/add k $= 3q + 3(k^2 + k)$ Induction Hyp. Factor. $= 3(q+k^2+k)$ (Un)Distributive + over × Or $(k+1)^3 - (k+1) = 3(a+k^2+k)$. $(q+k^2+k)$ is integer (closed under addition and multiplication). $\implies (k+1)^3 - (k+1)$ is divisible by 3. Thus, $(\forall k \in N)P(k) \implies P(k+1)$

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3a$ for some integer a. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $=(k^3-k)+3k^2+3k$ Subtract/add k $= 3a + 3(k^2 + k)$ Induction Hyp. Factor. $= 3(q+k^2+k)$ (Un)Distributive + over × Or $(k+1)^3 - (k+1) = 3(a+k^2+k)$. $(q+k^2+k)$ is integer (closed under addition and multiplication). $\implies (k+1)^3 - (k+1)$ is divisible by 3. Thus, $(\forall k \in N)P(k) \implies P(k+1)$

Thus, theorem holds by induction.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction. Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes! Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$ Induction Hypothesis: $k^3 - k$ is divisible by 3. or $k^3 - k = 3a$ for some integer a. $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $=(k^3-k)+3k^2+3k$ Subtract/add k $= 3q + 3(k^2 + k)$ Induction Hyp. Factor. $= 3(q+k^2+k)$ (Un)Distributive + over × Or $(k+1)^3 - (k+1) = 3(a+k^2+k)$. $(q+k^2+k)$ is integer (closed under addition and multiplication). $\implies (k+1)^3 - (k+1)$ is divisible by 3. Thus, $(\forall k \in N)P(k) \implies P(k+1)$

Thus, theorem holds by induction.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

States connected at a point, can have same color.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

States connected at a point, can have same color. (Couldn't find a map where they did though.)

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

States connected at a point, can have same color. (Couldn't find a map where they did though.)

Quick Test: Which states?

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

States connected at a point, can have same color. (Couldn't find a map where they did though.)

Quick Test: Which states? Utah.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

States connected at a point, can have same color. (Couldn't find a map where they did though.)

Quick Test: Which states? Utah. Colorado.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

States connected at a point, can have same color. (Couldn't find a map where they did though.)

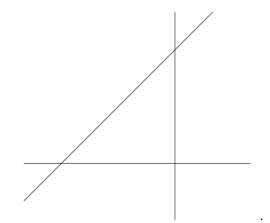
Quick Test: Which states? Utah. Colorado. New Mexico.

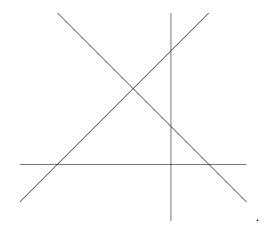
Theorem: Any map can be colored so that those regions that share an edge have different colors.

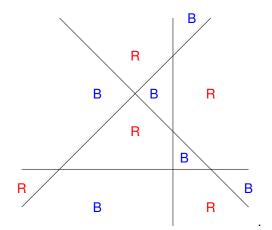
Check Out: "Four corners".

States connected at a point, can have same color. (Couldn't find a map where they did though.)

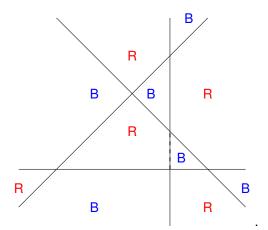
Quick Test: Which states? Utah. Colorado. New Mexico. Arizona.





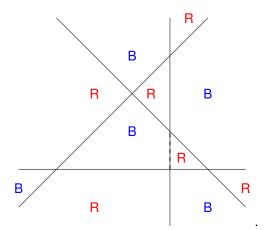


Any map formed by dividing the planeM into regions by drawing straight lines can be properly colored with two colors.



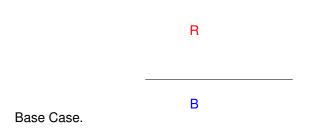
Fact: Swapping red and blue gives another valid colors.

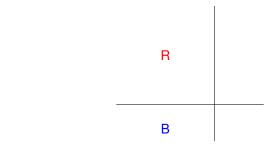
Any map formed by dividing the planeM into regions by drawing straight lines can be properly colored with two colors.



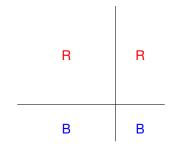
Fact: Swapping red and blue gives another valid colors.

Base Case.

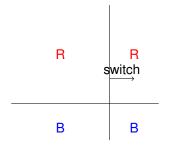




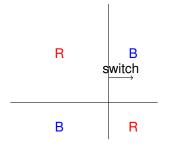
1. Add line.



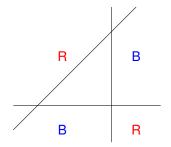
- 1. Add line.
- 2. Get inherited color for split regions



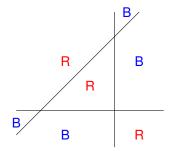
- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.



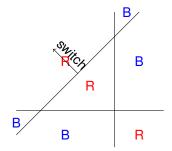
- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.



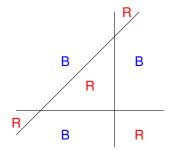
- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.



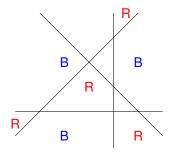
- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.



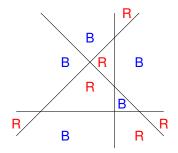
- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.



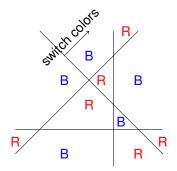
- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.



- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.

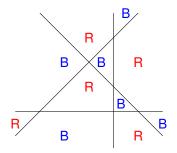


- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.



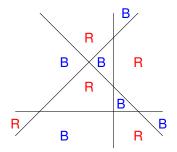
- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.

(Fixes conflicts along line, and makes no new ones.)



- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.

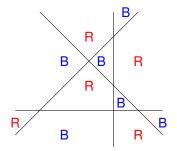
(Fixes conflicts along line, and makes no new ones.)



- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.

(Fixes conflicts along line, and makes no new ones.)

Algorithm gives $P(k) \implies P(k+1)$.



- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line.

(Fixes conflicts along line, and makes no new ones.)

Algorithm gives $P(k) \implies P(k+1)$.

Strenthening Induction Hypothesis.

Theorem: The sum of the first *n* odd numbers is a perfect square.

*k*th odd number is 2(k-1)+1.

Base Case 1 (1th odd number) is 1².

Induction Hypothesis Sum of first k odds is perfect square a^2

Induction Step 1. The (k+1)st odd number is 2k+1. 2. Sum of the first k+1 odds is $a^{2}+2k+1=k^{2}+2k+1$

Strenthening Induction Hypothesis.

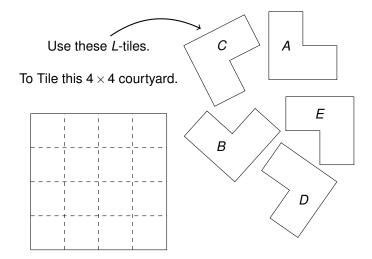
Theorem: The sum of the first *n* odd numbers is a perfect square. **Theorem:** The sum of the first *n* odd numbers is n^2 .

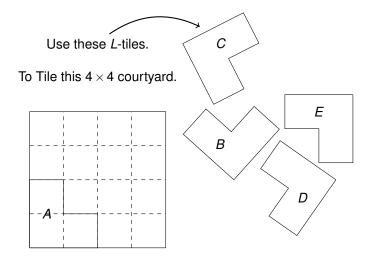
*k*th odd number is 2(k-1)+1.

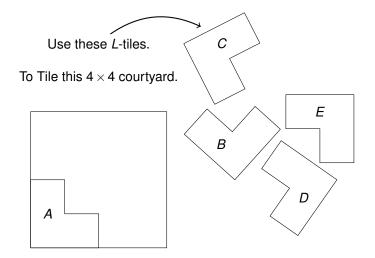
Base Case 1 (1th odd number) is 1².

Induction Hypothesis Sum of first k odds is perfect square $a^2 = k^2$.

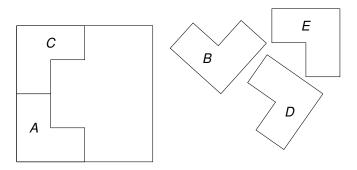
Induction Step 1. The (k+1)st odd number is 2k+1. 2. Sum of the first k + 1 odds is $a^{2}+2k+1=k^{2}+2k+1$ 3. $k^2 + 2k + 1 = (k+1)^2$... P(k+1)!



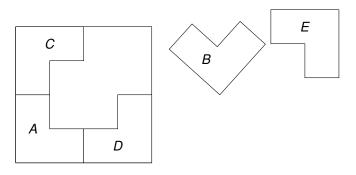




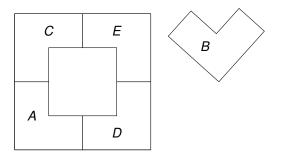
To Tile this 4×4 courtyard.

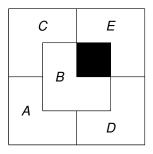


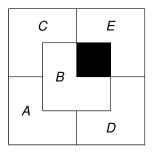
To Tile this 4×4 courtyard.



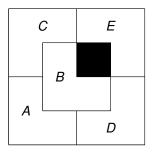
Use these L-tiles.



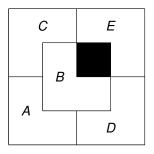




Use these L-tiles.

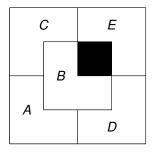


Use these L-tiles.



Use these L-tiles.

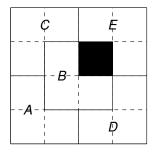
To Tile this 4×4 courtyard.



Can we tile any $2^n \times 2^n$ with *L*-tiles (with a hole)

Use these L-tiles.

To Tile this 4×4 courtyard.



Can we tile any $2^n \times 2^n$ with *L*-tiles (with a hole) for every *n*!

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1.

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for k = 0.

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for k = 0. $2^0 = 1$

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for k = 0. $2^0 = 1$

Ind Hyp: $2^{2k} = 3a + 1$ for integer *a*.

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for k = 0. $2^0 = 1$

Ind Hyp: $2^{2k} = 3a + 1$ for integer *a*.

 $2^{2(k+1)}$

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ Ind Hyp: $2^{2k} = 3a + 1$ for integer *a*.

$$2^{2(k+1)} = 2^{2k} * 2^2$$

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ Ind Hyp: $2^{2k} = 3a + 1$ for integer *a*.

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$
$$= 4 * 2^{2k}$$

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for k = 0. $2^0 = 1$

Ind Hyp: $2^{2k} = 3a + 1$ for integer *a*.

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$

= 4 * 2^{2k}
= 4 * (3a+1)

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ Ind Hyp: $2^{2k} = 3a + 1$ for integer *a*.

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$

= 4 * 2^{2k}
= 4 * (3a+1)
= 12a+3+1

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ Ind Hyp: $2^{2k} = 3a + 1$ for integer *a*.

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$

= 4 * 2^{2k}
= 4 * (3a+1)
= 12a+3+1
= 3(4a+1)+1

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ Ind Hyp: $2^{2k} = 3a + 1$ for integer *a*.

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$

= 4 * 2^{2k}
= 4 * (3a+1)
= 12a+3+1
= 3(4a+1)+1

a integer

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ Ind Hyp: $2^{2k} = 3a + 1$ for integer *a*.

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$

= 4 * 2^{2k}
= 4 * (3a+1)
= 12a+3+1
= 3(4a+1)+1

a integer \implies (4a+1) is an integer.

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole. **Proof:** The remainder of 2^{2n} divided by 3 is 1. Base case: true for k = 0. $2^0 = 1$ Ind Hyp: $2^{2k} = 3a + 1$ for integer *a*.

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$

= 4 * 2^{2k}
= 4 * (3a+1)
= 12a+3+1
= 3(4a+1)+1

a integer \implies (4a+1) is an integer.

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center. **Proof:**

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center. **Proof:**

Base case: A single tile works fine.

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center. **Proof:**

Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center. **Proof:**

Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:

Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:

Any $2^n \times 2^n$ square can be tiled with a hole at the center.

Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

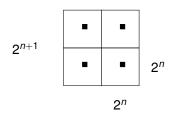
Proof:

Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:

Any $2^n \times 2^n$ square can be tiled with a hole at the center.



Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

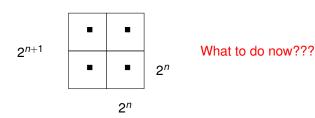
Proof:

Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:

Any $2^n \times 2^n$ square can be tiled with a hole at the center.



Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere. \square \square

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.
Induction Hypothesis:

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere. \blacksquare

Induction Hypothesis: "Any $2^n \times 2^n$ square can be tiled with a hole **anywhere**." Consider $2^{n+1} \times 2^{n+1}$ square.

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:

"Any $2^n \times 2^n$ square can be tiled with a hole **anywhere**." Consider $2^{n+1} \times 2^{n+1}$ square.

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

🖪 🖬

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:

"Any $2^n \times 2^n$ square can be tiled with a hole **anywhere**." Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere. \Box

Induction Hypothesis:

"Any $2^n \times 2^n$ square can be tiled with a hole **anywhere**." Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:

"Any $2^n \times 2^n$ square can be tiled with a hole **anywhere**." Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.

Use L-tile and ...

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:

"Any $2^n \times 2^n$ square can be tiled with a hole **anywhere**." Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.

Use L-tile and ... we are done.

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:

"Any $2^n \times 2^n$ square can be tiled with a hole **anywhere.**" Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.

Use L-tile and ... we are done.

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes. Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes. Definition: A prime *n* has exactly 2 factors 1 and *n*. **Base Case:** n = 2. **Induction Step:**

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Induction Step:

P(n) = "n can be written as a product of primes. "

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Induction Step:

P(n) = "n can be written as a product of primes. "

Either n+1 is a prime

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Induction Step:

P(n) ="*n* can be written as a product of primes."

Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1.

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Induction Step:

P(n) = "*n* can be written as a product of primes. " Either *n*+1 is a prime or *n*+1 = *a* · *b* where 1 < *a*, *b* < *n*+1. *P*(*n*) says nothing about *a*, *b*!

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Induction Step:

P(n) = "*n* can be written as a product of primes. " Either *n*+1 is a prime or *n*+1 = *a* · *b* where 1 < *a*, *b* < *n*+1. *P*(*n*) says nothing about *a*, *b*!

Strong Induction Principle: If P(0) and

 $(\forall k \in N)((P(0) \land ... \land P(k)) \Longrightarrow P(k+1)),$ then $(\forall k \in N)(P(k)).$

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Induction Step:

P(n) = "*n* can be written as a product of primes. " Either *n*+1 is a prime or *n*+1 = *a* · *b* where 1 < *a*, *b* < *n*+1. *P*(*n*) says nothing about *a*, *b*!

Strong Induction Principle: If P(0) and

 $(\forall k \in N)((P(0) \land \ldots \land P(k)) \implies P(k+1)),$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Induction Step:

P(n) = "*n* can be written as a product of primes. " Either *n*+1 is a prime or *n*+1 = *a* · *b* where 1 < *a*, *b* < *n*+1. *P*(*n*) says nothing about *a*, *b*!

Strong Induction Principle: If P(0) and

 $(\forall k \in N)((P(0) \land \ldots \land P(k)) \Longrightarrow P(k+1)),$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Induction Step:

P(n) = "*n* can be written as a product of primes. " Either *n*+1 is a prime or *n*+1 = *a* · *b* where 1 < *a*, *b* < *n*+1. *P*(*n*) says nothing about *a*, *b*!

Strong Induction Principle: If P(0) and

 $(\forall k \in N)((P(0) \land \ldots \land P(k)) \Longrightarrow P(k+1)),$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Strong induction hypothesis: "a and b are products of primes"

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Induction Step:

P(n) = "*n* can be written as a product of primes. " Either *n*+1 is a prime or *n*+1 = *a* · *b* where 1 < *a*, *b* < *n*+1. *P*(*n*) says nothing about *a*, *b*!

Strong Induction Principle: If P(0) and

 $(\forall k \in N)((P(0) \land \ldots \land P(k)) \Longrightarrow P(k+1)),$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Strong induction hypothesis: "a and b are products of primes"

 \implies " $n+1 = a \cdot b$

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Induction Step:

P(n) = "*n* can be written as a product of primes. " Either *n*+1 is a prime or *n*+1 = *a* · *b* where 1 < *a*, *b* < *n*+1. *P*(*n*) says nothing about *a*, *b*!

Strong Induction Principle: If P(0) and

 $(\forall k \in N)((P(0) \land \ldots \land P(k)) \Longrightarrow P(k+1)),$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Strong induction hypothesis: "a and b are products of primes"

 \implies " $n+1 = a \cdot b =$ (factorization of a)

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Induction Step:

P(n) = "*n* can be written as a product of primes. " Either *n*+1 is a prime or *n*+1 = *a* · *b* where 1 < *a*, *b* < *n*+1. *P*(*n*) says nothing about *a*, *b*!

Strong Induction Principle: If P(0) and

 $(\forall k \in N)((P(0) \land \ldots \land P(k)) \Longrightarrow P(k+1)),$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Strong induction hypothesis: "a and b are products of primes"

 \implies " $n+1 = a \cdot b =$ (factorization of a)(factorization of b)" n+1 can be written as the product of the prime factors!

Theorem: Every natural number n > 1 can be written as a (possibly trivial) product of primes.

Definition: A prime *n* has exactly 2 factors 1 and *n*.

Base Case: *n* = 2.

Induction Step:

P(n) = "*n* can be written as a product of primes. " Either *n*+1 is a prime or *n*+1 = *a* · *b* where 1 < *a*, *b* < *n*+1. *P*(*n*) says nothing about *a*, *b*!

Strong Induction Principle: If P(0) and

 $(\forall k \in N)((P(0) \land \ldots \land P(k)) \Longrightarrow P(k+1)),$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Strong induction hypothesis: "a and b are products of primes"

 \implies " $n+1 = a \cdot b =$ (factorization of a)(factorization of b)" n+1 can be written as the product of the prime factors!

Let
$$Q(k) = P(0) \wedge P(1) \cdots P(k)$$
.

Let
$$Q(k) = P(0) \wedge P(1) \cdots P(k)$$
.

By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \implies Q(k+1))$ then $(\forall k \in N)(Q(k))$ "

Let
$$Q(k) = P(0) \wedge P(1) \cdots P(k)$$
.

By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \implies Q(k+1))$ then $(\forall k \in N)(Q(k))$ "

Also, $Q(0) \equiv P(0)$, and

Let
$$Q(k) = P(0) \wedge P(1) \cdots P(k)$$
.

By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \implies Q(k+1))$ then $(\forall k \in N)(Q(k))$ "

Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$

Let
$$Q(k) = P(0) \wedge P(1) \cdots P(k)$$
.

By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \implies Q(k+1))$ then $(\forall k \in N)(Q(k))$ " Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$ $(\forall k \in N)(Q(k) \implies Q(k+1))$ $\equiv (\forall k \in N)((P(0) \dots \land P(k)) \implies (P(0) \dots P(k) \land P(k+1)))$

Let
$$Q(k) = P(0) \wedge P(1) \cdots P(k)$$
.

By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \implies Q(k+1))$ then $(\forall k \in N)(Q(k))$ " Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$ $(\forall k \in N)(Q(k) \implies Q(k+1))$ $\equiv (\forall k \in N)((P(0) \dots \land P(k)) \implies (P(0) \dots P(k) \land P(k+1)))$

Let
$$Q(k) = P(0) \wedge P(1) \cdots P(k)$$
.

By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ then $(\forall k \in N)(Q(k))$ " Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$ $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ $\equiv (\forall k \in N)((P(0) \dots \land P(k)) \Longrightarrow (P(0) \dots P(k) \land P(k+1)))$ $\equiv (\forall k \in N)((P(0) \dots \land P(k)) \Longrightarrow P(k+1))$

Let
$$Q(k) = P(0) \wedge P(1) \cdots P(k)$$
.

By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ then $(\forall k \in N)(Q(k))$ " Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$ $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ $\equiv (\forall k \in N)((P(0) \dots \land P(k)) \Longrightarrow (P(0) \dots P(k) \land P(k+1)))$ $\equiv (\forall k \in N)((P(0) \dots \land P(k)) \Longrightarrow P(k+1))$

Let
$$Q(k) = P(0) \wedge P(1) \cdots P(k)$$
.

By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \implies Q(k+1))$ then $(\forall k \in N)(Q(k))$ " Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$ $(\forall k \in N)(Q(k) \implies Q(k+1))$ $\equiv (\forall k \in N)((P(0) \dots \land P(k)) \implies (P(0) \dots P(k) \land P(k+1)))$ $\equiv (\forall k \in N)((P(0) \dots \land P(k)) \implies P(k+1))$

Let
$$Q(k) = P(0) \wedge P(1) \cdots P(k)$$
.

By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ then $(\forall k \in N)(Q(k))$ " Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$ $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ $\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1)))$ $\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow P(k+1))$

Strong Induction Principle: If P(0) and

 $(\forall k \in N)((P(0) \land \ldots \land P(k)) \implies P(k+1)),$

then $(\forall k \in N)(P(k))$.

Let
$$Q(k) = P(0) \wedge P(1) \cdots P(k)$$
.

By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ then $(\forall k \in N)(Q(k))$ " Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$ $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ $\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1)))$ $\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow P(k+1))$

Strong Induction Principle: If P(0) and

$$(\forall k \in N)((P(0) \land ... \land P(k)) \implies P(k+1)),$$

then $(\forall k \in N)(P(k))$.

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$.

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$.

Consider smallest *m*, with $\neg P(m)$, $m \ge 0$

If $(\forall n) P(n)$ is not true, then $(\exists n) \neg P(n)$.

Consider smallest *m*, with $\neg P(m)$, $m \ge 0$

 $P(m-1) \implies P(m)$ must be false (assuming P(0) holds.)

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest *m*, with $\neg P(m)$, $m \ge 0$ $P(m-1) \implies P(m)$ must be false (assuming P(0) holds.) This is a proof of the induction principle! I.e.,

$$(\neg \forall n) P(n) \Longrightarrow ((\exists n) \neg (P(n-1) \Longrightarrow P(n)).$$

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest *m*, with $\neg P(m)$, $m \ge 0$ $P(m-1) \implies P(m)$ must be false (assuming P(0) holds.) This is a proof of the induction principle! I.e.,

$$(\neg \forall n) P(n) \Longrightarrow ((\exists n) \neg (P(n-1) \Longrightarrow P(n)).$$

(Contrapositive of Induction principle (assuming P(0))

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest *m*, with $\neg P(m)$, $m \ge 0$ $P(m-1) \implies P(m)$ must be false (assuming P(0) holds.) This is a proof of the induction principle! I.e.,

$$(\neg \forall n) P(n) \implies ((\exists n) \neg (P(n-1) \implies P(n)).$$

(Contrapositive of Induction principle (assuming P(0))

It assumes that there is a smallest m where P(m) does not hold.

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest *m*, with $\neg P(m)$, $m \ge 0$ $P(m-1) \implies P(m)$ must be false (assuming P(0) holds.) This is a proof of the induction principle! I.e.,

 $(\neg \forall n) P(n) \Longrightarrow ((\exists n) \neg (P(n-1) \Longrightarrow P(n)).$

(Contrapositive of Induction principle (assuming P(0))

It assumes that there is a smallest m where P(m) does not hold.

The **Well ordering principle** states that for any subset of the natural numbers there is a smallest element.

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest *m*, with $\neg P(m)$, $m \ge 0$ $P(m-1) \implies P(m)$ must be false (assuming P(0) holds.) This is a proof of the induction principle! I.e.,

 $(\neg \forall n) P(n) \Longrightarrow ((\exists n) \neg (P(n-1) \Longrightarrow P(n)).$

(Contrapositive of Induction principle (assuming P(0))

It assumes that there is a smallest m where P(m) does not hold.

The **Well ordering principle** states that for any subset of the natural numbers there is a smallest element.

Smallest may not be what you expect: the well ordering principal holds for rationals but with different ordering!!

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest *m*, with $\neg P(m)$, $m \ge 0$ $P(m-1) \implies P(m)$ must be false (assuming P(0) holds.) This is a proof of the induction principle! I.e.,

 $(\neg \forall n) P(n) \Longrightarrow ((\exists n) \neg (P(n-1) \Longrightarrow P(n)).$

(Contrapositive of Induction principle (assuming P(0))

It assumes that there is a smallest m where P(m) does not hold.

The **Well ordering principle** states that for any subset of the natural numbers there is a smallest element.

Smallest may not be what you expect: the well ordering principal holds for rationals but with different ordering!!

E.g. Reduced form is "smallest" representation of a rational number a/b.

Thm: All natural numbers are interesting. 0 is interesting...

0 is interesting...

Let *n* be the first uninteresting number.

0 is interesting...

Let *n* be the first uninteresting number.

But n-1 is interesting and n is uninteresting,

0 is interesting...

Let *n* be the first uninteresting number.

But n-1 is interesting and n is uninteresting, so this is the first uninteresting number.

0 is interesting...

Let *n* be the first uninteresting number.

But n-1 is interesting and n is uninteresting, so this is the first uninteresting number. But this is interesting.

0 is interesting...

Let *n* be the first uninteresting number.

But n-1 is interesting and n is uninteresting,

so this is the first uninteresting number.

But this is interesting.

Thus, there is no smallest uninteresting natural number.

0 is interesting...

Let *n* be the first uninteresting number.

But n-1 is interesting and n is uninteresting,

so this is the first uninteresting number.

But this is interesting.

Thus, there is no smallest uninteresting natural number.

Thus: All natural numbers are interesting.

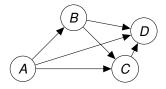
Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow p$ (*q* beats *p*.)

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow p$ (*q* beats *p*.)

Def: A cycle: a sequence of p_1, \ldots, p_k , $p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$.

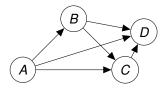
Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow p$ (*q* beats *p*.)

Def: A cycle: a sequence of $p_1, \ldots, p_k, p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$.



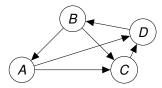
Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow p$ (*q* beats *p*.)

Def: A cycle: a sequence of $p_1, \ldots, p_k, p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$.



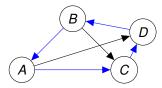
Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow p$ (*q* beats *p*.)

Def: A cycle: a sequence of $p_1, \ldots, p_k, p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$.



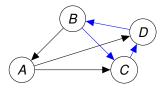
Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow p$ (*q* beats *p*.)

Def: A cycle: a sequence of $p_1, \ldots, p_k, p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$.



Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow p$ (*q* beats *p*.)

Def: A cycle: a sequence of $p_1, \ldots, p_k, p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$.



Assume the the **smallest cycle** is of length *k*.

Assume the the **smallest cycle** is of length *k*.

Case 1: Of length 3.

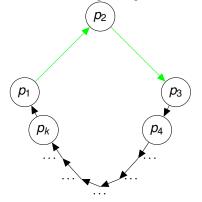
Assume the the **smallest cycle** is of length *k*.

Case 1: Of length 3. Done.

Assume the the **smallest cycle** is of length *k*.

Case 1: Of length 3. Done.

Case 2: Of length larger than 3.



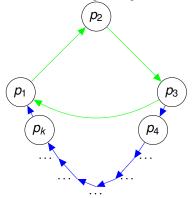
Contradiction.

Tournament has a cycle of length 3 if at all.

Assume the the **smallest cycle** is of length *k*.

Case 1: Of length 3. Done.

Case 2: Of length larger than 3.



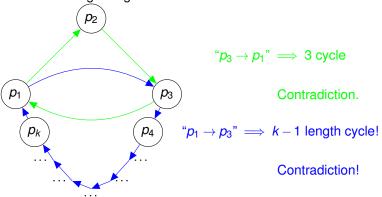
Contradiction.

Tournament has a cycle of length 3 if at all.

Assume the the **smallest cycle** is of length *k*.

Case 1: Of length 3. Done.

Case 2: Of length larger than 3.



Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 $p_1,\ldots,p_n, (\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}.$

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 $p_1,\ldots,p_n, (\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}.$

Base: True for two vertices.

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 $p_1,\ldots,p_n, (\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}.$

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 p_1, \ldots, p_n , $(\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}$.

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

```
Tournament on n+1 people,
```

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 p_1, \ldots, p_n , $(\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}$.

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

```
Tournament on n+1 people,
```

Remove arbitrary person

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 $p_1,\ldots,p_n, (\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}.$

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

Tournament on n+1 people,

Remove arbitrary person \rightarrow yield tournament on n-1 people.

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 p_1, \ldots, p_n , $(\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}$.

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

Tournament on n+1 people,

Remove arbitrary person \rightarrow yield tournament on n-1 people.

(Result specified for each remaining pair from original tournament.)

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 $p_1,\ldots,p_n, (\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}.$

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

Tournament on n+1 people,

Remove arbitrary person \rightarrow yield tournament on n-1 people.

(Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence p_1, \ldots, p_n

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 p_1, \ldots, p_n , $(\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}$.

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

Tournament on n+1 people,

Remove arbitrary person \rightarrow yield tournament on n-1 people.

(Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence p_1, \ldots, p_n contains all the people

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 p_1, \ldots, p_n , $(\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}$.

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

```
Tournament on n+1 people,
```

Remove arbitrary person \rightarrow yield tournament on n-1 people.

(Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence p_1, \ldots, p_n contains all the people where $p_i \rightarrow p_{i+1}$

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 p_1, \ldots, p_n , $(\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}$.

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

```
Tournament on n+1 people,
```

Remove arbitrary person \rightarrow yield tournament on n-1 people.

(Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence p_1, \ldots, p_n contains all the people where $p_i \rightarrow p_{i+1}$

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 p_1, \ldots, p_n , $(\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}$.

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

```
Tournament on n+1 people,
```

Remove arbitrary person \rightarrow yield tournament on n-1 people. (Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence p_1, \ldots, p_n contains all the people where $p_i \rightarrow p_{i+1}$

If p is big winner, put at beginning.

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 p_1, \ldots, p_n , $(\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}$.

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

```
Tournament on n+1 people,
```

Remove arbitrary person \rightarrow yield tournament on n-1 people. (Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence p_1, \ldots, p_n contains all the people where $p_i \rightarrow p_{i+1}$

If p is big winner, put at beginning. If not, find first place *i*, where p beats p_i .

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 $p_1,\ldots,p_n, (\forall i,0 \leq i < n) p_i \rightarrow p_{i+1}.$

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

```
Tournament on n+1 people,
```

Remove arbitrary person \rightarrow yield tournament on n-1 people. (Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence $p_1, ..., p_n$ contains all the people where $p_i \rightarrow p_{i+1}$

If p is big winner, put at beginning.

If not, find first place *i*, where *p* beats p_i .

 $p_1, \ldots, p_{i-1}, p, p_i, \ldots p_n$ is hamiltonion path.

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 $p_1,\ldots,p_n, (\forall i,0 \leq i < n) p_i \rightarrow p_{i+1}.$

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

```
Tournament on n+1 people,
```

Remove arbitrary person \rightarrow yield tournament on n-1 people. (Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence $p_1, ..., p_n$ contains all the people where $p_i \rightarrow p_{i+1}$

If p is big winner, put at beginning. If not, find first place i, where p beats p_i .

 $p_1, \ldots, p_{i-1}, p, p_i, \ldots p_n$ is hamiltonion path. If no place, place at the end.

Def: A round robin tournament on *n* players: every player *p* plays every other player *q*, and either $p \rightarrow q$ (*p* beats *q*) or $q \rightarrow q$ (*q* beats *q*.)

Def: A Hamiltonian path: a sequence

 p_1, \ldots, p_n , $(\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}$.

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

```
Tournament on n+1 people,
```

Remove arbitrary person \rightarrow yield tournament on n-1 people. (Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence $p_1, ..., p_n$ contains all the people where $p_i \rightarrow p_{i+1}$

If p is big winner, put at beginning. If not, find first place i, where p beats p_i .

 $p_1, \ldots, p_{i-1}, p, p_i, \ldots p_n$ is hamiltonion path. If no place, place at the end.

Theorem: All horses have the same color.

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)?

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)? First k have same color by P(k). 1,2,3,...,k,k+1

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First *k* have same color by P(k). 1,2,3,...,*k*,*k*+1 Second *k* have same color by P(k). 1,2,3,...,*k*,*k*+1

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k). 1,2,3,...,k,k+1 Second k have same color by P(k). 1,2,3,...,k,k+1 A horse in the middle in common! $1, 2, 3, \dots, k, k+1$

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k). 1,2,3,...,k,k+1 Second k have same color by P(k). 1,2,3,...,k,k+1 A horse in the middle in common! $1, 2, 3, \ldots, k, k+1$ All k must have the same color. $1, 2, 3, \dots, k, k+1$

Theorem: All horses have the same color.

```
Base Case: P(1) - trivially true.
```

```
Induction Hypothesis: P(k) - Any k horses have the same color.
```

Induction step P(k+1)? First *k* have same color by P(k). Second *k* have same color by P(k). A horse in the middle in common!

Theorem: All horses have the same color.

```
Base Case: P(1) - trivially true.
```

```
Induction Hypothesis: P(k) - Any k horses have the same color.
```

Induction step P(k+1)? First *k* have same color by P(k). Second *k* have same color by P(k). A horse in the middle in common!

Theorem: All horses have the same color.

```
Base Case: P(1) - trivially true.
```

```
Induction Hypothesis: P(k) - Any k horses have the same color.
```

Induction step P(k+1)? First *k* have same color by P(k). 1,2 Second *k* have same color by P(k). A horse in the middle in common!

Theorem: All horses have the same color.

```
Base Case: P(1) - trivially true.
```

```
Induction Hypothesis: P(k) - Any k horses have the same color.
```

Induction step P(k+1)? First *k* have same color by P(k). 1,2 Second *k* have same color by P(k). 1,2 A horse in the middle in common!

Theorem: All horses have the same color.

```
Base Case: P(1) - trivially true.
```

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)? First *k* have same color by P(k). 1,2 Second *k* have same color by P(k). 1,2 A horse in the middle in common! 1,2 No horse in common! How about $P(1) \implies P(2)$?

Theorem: All horses have the same color.

```
Base Case: P(1) - trivially true.
```

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)? First *k* have same color by P(k). 1,2 Second *k* have same color by P(k). 1,2 A horse in the middle in common! 1,2 No horse in common! How about $P(1) \implies P(2)$?

Theorem: All horses have the same color.

Base Case: P(1) - trivially true. New Base Case: P(2): there are two horses with same color.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)? First *k* have same color by P(k). Second *k* have same color by P(k). A horse in the middle in common!

Fix base case.

Theorem: All horses have the same color.

Base Case: P(1) - trivially true. New Base Case: P(2): there are two horses with same color. Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)? First *k* have same color by P(k). Second *k* have same color by P(k). A horse in the middle in common!

Fix base case. ...Still doesn't work!!

Horses of the same color...

Theorem: All horses have the same color.

Base Case: P(1) - trivially true. New Base Case: P(2): there are two horses with same color.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)? First *k* have same color by P(k). Second *k* have same color by P(k). A horse in the middle in common!

Fix base case. ...Still doesn't work!! (There are two horses is ≠ For all two horses!!!)

Horses of the same color...

Theorem: All horses have the same color.

Base Case: P(1) - trivially true. New Base Case: P(2): there are two horses with same color.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)? First *k* have same color by P(k). Second *k* have same color by P(k). A horse in the middle in common!

Fix base case. ...Still doesn't work!! (There are two horses is \neq For all two horses!!!)

Of course it doesn't work.

Horses of the same color...

Theorem: All horses have the same color.

Base Case: P(1) - trivially true. New Base Case: P(2): there are two horses with same color.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)? First *k* have same color by P(k). Second *k* have same color by P(k). A horse in the middle in common!

Fix base case. ...Still doesn't work!! (There are two horses is ≢ For all two horses!!!)

Of course it doesn't work.

As we will see, it is more subtle to catch errors in proofs of correct theorems!!

Thm: For every natural number $n \ge 12$, n = 4x + 5y.

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases:

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: P(12)

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: P(12), P(13)

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: P(12), P(13), P(14)

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: P(12) , P(13) , P(14) , P(15).

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: P(12), P(13), P(14), P(15). Yes. Strong Induction step:

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step: Recursive call is correct: P(n-4)

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:

Recursive call is correct: $P(n-4) \implies P(n)$.

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step: Recursive call is correct: $P(n-4) \implies P(n)$. $n-4 = 4x' + 5y' \implies n = 4(x'+1) + 5(y')$

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step: Recursive call is correct: $P(n-4) \implies P(n)$. $n-4 = 4x' + 5y' \implies n = 4(x'+1) + 5(y')$

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:

Recursive call is correct: $P(n-4) \implies P(n)$. $n-4 = 4x' + 5y' \implies n = 4(x'+1) + 5(y')$

Slight differences: showed for all $n \ge 16$ that $\bigwedge_{i=4}^{n-1} P(i) \implies P(n)$.

Today: More induction.

Today: More induction. (P(0))

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \implies P(k+1))))$

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Statement to prove: P(n) for *n* starting from n_0

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$.

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove.

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$,

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \implies P(n+1)$.

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \implies P(n+1)$. Statement is proven!

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \implies P(n+1)$. Statement is proven!

Strong Induction:

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \implies P(n+1)$. Statement is proven!

Strong Induction: $(P(0) \land ((\forall n \in N)(P(n)) \implies P(n+1))))$

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \implies P(n+1)$. Statement is proven!

Strong Induction:

$$(P(0) \land ((\forall n \in N)(P(n)) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \implies P(n+1)$. Statement is proven!

Strong Induction:

$$(P(0) \land ((\forall n \in N)(P(n)) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Also Today: strengthened induction hypothesis.

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \implies P(n+1)$. Statement is proven!

Strong Induction: $(P(0) \land ((\forall n \in N)(P(n)) \implies P(n+1)))) \implies (\forall n \in N)(P(n))$

Also Today: strengthened induction hypothesis.

Strengthen theorem statement. Sum of first n odds is n^2 . Hole anywhere.

Not same as strong induction.

Today: More induction.

 $(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \implies P(n+1)$. Statement is proven!

Strong Induction: $(P(0) \land ((\forall n \in N)(P(n)) \implies P(n+1)))) \implies (\forall n \in N)(P(n))$

Also Today: strengthened induction hypothesis.

Strengthen theorem statement. Sum of first n odds is n^2 . Hole anywhere.

Not same as strong induction.

Induction \equiv Recursion.

(P(0)

```
(P(0) \land ((\forall k \in N)(P(k) \implies P(k+1))))
```

$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Variations:
$$(P(0) \land ((\forall n \in N)(P(n) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Variations: $(P(0) \land ((\forall n \in N)(P(n) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$ $(P(1) \land ((\forall n \in N)((n \ge 1) \land P(n)) \Longrightarrow P(n+1))))$

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Variations: $(P(0) \land ((\forall n \in N)(P(n) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$ $(P(1) \land ((\forall n \in N)((n \ge 1) \land P(n)) \Longrightarrow P(n+1))))$ $\implies (\forall n \in N)((n \ge 1) \Longrightarrow P(n))$

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Variations: $(P(0) \land ((\forall n \in N)(P(n) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$ $(P(1) \land ((\forall n \in N)((n \ge 1) \land P(n)) \Longrightarrow P(n+1))))$ $\implies (\forall n \in N)((n \ge 1) \Longrightarrow P(n))$

Statement to prove: P(n) for *n* starting from n_0

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Variations: $(P(0) \land ((\forall n \in N)(P(n) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$ $(P(1) \land ((\forall n \in N)((n \ge 1) \land P(n)) \Longrightarrow P(n+1))))$ $\implies (\forall n \in N)((n \ge 1) \Longrightarrow P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Variations: $(P(0) \land ((\forall n \in N)(P(n) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$ $(P(1) \land ((\forall n \in N)((n \ge 1) \land P(n)) \Longrightarrow P(n+1))))$ $\implies (\forall n \in N)((n \ge 1) \Longrightarrow P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Variations: $(P(0) \land ((\forall n \in N)(P(n) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$ $(P(1) \land ((\forall n \in N)((n \ge 1) \land P(n)) \Longrightarrow P(n+1))))$ $\implies (\forall n \in N)((n \ge 1) \Longrightarrow P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$,

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Variations: $(P(0) \land ((\forall n \in N)(P(n) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$ $(P(1) \land ((\forall n \in N)((n \ge 1) \land P(n)) \Longrightarrow P(n+1))))$ $\implies (\forall n \in N)((n \ge 1) \Longrightarrow P(n))$

Statement to prove: P(n) for *n* starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \implies P(n+1)$.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Variations: $(P(0) \land ((\forall n \in N)(P(n) \Longrightarrow P(n+1)))) \Longrightarrow (\forall n \in N)(P(n))$ $(P(1) \land ((\forall n \in N)((n \ge 1) \land P(n)) \Longrightarrow P(n+1))))$ $\implies (\forall n \in N)((n \ge 1) \Longrightarrow P(n))$

Statement to prove: P(n) for n starting from n_0 Base Case: Prove $P(n_0)$. Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \implies P(n+1)$. Statement is proven!