
Pre-Lecture

1. Homework party and office hour schedule is online.
http://inst.eecs.berkeley.edu/˜cs70/sp16/weekly.html.
Check the time and location..will be updating.
First homework party tonight: 6-9pm Cory 521!

2. Homework 1 is due Thursday 10pm (with an additional one-hour
buffer period).
Check Gradescope today to see if you have access to the
course.
If not, email name/SID/email to cs70@inst.eecs.berkeley.edu
All students must do this homework, regardless of grading option
choice.

3. Exam conflict? Please fill out the following the form on piazza at
@105 by Feb 1, 2016.



Today.

Principle of Induction.

P(0)∧ (∀n ∈ N)P(n) =⇒ P(n+1)

And we get...

(∀n ∈ N)P(n).

...Yes for 0, and we can conclude Yes for 1...
and we can conclude Yes for 2.......
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Gauss and Induction
Child Gauss: (∀n ∈ N)(∑n

i=1 i = n(n+1)
2 )

Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑
k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑
k+1
i=1 i = (∑

k
i=1 i)+(k +1) = k(k+1)

2 +k +1 = (k+1)(k+2)
2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑
0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step =⇒ true for n = 2 (P(1)∧ (P(1) =⇒ P(2))) =⇒ P(2)

. . .
true for n = k =⇒ true for n = k +1 (P(k)∧ (P(k) =⇒ P(k +1))) =⇒ P(k +1)

. . .

Predicate, P(n), True for all natural numbers! Proof by Induction.
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Induction
The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

I For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

I For all n ∈ N, n3−n is divisible by 3.

I The sum of the first n odd integers is a perfect square.

The basic form

I Prove P(0). “Base Case”.

I P(k) =⇒ P(k +1)

I Assume P(k), “Induction Hypothesis”
I Prove P(k +1). “Induction Step.”

P(n) true for all natural numbers n!!!
Get to use P(k) to prove P(k +1)! ! ! !
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Notes visualization

Note’s visualization: an infinite sequence of dominos.

Prove they all fall down;

I P(0) = “First domino falls”

I (∀k) P(k) =⇒ P(k +1):
“k th domino falls implies that k +1st domino falls”



Notes visualization

Note’s visualization: an infinite sequence of dominos.

Prove they all fall down;

I P(0) = “First domino falls”

I (∀k) P(k) =⇒ P(k +1):
“k th domino falls implies that k +1st domino falls”



Notes visualization

Note’s visualization: an infinite sequence of dominos.

Prove they all fall down;

I P(0) = “First domino falls”

I (∀k) P(k) =⇒ P(k +1):

“k th domino falls implies that k +1st domino falls”



Notes visualization

Note’s visualization: an infinite sequence of dominos.

Prove they all fall down;

I P(0) = “First domino falls”

I (∀k) P(k) =⇒ P(k +1):
“k th domino falls implies that k +1st domino falls”



Climb an infinite ladder?

P(0)
P(1)

P(2)
P(3)

P(n)

P(n+1)
P(n+2)

P(n+3)

P(0)
∀k ,P(k) =⇒ P(k +1)

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) . . .
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Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ? Yes.

Induction Step: Show ∀k ≥ 0,P(k) =⇒ P(k +1)
Induction Hypothesis: P(k) = 1+ · · ·+k = k(k+1)

2

1+ · · ·+k +(k +1) =
k(k +1)

2
+(k +1)

=
k2 +k +2(k +1)

2

=
k2 +3k +2

2

=
(k +1)(k +2)

2

P(k +1)!

. By principle of induction...
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Another Induction Proof.

Theorem: For every n ∈ N, n3−n is divisible by 3. (3|(n3−n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)
Induction Hypothesis: k3−k is divisible by 3.

or k3−k = 3q for some integer q.

(k +1)3− (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3−k)+3k2 +3k Subtract/add k
= 3q+3(k2 +k) Induction Hyp. Factor.
= 3(q+k2 +k) (Un)Distributive + over ×

Or (k +1)3− (k +1) = 3(q+k2 +k).

(q+k2 +k) is integer (closed under addition and multiplication).
=⇒ (k +1)3− (k +1) is divisible by 3.

Thus, (∀k ∈ N)P(k) =⇒ P(k +1)
Thus, theorem holds by induction.
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Four Color Theorem.
Theorem: Any map can be colored so that those regions that share
an edge have different colors.

Check Out: “Four corners”.
States connected at a point, can have same color.
(Couldn’t find a map where they did though.)

Quick Test: Which states? Utah. Colorado. New Mexico. Arizona.
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Two color theorem: example.
Any map formed by dividing the planeM into regions by drawing
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Strenthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n2.

k th odd number is 2(k −1)+1.

Base Case 1 (1th odd number) is 12.

Induction Hypothesis Sum of first k odds is perfect square a2

= k2.

Induction Step 1. The (k +1)st odd number is 2k +1.
2. Sum of the first k +1 odds is

a2 +2k +1 = k2 +2k +1

3. k2 +2k +1 = (k +1)2

... P(k+1)!
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Hole have to be there? Maybe just one?

Theorem: Any tiling of 2n×2n square has to have one hole.

Proof: The remainder of 22n divided by 3 is 1.

Base case: true for k = 0. 20 = 1

Ind Hyp: 22k = 3a+1 for integer a.

22(k+1) = 22k ∗22

= 4∗22k

= 4∗ (3a+1)
= 12a+3+1
= 3(4a+1)+1

a integer =⇒ (4a+1) is an integer.
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a integer =⇒ (4a+1) is an integer.
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Hole in center?

Theorem: Can tile the 2n×2n square to leave a hole adjacent to the
center.
Proof:

Base case: A single tile works fine.
The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:
Any 2n×2n square can be tiled with a hole at the center.

2n
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2n+1

2n+1 What to do now???
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Hole can be anywhere!

Theorem: Can tile the 2n×2n to leave a hole adjacent anywhere.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any 2n×2n square can be tiled with a hole anywhere.”
Consider 2n+1×2n+1 square.

Use induction hypothesis in each.

Use L-tile and ... we are done.
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Strong Induction.
Theorem: Every natural number n > 1 can be written as a (possibly
trivial) product of primes.

Definition: A prime n has exactly 2 factors 1 and n.
Base Case: n = 2.
Induction Step:
P(n) = “n can be written as a product of primes. “
Either n+1 is a prime or n+1 = a ·b where 1 < a,b < n+1.
P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) =⇒ ···

Strong induction hypothesis: “a and b are products of primes”

=⇒ “n+1 = a ·b = (factorization of a)(factorization of b)”
n+1 can be written as the product of the prime factors!
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Induction =⇒ Strong Induction.

Let Q(k) = P(0)∧P(1) · · ·P(k).

By the induction principle:
“If Q(0), and (∀k ∈ N)(Q(k) =⇒ Q(k +1)) then (∀k ∈ N)(Q(k))”

Also, Q(0)≡ P(0) , and (∀k ∈ N)(Q(k))≡ (∀k ∈ N)(P(k))

(∀k ∈ N)(Q(k) =⇒ Q(k +1))
≡ (∀k ∈ N)((P(0) · · ·∧P(k)) =⇒ (P(0) · · ·P(k)∧P(k +1)))
≡ (∀k ∈ N)((P(0) · · ·∧P(k)) =⇒ P(k +1))

Strong Induction Principle: If P(0) and

(∀k ∈ N)((P(0)∧ . . .∧P(k)) =⇒ P(k +1)),

then (∀k ∈ N)(P(k)).
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Well Ordering Principle and Induction.

If (∀n)P(n) is not true, then (∃n)¬P(n).

Consider smallest m, with ¬P(m), m ≥ 0

P(m−1) =⇒ P(m) must be false (assuming P(0) holds.)

This is a proof of the induction principle!
I.e.,

(¬∀n)P(n) =⇒ ((∃n)¬(P(n−1) =⇒ P(n)).

(Contrapositive of Induction principle (assuming P(0))

It assumes that there is a smallest m where P(m) does not hold.

The Well ordering principle states that for any subset of the natural
numbers there is a smallest element.

Smallest may not be what you expect: the well ordering principal
holds for rationals but with different ordering!!

E.g. Reduced form is “smallest” representation of a rational number
a/b.
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Thm: All natural numbers are interesting.

0 is interesting...
Let n be the first uninteresting number.

But n−1 is interesting and n is uninteresting,
so this is the first uninteresting number.

But this is interesting.
Thus, there is no smallest uninteresting natural number.

Thus: All natural numbers are interesting.
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Tournaments have short cycles

Def: A round robin tournament on n players: every player p plays
every other player q, and either p→ q (p beats q) or q→ p (q beats
p.)

Def: A cycle: a sequence of p1, . . . ,pk , pi → pi+1 and pk → p1.

A

B

C

D

Theorem: Any tournament that has a cycle has a cycle of length 3.
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Tournament has a cycle of length 3 if at all.

Assume the the smallest cycle is of length k .

Case 1: Of length 3. Done.

Case 2: Of length larger than 3.

p1

p2

p3

p4

· · ·
· · ·

· · ·
· · ·

· · ·

pk

“p3→ p1” =⇒ 3 cycle

Contradiction.

“p1→ p3” =⇒ k −1 length cycle!

Contradiction!
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Tournaments have long paths.
Def: A round robin tournament on n players: every player p plays
every other player q, and either p→ q (p beats q) or q→ q (q beats
q.)

Def: A Hamiltonian path: a sequence
p1, . . . ,pn, (∀i ,0≤ i < n) pi → pi+1.

Base: True for two vertices.
(Also for one, but two is more useful as base case!)

Tournament on n+1 people,
Remove arbitrary person→ yield tournament on n−1 people.
(Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence p1, . . . ,pn
contains all the people
where pi → pi+1

If p is big winner, put at beginning.
If not, find first place i , where p beats pi .

p1, . . . ,pi−1,p,pi , . . .pn is hamiltonion path.
If no place, place at the end.
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Horses of the same color...

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

New Base Case: P(2): there are two horses with same color.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k +1)?

First k have same color by P(k). 1,2,3, . . . ,k ,k +11,2
Second k have same color by P(k). 1,2,3, . . . ,k ,k +11,2
A horse in the middle in common! 1,2,3, . . . ,k ,k +11,2
All k must have the same color. 1,2,3, . . . ,k ,k +1No horse in common!

How about P(1) =⇒ P(2)?

Fix base case.
...Still doesn’t work!!
(There are two horses is 6≡ For all two horses!!!)

Of course it doesn’t work.

As we will see, it is more subtle to catch errors in proofs of correct
theorems!!
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theorems!!
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Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:
(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).
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Summary: principle of induction.

Today: More induction.

(P(0)∧ ((∀k ∈ N)(P(k) =⇒ P(k +1)))) =⇒ (∀n ∈ N)(P(n))

Statement to prove: P(n) for n starting from n0
Base Case: Prove P(n0).
Ind. Step: Prove. For all values, n ≥ n0, P(n) =⇒ P(n+1).
Statement is proven!

Strong Induction:
(P(0)∧ ((∀n ∈ N)(P(n)) =⇒ P(n+1)))) =⇒ (∀n ∈ N)(P(n))

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.
Sum of first n odds is n2.
Hole anywhere.

Not same as strong induction.

Induction ≡ Recursion.
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