Today.

Couple of more induction proofs.

Stable Marriage.

Strengthening: need to...

Theorem: For all
$$n \ge 1$$
, $\sum_{i=1}^n \frac{1}{i^2} \le 2$. $(S_n = \sum_{i=1}^n \frac{1}{i^2}.)$ Base: $P(1)$. $1 \le 2$. Ind Step: $\sum_{i=1}^k \frac{1}{i^2} \le 2$.
$$\sum_{i=1}^{k+1} \frac{1}{i^2} = \sum_{i=1}^k \frac{1}{i^2} + \frac{1}{(k+1)^2}.$$
 $\le 2 + \frac{1}{(k+1)^2}$ Uh oh?

Hmmm... It better be that any sum is *strictly less than* 2.

How much less? At least by $\frac{1}{(k+1)^2}$ for S_k .

"
$$S_k \le 2 - \frac{1}{(k+1)^2}$$
" \Longrightarrow " $S_{k+1} \le 2$ "

Induction step works! No! Not the same statement!!!!

Need to prove "
$$S_{k+1} \le 2 - \frac{1}{(k+2)^2}$$
".

Darn!!!

Strenthening: how?

Theorem: For all $n \ge 1$, $\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - f(n)$. $(S_n = \sum_{i=1}^{n} \frac{1}{i^2})$.

Proof:

Ind hyp: P(k) — " $S_k \le 2 - f(k)$ "

Prove:
$$P(k+1) - "S_{k+1} \le 2 - f(k+1)"$$

$$S(k+1) = S_k + \frac{1}{(k+1)^2}$$

 $\leq 2 - f(k) + \frac{1}{(k+1)^2}$ By ind. hyp.

Choose
$$f(k+1) \le f(k) - \frac{1}{(k+1)^2}$$
.
 $\implies S(k+1) \le 2 - f(k+1)$.

Subtracting off a quadratically decreasing function every time.

Maybe a linearly decreasing function to keep positive?

Try
$$f(k) = \frac{1}{k}$$

$$\frac{1}{k+1} \le \frac{1}{k} - \frac{1}{(k+1)^2}?$$

$$1 \le \frac{k+1}{k} - \frac{1}{k+1}$$
 Multiplied by $k+1$.
 $1 \le 1 + (\frac{1}{k} - \frac{1}{k+1})$ Some math. So yes!

Theorem: For all
$$n \ge 1$$
, $\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}$.

Stable Marriage Problem

- Small town with n boys and n girls.
- Each girl has a ranked preference list of boys.
- Each boy has a ranked preference list of girls.

How should they be matched?

Count the ways..

- Maximize total satisfaction.
- Maximize number of first choices.
- Maximize worse off.
- Minimize difference between preference ranks.

The best laid plans..

Consider the couples..

- Jennifer and Brad
- Angelina and Billy-Bob

Brad prefers Angelina to Jennifer.

Angelina prefers Brad to BillyBob.

Uh..oh.

So...

Produce a pairing where there is no running off!

Definition: A **pairing** is disjoint set of n boy-girl pairs.

Example: A pairing $S = \{(\textit{Brad}, \textit{Jen}); (\textit{BillyBob}, \textit{Angelina})\}.$

Definition: A **rogue couple** b, g^* for a pairing S: b and g^* prefer each other to their partners in S

Example: Brad and Angelina are a rogue couple in S.

A stable pairing??

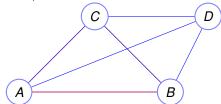
Given a set of preferences.

Is there a stable pairing?

How does one find it?

Consider a single gender version: stable roommates.

A | B C D B C A D C A B D D A B C



The Traditional Marriage Algorithm.

Each Day:

- 1. Each boy **proposes** to his favorite girl on his list.
- Each girl rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected boy crosses rejecting girl off his list.

Stop when each girl gets exactly one proposal. Does this terminate?

...produce a pairing?

....a stable pairing?

Do boys or girls do "better"?

Example.

	Boys				Girls 1			
/	4	X	2 X 1	3	1	С	Α	В
E	3	X	X	3	2	Α	В	С
	2	X	1	3	3	Α	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, 🗶	Α	X,C	С	С
2	С	В, 🗶	В	A, X	Α
3					В

Termination.

Every non-terminated day a boy **crossed** an item off the list. Total size of lists? n boys, n length list. n^2

Terminates in at most $n^2 + 1$ steps!

It gets better every day for girls...

Improvement Lemma: It just gets better for girls.

If on day t a girl, g, has a boy b on a string, any boy, b', on g's string for any day t' > t is at least as good as b.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

P(0) – true. Girl has b on string.

Assume P(k). Let b' be boy **on string** on day t + k.

On day t + k + 1, boy b' comes back. Girl can choose b', or do better with another boy, b''

That is, $b \le b'$ by induction hypothesis. And b'' is better than b' by algorithm.

 $P(k) \Longrightarrow P(k+1)$. And by principle of induction.

Pairing when done.

Lemma: Every boy is matched at end.

Proof:

If not, a boy *b* must have been rejected *n* times.

Every girl has been proposed to by *b*, and Improvement lemma

⇒ each girl has a boy on a string. and each boy on at most one string.

n girls and *n* boys. Same number of each.

 \Rightarrow b must be on some girl's string!

Contradiction.

Pairing is Stable.

Lemma: There is no rogue couple for the pairing formed by traditional marriage algorithm.

Proof:

Assume there is a rogue couple; (b, g^*)

$$b^* - g^*$$
 b likes g^* more than g .
$$b - g^*$$
 g^* likes b more than b^* .

Boy b proposes to g^* before proposing to g.

So g^* rejected b (since he moved on)

By improvement lemma, g^* likes b^* better than b.

Contradiction!

Good for boys? girls?

Is the TMA better for boys? for girls?

Definition: A pairing is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A **pairing is** x**-pessimal** if x's partner is its worst partner in any stable pairing.

Definition: A pairing is boy optimal if it is x-optimal for all boys x.

..and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing.
As well as you can in a globally stable solution!

Question: Is there a boy or girl optimal pairing?

Is it possible:

b-optimal pairing different from the *b*'-optimal pairing!

Yes? No?

TMA is optimal!

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b. By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

Rogue couple for *S*.

So *S* is not a stable pairing. Contradiction.

Notes: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple! Used Well-Ordering principle...Induction.

How about for girls?

Theorem: TMA produces girl-pessimal pairing.

T – pairing produced by TMA.

S – worse stable pairing for girl g.

In T, (g,b) is pair.

In S, (g, b^*) is pair.

g likes b^* less than she likes b.

T is boy optimal, so b likes g more than his partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.

Structural statement: Boy optimality \implies Girl pessimality.

Quick Questions.

How does one make it better for girls?

SMA - stable marriage algorithm. One side proposes.

TMA - boys propose.

Girls could propose. \implies optimal for girls.

Residency Matching..

The method was used to match residents to hospitals.

Hospital optimal....

..until 1990's...Resident optimal.

Variations: couples,

Don't go!

Summary.

