
CS70 - Lecture 6
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1. Review of L5
2. Planar Five Color Theorem
3. Special Graphs:

I Trees: Three characterizations
I Hypercubes: Strongly connected!
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I Instruction is at Piazza @241

I If you don’t submit your response on time, the default will be the
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Review of L5

I Definitions: graph, walk, tour, path, cycle, Eulerian tour

I There exists a Eulerian Tour iff connected and even degrees.

Only if: If v has odd degree, you get stuck there.

This solves the Konigsberg problem.

If: Induction on e (= number of edges).

I Euler Formula: Planar + Connected⇒ v + f = e+2.

Proof: Induction on e.

I Planar⇒ 2e ≥ 3f ⇒ 3v ≥ e+6⇒ K5 is non-planar

I Planar + Bipartite⇒ 2e ≥ 4f ⇒ 2v ≥ e+4⇒ K3,3 is non-planar
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Review of L5: Preliminaries

I Was Euler alive before or after Euclid?

I After! Euler = 1707- 1783. Euclid ≈ 300BC

I Was Euler alive before of after Newton?

I After! Newton = 1642 - 1726.

I What was Euler’s first name?

I Leonhard.

I Was Euler a freak of nature?

I Definitely! eiπ =−1, γ, graphs, number theory, physics,
astronomy, more than 800 papers, ....
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Review of L5: Q1

Question: What is this argument?

BA C

G

a

Proof by induction on e of the existence of a Eulerian tour in a
connected even-degrees graph.

There is one in G, so that there is one in the original graph.
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Review of L5: Q2

What is this argument?

A proof by induction on e of Euler’s formula: v + f = e+2.
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Review of L5: Q3

What is this argument?

2e = |E/F adjacencies | � 3f

3v + 3f = 3e + 6

3v + 2e � 3e + 6

3v � e + 6

K5

v = 5, e = 10(*)
(**)

A proof that K5 is non-planar.

Where does (*) come from? Every cycle has at least 3 edges.

Where does (**) come from? Euler’s formula.

Let’s remember: Planar⇒ e ≤ 3v −6
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Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last graph has one three-color coloring.
→ Fewer colors than number of vertices.
→ Fewer colors than the maximum degree of the nodes.

Interesting things to do. Algorithm!
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Planar graphs and maps.
Planar graph coloring ≡ map coloring.

Four color theorem is about planar graphs!

It says that every planar graph (or map) can be colored with four
colors!

Stated in 1852. Proved in 1976 ... by reducing the problem to 1936
cases (400 pages of analysis) and checking these cases by
computer!
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Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Induction on v .

Recall: e ≤ 3v −6 for any planar graph.

Total degree (sum of the degrees): 2e
Average degree: 2e

v ≤
2(3v−6)

v ≤ 6− 12
v < 6.

⇒ There exists a vertex x with degree < 6 or at most 5.

Remove vertex x of degree at most 5.
Inductively color remaining graph with the six colors.
One of the six colors is available for x since only five neighbors...
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Five color theorem
Theorem: Every planar graph can be colored with five colors.

Proof:
Preliminary Observation: You can switch two colors in a legal
coloring. Obvious!

Consider again the degree 5 vertex. Again recurse: Assume five
colors.

...· · · · · ·

Assume neighbors are colored all differently.
Otherwise done.

Switch green to blue in component.
Done. Unless blue-green path to blue.

Switch red to orange in its component.
Done. Unless red-orange path to red.

Planar. =⇒ paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors.
And recolor “center” vertex.
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A Tree, a tree.

Graph G = (V ,E).
Binary Tree!

More generally.
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Definitions:

(Equivalent, as we prove later)

A connected graph without a cycle.
A connected graph with |V |−1 edges.
A connected graph where any edge removal disconnects it.

Some trees.

No cycle and connected? Yes.
|V |−1 edges and connected? Yes.
Removing any edge disconnects it. Harder to check, but yes.

To tree or not to tree!
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Equivalence of Definitions.

Theorem These properties of a graph are equivalent:

(i.e., each
implies any other)

(1) A connected graph without a cycle.
(2) A connected graph with |V |−1 edges.
(3) A connected graph where any edge removal disconnects it.

Proof: (1)⇒ (2)
Assume true for |V | ≤ n−1. Consider G with |V |= n.

n - 1 vertices

n - 2 edges

v

Why is there a unpopular v with degree only 1? Otherwise: cycle
(enter-leave-enter-leave-enter). ⇒G has n−1 edges.
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Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube)
which is a n−1-dimensional hypercube with nodes labelled 0x (1x)
with the additional edges (0x ,1x).
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Proof:
Induction on n. Recall, V = {0,1}n, . . ..
→ Base Case: n = 1,V = {0,1}.
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S S
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Induction Step Idea
Thm: In a hypercube, |C | ≥min{|S|, |V −S|}.
Proof:
Induction on n. Recall, V = {0,1}n, . . ..
→ Base Case: n = 1,V = {0,1}.
→ Induction step:

Assume (without loss of generality) that
|S| ≤ |V |/2.

Here S0 be the part of S in left cube, S1 in right-cube. Red edges are
cut in each half-cube and blue edges across.
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The cuts in the hypercubes are exactly the transitions from 0 sets to 1
set on boolean functions on {0,1}n.

Central area of study in computer science!

Yes/No Computer Programs ≡ Boolean function on {0,1}n

Central object of study.
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Have a nice weekend!


