Lecture 7. Outline.

1. Modular Arithmetic. Clock Math!!!
2. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
3. Euclid's GCD Algorithm.

A little tricky here!

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.
16 is the "same as 4 " with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.
What time is it in 100 hours? 101:00! or 5:00.

$$
101=12 \times 8+5
$$

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.
Custom is only to use the representative in $\{12,1, \ldots, 11\}$
(Almost remainder, except for 12 and 0 are equivalent.)

Day of the week.

Today is Monday.
What day is it a year from now? on February 9, 2016?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 2.
5 days from now. day 7 or day 0 or Sunday.
25 days from now. day 27 or day 6.
two days are equivalent up to addition/subtraction of multiple of 7 .
11 days from now is day 6 which is Saturday!
What day is it a year from now?
This year is leap year. So 366 days from now.
Day $2+366$ or day 368 .
Smallest representation:
subtract 7 until smaller than 7 .
divide and get remainder.
368/7 leaves quotient of 52 and remainder 4.
or February 9, 2017 is a Thursday.

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days
Today is day 2.
It is day $2+366 \times 20+365 \times 60$. Equivalent to?
Hmm .
What is remainder of 366 when dividing by 7 ? $52 \times 7+2$.
What is remainder of 365 when dividing by 7 ? 1
Today is day 2.
Get Day: $2+2 \times 20+1 \times 60=102$
Remainder when dividing by 7 ? $102=14 \times 7+4$.
Or February 9, 2096 is Thursday!
Further Simplify Calculation:
20 has remainder 6 when divided by 7 .
60 has remainder 4 when divided by 7 .
Get Day: $2+2 \times 6+1 \times 4=18$.
Or Day 4. February 9, 2095 is Thursday.
"Reduce" at any time in calculation!

Modular Arithmetic: refresher.

x is congruent to y modulo m or " $x \equiv y(\bmod m)$ "
if and only if $(x-y)$ is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or $x=y+k m$ for some integer k.
Mod 7 equivalence classes:

$$
\{\ldots,-7,0,7,14, \ldots\} \quad\{\ldots,-6,1,8,15, \ldots\} \ldots
$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

$$
\begin{aligned}
\text { or " } a \equiv c(\bmod m) \text { and } b \equiv d(\bmod m) \\
\quad \Longrightarrow a+b \equiv c+d(\bmod m) \text { and } a \cdot b=c \cdot d(\bmod m) "
\end{aligned}
$$

Proof: If $a \equiv c(\bmod m)$, then $a=c+k m$ for some integer k. If $b \equiv d(\bmod m)$, then $b=d+j m$ for some integer j.
Therefore, $a+b=c+d+(k+j) m$ and since $k+j$ is integer.
$\Longrightarrow a+b \equiv c+d(\bmod m)$.
Can calculate with representative in $\{0, \ldots, m-1\}$.

Notation

$x(\bmod m)$ or $\bmod (x, m)$

- remainder of x divided by m in $\{0, \ldots, m-1\}$.
$\bmod (x, m)=x-\left\lfloor\frac{x}{m}\right\rfloor m$
$\left\lfloor\frac{x}{m}\right\rfloor$ is quotient.
$\bmod (29,12)=29-\left(\left\lfloor\frac{29}{12}\right\rfloor\right) \times 12=29-(2) \times 12=4=5$
Work in this system.

$$
a \equiv b(\bmod m)
$$

Says two integers a and b are equivalent modulo m.
Modulus is m
$6 \equiv 3+3 \equiv 3+10(\bmod 7)$.
$6=3+3=3+10(\bmod 7)$.
Generally, not $6(\bmod 7)=13(\bmod 7)$.
But ok, if you really want.

Inverses and Factors.

Division: multiply by multiplicative inverse.

$$
2 x=3 \Longrightarrow\left(\frac{1}{2}\right) \cdot 2 x=\left(\frac{1}{2}\right) \cdot 3 \Longrightarrow x=\frac{3}{2} .
$$

Multiplicative inverse of x is y where $x y=1$;
1 is multiplicative identity element.
In modular arithmetic, 1 is the multiplicative identity element.
Multiplicative inverse of $x \bmod m$ is y with $x y=1(\bmod m)$.
For 4 modulo 7 inverse is $2: \quad 2 \cdot 4 \equiv 8 \equiv 1(\bmod 7)$.
Can solve $4 x=5(\bmod 7)$.

Prro8 hrobuipd 3). no multiplicative inverse!
$x=3(\bmod 7)$
"Cpeckn 4 (factor 2 4" 4 mod 7).
$8 k-12 \ell$ is a multiple of four for any ℓ and $k \Longrightarrow$
$8 k \not \equiv 1(\bmod 12)$ for any k.

Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and $m, \operatorname{gcd}(x, m)$, is 1 , then x has a multiplicative inverse modulo m.
Proof \Longrightarrow : The set $S=\{0 x, 1 x, \ldots,(m-1) x\}$ contains
$y \equiv 1 \bmod m$ if all distinct modulo m.
Pigenhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.
\Longrightarrow One must correspond to 1 modulo m.
If not distinct, then $a, b \in\{0, \ldots, m-1\}$, where $(a x \equiv b x(\bmod m)) \Longrightarrow(a-b) x \equiv 0(\bmod m)$
Or $(a-b) x=k m$ for some integer k.
$\operatorname{gcd}(x, m)=1$
\Longrightarrow Prime factorization of m and x do not contain common primes.
$\Longrightarrow(a-b)$ factorization contains all primes in m 's factorization.
So $(a-b)$ has to be multiple of m.
$\Longrightarrow(a-b) \geq m$. But $a, b \in\{0, \ldots m-1\}$. Contradiction.

Proof review. Consequence.

Thm: If $\operatorname{gcd}(x, m)=1$, then x has a multiplicative inverse modulo m.
Proof Sketch: The set $S=\{0 x, 1 x, \ldots,(m-1) x\}$ contains
$y \equiv 1 \bmod m$ if all distinct modulo m.
For $x=4$ and $m=6$. All products of $4 \ldots$

$$
S=\{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\}=\{0,4,8,12,16,20\}
$$

reducing $(\bmod 6)$

$$
S=\{0,4,2,0,4,2\}
$$

Not distinct. Common factor 2.
For $x=5$ and $m=6$.

$$
S=\{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\}=\{0,5,4,3,2,1\}
$$

All distinct, contains $1!5$ is multiplicative inverse of $5(\bmod 6)$.
$5 x=3(\bmod 6)$ What is x ? Multiply both sides by 5 .
$x=15=3(\bmod 6)$
$4 x=3(\bmod 6)$ No solutions. Can't get an odd.
$4 x=2(\bmod 6)$ Two solutions! $x=2,5(\bmod 6)$
Very different for elements with inverses.

Finding inverses.

How to find the inverse?
How to find if x has an inverse modulo m ?
Find $\operatorname{gcd}(x, m)$.
Greater than 1? No multiplicative inverse.
Equal to 1? Mutliplicative inverse.
Algorithm: Try all numbers up to x to see if it divides both x and m.
Very slow.

Inverses

Next up.
Euclid's Algorithm.
Runtime.
Euclid's Extended Algorithm.

Refresh

Does 2 have an inverse mod 8? No.
Any multiple of 2 is 2 away from $0+8 k$ for any $k \in \mathbb{N}$.
Does 2 have an inverse mod 9 ? Yes. 5

$$
2(5)=10=1 \bmod 9 .
$$

Does 6 have an inverse mod 9? No.
Any multiple of 6 is 3 away from $0+9 k$ for any $k \in \mathbb{N}$.

$$
3=\operatorname{gcd}(6,9)!
$$

x has an inverse modulo m if and only if

$$
\begin{aligned}
& \operatorname{gcd}(x, m)>1 ? \text { No. } \\
& \operatorname{gcd}(x, m)=1 ? \text { Yes. }
\end{aligned}
$$

Today:
Compute gcd!
Compute Inverse modulo m.

Divisibility...

Notation: $d \mid x$ means " d divides x " or

$$
x=k d \text { for some integer } k
$$

Fact: If $d \mid x$ and $d \mid y$ then $d \mid(x+y)$ and $d \mid(x-y)$.
Is it a fact? Yes? No?
Proof: $d \mid x$ and $d \mid y$ or

$$
x=\ell d \text { and } y=k d
$$

$\Longrightarrow x-y=k d-\ell d=(k-\ell) d \Longrightarrow d \mid(x-y)$

More divisibility

Notation: $d \mid x$ means " d divides x " or

$$
x=k d \text { for some integer } k
$$

Lemma 1: If $d \mid x$ and $d \mid y$ then $d \mid y$ and $d \mid \bmod (x, y)$.
Proof:

$$
\begin{aligned}
\bmod (x, y) & =x-\lfloor x / y\rfloor \cdot y \\
& =x-\lfloor s\rfloor \cdot y \text { for integer } s \\
& =k d-s \ell d \text { for integers } k, \ell \text { where } x=k d \text { and } y=\ell d \\
& =(k-s \ell) d
\end{aligned}
$$

Therefore $d \mid \bmod (x, y)$. And $d \mid y$ since it is in condition.
Lemma 2: If $d \mid y$ and $d \mid \bmod (x, y)$ then $d \mid y$ and $d \mid x$. Proof...: Similar. Try this at home.
GCD Mod Corollary: $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, \bmod (x, y))$.
Proof: x and y have same set of common divisors as x and $\bmod (x, y)$ by Lemma.
Same common divisors \Longrightarrow largest is the same.

Euclid's algorithm.

GCD Mod Corollary: $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, \bmod (x, y))$.
Hey, what's $\operatorname{gcd}(7,0)$? 7 since 7 divides 7 and 7 divides 0 What's $\operatorname{gcd}(x, 0)$? $\quad x$

```
(define (euclid x y)
    (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

Theorem: (euclid x y$)=\operatorname{gcd}(x, y)$ if $x \geq y$.
Proof: Use Strong Induction.
Base Case: $y=0$, " x divides y and x "
\Longrightarrow " x is common divisor and clearly largest."
Induction Step: $\quad \bmod (x, y)<y \leq x$ when $x \geq y$
call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis computes $\operatorname{gcd}(y, \bmod (x, y))$
which is $\operatorname{gcd}(x, y)$ by GCD Mod Corollary.

Excursion: Value and Size.

Before discussing running time of gcd procedure...
What is the value of $1,000,000$?
one million or $1,000,000$!
What is the "size" of $1,000,000$?
Number of digits: 7.
Number of bits: 21.
For a number x, what is its size in bits?

$$
n=b(x) \approx \log _{2} x
$$

Euclid procedure is fast.

Theorem: (euclid $\mathrm{x} y$) uses $2 n$ "divisions" where $n=b(x) \approx \log _{2} x$.
Is this good? Better than trying all numbers in $\{2, \ldots y / 2\}$?
Check 2 , check 3 , check 4 , check $5 \ldots$, check $y / 2$.
If $y \approx x$ roughly y uses n bits ...
2^{n-1} divisions! Exponential dependence on size!
101 bit number. $2^{100} \approx 10^{30}=$ "million, trillion, trillion" divisions!
$2 n$ is much faster! .. roughly 200 divisions.

Algorithms at work.

Trying everything
Check 2, check 3, check 4 , check $5 \ldots$, check $y / 2$.
"(gcd x y)" at work.

```
euclid(700,568)
    euclid(568, 132)
        euclid(132, 40)
            euclid(40, 12)
            euclid(12, 4)
            euclid(4, 0)
                        4
```

Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls.
(The second is less than the first.)

Break.

Proof.

```
(define (euclid x y)
    (if (= y 0)
        x
        (euclid y (mod x y))))
```

Theorem: (euclid x y) uses $O(n)$ "divisions" where $n=b(x)$.
Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

Wdibidipind and becomes the first argument in the next one.

$$
\bmod (x, y)=x-y\left\lfloor\frac{x}{y}\right\rfloor=x-y \leq x-x / 2=x / 2
$$

Finding an inverse?

We showed how to efficiently tell if there is an inverse.
Extend euclid to find inverse.

Euclid's GCD algorithm.

```
(define (euclid x y)
    (if (= y 0)
        (euclid y (mod x y))))
```

Computes the $\operatorname{gcd}(x, y)$ in $O(n)$ divisions.
For x and m, if $\operatorname{gcd}(x, m)=1$ then x has an inverse modulo m.

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse. How do we find a multiplicative inverse?

Extended GCD

Euclid's Extended GCD Theorem: For any x, y there are integers
a, b such that

$$
a x+b y=d \quad \text { where } d=\operatorname{gcd}(x, y)
$$

"Make d out of sum of multiples of x and y."
What is multiplicative inverse of x modulo m ?
By extended GCD theorem, when $\operatorname{gcd}(x, m)=1$.

$$
\begin{aligned}
& \quad a x+b m=1 \\
& a x \equiv 1-b m \equiv 1(\bmod m)
\end{aligned}
$$

So a multiplicative inverse of $x(\bmod m)!!$
Example: For $x=12$ and $y=35, \operatorname{gcd}(12,35)=1$.

$$
(3) 12+(-1) 35=1 \text {. }
$$

$a=3$ and $b=-1$.
The multiplicative inverse of $12(\bmod 35)$ is 3.

Make d out of x and $y . . ?$

```
gcd}(35,12
    gcd(12, 11) ;; gcd(12, 35%12)
    gcd(11, 1) ; ; gcd(11, 12%11)
        gcd(1,0)
            1
```

How did gcd get 11 from 35 and 12?
$35-\left\lfloor\frac{35}{12}\right\rfloor 12=35-(2) 12=11$
How does gcd get 1 from 12 and 11 ?

$$
12-\left\lfloor\frac{12}{11}\right\rfloor 11=12-(1) 11=1
$$

Algorithm finally returns 1 .
But we want 1 from sum of multiples of 35 and 12?
Get 1 from 12 and 11.
$1=12-(1) 11=12-(1)(35-(2) 12)=(3) 12+(-1) 35$
Get 11 from 35 and 12 and plugin.... Simplify. $a=3$ and $b=-1$.

Extended GCD Algorithm.

```
ext-gcd (x,y)
    if y = 0 then return(x, 1, 0)
        else
        (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```

Claim: Returns (d, a, b): $d=\operatorname{gcd}(a, b)$ and $d=a x+b y$.


```
ext-gcd (35,12)
    ext-gcd(12, 11)
        ext-gcd(11, 1)
        ext-gcd(1,0)
        return (1,1,0) ; ; 1 = (1) 1 + (0) 0
        return (1,0,1) ; ; 1 = (0)11 + (1) 1
    return (1,1,-1) ; ; 1 = (1) 12 + (-1)11
return (1,-1, 3) ; ; 1 = (-1) 35 +(3)12
```


Extended GCD Algorithm.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```

Theorem: Returns (d, a, b), where $d=\operatorname{gcd}(a, b)$ and

$$
d=a x+b y
$$

Correctness.

Proof: Strong Induction. ${ }^{1}$
Base: ext-gcd $(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$.
Induction Step: Returns (d, A, B) with $d=A x+B y$ Ind hyp: ext-gcd $(y, \bmod (x, y))$ returns (d, a, b) with

$$
d=a y+b(\bmod (x, y))
$$

$\operatorname{ext}-\operatorname{gcd}(x, y)$ calls ext-gcd $(y, \bmod (x, y))$ so

$$
\begin{aligned}
d & =a y+b \cdot(\bmod (x, y)) \\
& =a y+b \cdot\left(x-\left\lfloor\frac{x}{y}\right\rfloor y\right) \\
& =b x+\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right) y
\end{aligned}
$$

And ext-gcd returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$ so theorem holds!
${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Review Proof: step.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```

Recursively: $d=a y+b\left(x-\left\lfloor\frac{x}{y}\right\rfloor \cdot y\right) \Longrightarrow d=b x-\left(a-\left\lfloor\frac{x}{y}\right\rfloor b\right) y$
Returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$.

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n / 2}$
Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus $1,000,000$
Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.
$(1000)^{5}$ divisions.
Next Time.

