Lecture 7. Outline.

- 1. Modular Arithmetic. Clock Math!!!
- 2. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
- 3. Euclid's GCD Algorithm. A little tricky here!

Clock Math

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in $\{12, 1, ..., 11\}$ (Almost remainder, except for 12 and 0 are equivalent.)

Day of the week.

Today is Monday. What day is it a year from now? on February 9, 2016? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 2.

5 days from now. day 7 or day 0 or Sunday.

25 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now is day 6 which is Saturday!

What day is it a year from now?

This year is leap year. So 366 days from now.

Day 2+366 or day 368.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

368/7 leaves quotient of 52 and remainder 4.

or February 9, 2017 is a Thursday.

Years and years...

80 years from now? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 2. It is day $2 + 366 \times 20 + 365 \times 60$. Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 2.

Get Day: $2 + 2 \times 20 + 1 \times 60 = 102$

Remainder when dividing by 7? $102 = 14 \times 7 + 4$.

Or February 9, 2096 is Thursday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $2 + 2 \times 6 + 1 \times 4 = 18$.

Or Day 4. February 9, 2095 is Thursday.

"Reduce" at any time in calculation!

Modular Arithmetic: refresher.

x is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$
 $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer. $\implies a + b \equiv c + d \pmod{m}$.

Can calculate with representative in $\{0, \ldots, m-1\}$.

Notation

x (mod m) or mod (x, m) - remainder of x divided by m in $\{0, ..., m-1\}$. mod $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$ $\lfloor \frac{x}{m} \rfloor$ is quotient. mod $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$

Work in this system.

 $a \equiv b \pmod{m}$.

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$.

 $6 = 3 + 3 = 3 + 10 \pmod{7}$.

Generally, not 6 $(mod 7) = 13 \pmod{7}$. But ok, if you really want.

Inverses and Factors.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

Pigenhole principle: Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*.

If not distinct, then $a, b \in \{0, ..., m-1\}$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$

Or(a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

 \implies $(a-b) \ge m$. But $a, b \in \{0, ..., m-1\}$. Contradiction.

Proof review. Consequence.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...

 $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

 $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct. Common factor 2.

For x = 5 and m = 6. $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

 $5x = 3 \pmod{6}$ What is x? Multiply both sides by 5. x = $15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd. $4x = 2 \pmod{6}$ Two solutions! $x = 2,5 \pmod{6}$

Very different for elements with inverses.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m). Greater than 1? No multiplicative inverse. Equal to 1? Multiplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m. Very slow.

Inverses

Next up.

Euclid's Algorithm. Runtime. Euclid's Extended Algorithm.

Refresh

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any $k \in \mathbb{N}$. Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$. Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any $k \in \mathbb{N}$. 3 = gcd(6,9)!

x has an inverse modulo m if and only if gcd(x,m) > 1? No. gcd(x,m) = 1? Yes.

Today:

Compute gcd!

Compute Inverse modulo m.

Divisibility...

Notation: d|x means "d divides x" or x = kd for some integer k. Fact: If d|x and d|y then d|(x + y) and d|(x - y). Is it a fact? Yes? No? Proof: d|x and d|y or $x = \ell d$ and y = kd $\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x - y)$

More divisibility

Notation: d|x means "d divides x" or x = kd for some integer k.

Lemma 1: If d|x and d|y then d|y and $d| \mod (x, y)$.

Proof:

□ish.

Therefore $d \mod (x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x, y)$ then d|y and d|x. **Proof...:** Similar. Try this at home.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)). **Proof:** *x* and *y* have **same** set of common divisors as *x* and mod (x, y) by Lemma. Same common divisors \implies largest is the same.

Euclid's algorithm.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

Theorem: (euclid x y) = gcd(x, y) if $x \ge y$.

Proof: Use Strong Induction. **Base Case:** y = 0, "*x* divides *y* and *x*" \implies "*x* is common divisor and clearly largest." **Induction Step:** mod $(x, y) < y \le x$ when $x \ge y$ call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis computes gcd(*y*, mod (*x*,*y*)) which is gcd(*x*,*y*) by GCD Mod Corollary.

Excursion: Value and Size.

Before discussing running time of gcd procedure... What is the value of 1,000,000? one million or 1,000,000! What is the "size" of 1,000,000? Number of digits: 7. Number of bits: 21. For a number *x*, what is its size in bits?

 $n = b(x) \approx \log_2 x$

Theorem: (euclid x y) uses 2*n* "divisions" where $n = b(x) \approx \log_2 x$. Is this good? Better than trying all numbers in $\{2, \dots y/2\}$? Check 2, check 3, check 4, check 5 ..., check y/2. If $y \approx x$ roughly *y* uses *n* bits ... 2^{n-1} divisions! Exponential dependence on size! 101 bit number. $2^{100} \approx 10^{30} =$ "million, trillion, trillion" divisions! 2*n* is much faster! .. roughly 200 divisions.

Algorithms at work.

```
Trying everything
Check 2, check 3, check 4, check 5 ..., check y/2.
"(gcd x y)" at work.
```

```
euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)
euclid(12, 4)
euclid(4, 0)
4
```

Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Break.

Proof.

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

Rree 2015 Fact: Depail abatsive exact regulation of the previous of the p

$$mod(x,y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \leq x - x/2 = x/2$$

Finding an inverse?

We showed how to efficiently tell if there is an inverse. Extend euclid to find inverse.

Euclid's GCD algorithm.

Computes the gcd(x, y) in O(n) divisions.

For x and m, if gcd(x, m) = 1 then x has an inverse modulo m.

Multiplicative Inverse.

GCD algorithm used to tell **if** there is a multiplicative inverse. How do we **find** a multiplicative inverse?

Extended GCD

Euclid's Extended GCD Theorem: For any *x*, *y* there are integers *a*, *b* such that

ax + by = d where d = gcd(x, y).

"Make *d* out of sum of multiples of *x* and *y*."

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x, m) = 1.

ax + bm = 1 $ax \equiv 1 - bm \equiv 1 \pmod{m}$.

So *a* multiplicative inverse of $x \pmod{m}$!! Example: For x = 12 and y = 35, gcd(12,35) = 1.

(3)12 + (-1)35 = 1.

a = 3 and b = -1. The multiplicative inverse of 12 (mod 35) is 3. Make *d* out of *x* and *y*..?

```
gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)
1
```

```
How did gcd get 11 from 35 and 12? 35 - \lfloor \frac{35}{12} \rfloor 12 = 35 - (2)12 = 11
```

How does gcd get 1 from 12 and 11? $12 - \lfloor \frac{12}{11} \rfloor 11 = 12 - (1)11 = 1$

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.

1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b = -1.

Extended GCD Algorithm.

```
Claim: Returns (d, a, b): d = gcd(a, b) and d = ax + by.
Example: a - \lfloor x/y \rfloor \cdot b = 0
```

```
ext-gcd(35,12)
ext-gcd(12, 11)
ext-gcd(11, 1)
ext-gcd(11, 0)
return (1,1,0) ;; 1 = (1)1 + (0) 0
return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 + (3)12
```

Extended GCD Algorithm.

Theorem: Returns (d, a, b), where d = gcd(a, b) and

$$d = ax + by$$
.

Correctness.

Proof: Strong Induction.¹ **Base:** ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y. **Induction Step:** Returns (d, A, B) with d = Ax + ByInd hyp: **ext-gcd**(y, mod (x,y)) returns (d, a, b) with d = ay + b(mod (<math>x,y))

ext-gcd(x, y) calls ext-gcd(y, mod(x, y)) so

(

$$d = ay + b \cdot (\mod (x, y))$$
$$= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$$
$$= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$$

And ext-gcd returns $(d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))$ so theorem holds!

¹Assume *d* is gcd(x, y) by previous proof.

Review Proof: step.

Recursively: $d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y$ Returns $(d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))$.

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

```
Very different from elementary school: try 1, try 2, try 3...
```

2^{n/2}

Inverse of 500,000,357 modulo 1,000,000,000,000?

 \leq 80 divisions.

versus 1,000,000

Next Time.