
Lecture 7. Outline.

1. Modular Arithmetic.
Clock Math!!!

2. Inverses for Modular Arithmetic: Greatest Common Divisor.
Division!!!

3. Euclid’s GCD Algorithm.
A little tricky here!

Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12×8+5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1, . . . ,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Day of the week.

Today is Monday.
What day is it a year from now? on February 9, 2016?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
5 days from now. day 7 or day 0 or Sunday.
25 days from now. day 27 or day 6.

two days are equivalent up to addition/subtraction of multiple of 7.
11 days from now is day 6 which is Saturday!

What day is it a year from now?
This year is leap year. So 366 days from now.
Day 2+366 or day 368.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.

368/7 leaves quotient of 52 and remainder 4.
or February 9, 2017 is a Thursday.

Years and years...

80 years from now? 20 leap years. 366×20 days
60 regular years. 365×60 days

Today is day 2.
It is day 2+366×20+365×60. Equivalent to?

Hmm.
What is remainder of 366 when dividing by 7? 52×7+2.
What is remainder of 365 when dividing by 7? 1

Today is day 2.
Get Day: 2+2×20+1×60 = 102
Remainder when dividing by 7? 102 = 14×7+4.
Or February 9, 2096 is Thursday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.

Get Day: 2+2×6+1×4 = 18.
Or Day 4. February 9, 2095 is Thursday.

“Reduce” at any time in calculation!

Modular Arithmetic: refresher.

x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x−y) is divisible by m.
...or x and y have the same remainder w.r.t. m.
...or x = y +km for some integer k .

Mod 7 equivalence classes:
{. . . ,−7,0,7,14, . . .} {. . . ,−6,1,8,15, . . .} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y .

or “ a≡ c (mod m) and b ≡ d (mod m)
=⇒ a+b ≡ c+d (mod m) and a ·b = c ·d (mod m)”

Proof: If a≡ c (mod m), then a = c+km for some integer k .
If b ≡ d (mod m), then b = d + jm for some integer j .
Therefore, a+b = c+d +(k + j)m and since k + j is integer.
=⇒ a+b ≡ c+d (mod m).

Can calculate with representative in {0, . . . ,m−1}.

Notation

x (mod m) or mod (x ,m)
- remainder of x divided by m in {0, . . . ,m−1}.

mod (x ,m) = x−b x
m cm

b x
m c is quotient.

mod (29,12) = 29− (b29
12c)×12 = 29− (2)×12 = 4X = 5

Work in this system.
a≡ b (mod m).

Says two integers a and b are equivalent modulo m.

Modulus is m

6≡ 3+3≡ 3+10 (mod 7).

6 = 3+3 = 3+10 (mod 7).

Generally, not 6 (mod 7) = 13 (mod 7).
But ok, if you really want.

Inverses and Factors.

Division: multiply by multiplicative inverse.

2x = 3 =⇒ (
1
2
) ·2x = (

1
2
) ·3 =⇒ x =

3
2
.

Multiplicative inverse of x is y where xy = 1;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of x mod m is y with xy = 1 (mod m).

For 4 modulo 7 inverse is 2: 2 ·4≡ 8≡ 1 (mod 7).

Can solve 4x = 5 (mod 7).
2 ·4x = 2 ·5 (mod 7)
8x = 10 (mod 7)
x = 3 (mod 7)
Check! 4(3) = 12 = 5 (mod 7).

x = 3 (mod 7) ::: Check! 4(3) = 12 = 5 (mod 7).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” =⇒
8k −12` is a multiple of four for any ` and k =⇒

8k 6≡ 1 (mod 12) for any k .

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x ,m), is 1, then x has a
multiplicative inverse modulo m.

Proof =⇒ : The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to
different one of m equivalence classes modulo m.

=⇒ One must correspond to 1 modulo m.

If not distinct, then a,b ∈ {0, . . . ,m−1}, where
(ax ≡ bx (mod m)) =⇒ (a−b)x ≡ 0 (mod m)

Or (a−b)x = km for some integer k .

gcd(x ,m) = 1
=⇒ Prime factorization of m and x do not contain common primes.
=⇒ (a−b) factorization contains all primes in m’s factorization.
So (a−b) has to be multiple of m.

=⇒ (a−b)≥m. But a,b ∈ {0, ...m−1}. Contradiction.

Proof review. Consequence.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...

S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}
reducing (mod 6)

S = {0,4,2,0,4,2}
Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Finding inverses.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x ,m).
Greater than 1? No multiplicative inverse.
Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

Very slow.

Inverses

Next up.

Euclid’s Algorithm.
Runtime.

Euclid’s Extended Algorithm.

Refresh

Does 2 have an inverse mod 8? No.
Any multiple of 2 is 2 away from 0+8k for any k ∈ N.

Does 2 have an inverse mod 9? Yes. 5
2(5) = 10 = 1 mod 9.

Does 6 have an inverse mod 9? No.
Any multiple of 6 is 3 away from 0+9k for any k ∈ N.

3 = gcd(6,9)!

x has an inverse modulo m if and only if
gcd(x ,m)> 1? No.
gcd(x ,m) = 1? Yes.

Today:
Compute gcd!
Compute Inverse modulo m.

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x−y).

Is it a fact? Yes? No?

Proof: d |x and d |y or
x = `d and y = kd

=⇒ x−y = kd − `d = (k − `)d =⇒ d |(x−y)

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).

Proof:
mod (x ,y) = x−bx/yc ·y

= x−bsc ·y for integer s
= kd −s`d for integers k , ` where x = kd and y = `d
= (k −s`)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. ish.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

Euclid’s algorithm.
GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

Hey, what’s gcd(7,0)? 7 since 7 divides 7 and 7 divides 0
What’s gcd(x ,0)? x

(define (euclid x y)
(if (= y 0)
x
(euclid y (mod x y)))) ***

Theorem: (euclid x y) = gcd(x ,y) if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Excursion: Value and Size.

Before discussing running time of gcd procedure...

What is the value of 1,000,000?

one million or 1,000,000!

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Euclid procedure is fast.

Theorem: (euclid x y) uses 2n ”divisions” where n = b(x)≈ log2 x .

Is this good? Better than trying all numbers in {2, . . .y/2}?
Check 2, check 3, check 4, check 5 . . . , check y/2.

If y ≈ x roughly y uses n bits ...
2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

Algorithms at work.

Trying everything

Check 2, check 3, check 4, check 5 . . . , check y/2.

“(gcd x y)” at work.

euclid(700,568)
euclid(568, 132)
euclid(132, 40)
euclid(40, 12)
euclid(12, 4)

euclid(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Break.

Proof.

(define (euclid x y)
(if (= y 0)

x
(euclid y (mod x y))))

Theorem: (euclid x y) uses O(n) ”divisions” where n = b(x).

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y ≥ x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y ≥ x/2, then

bx
y
c= 1,

mod (x ,y) = x−ybx
y
c= x−y ≤x−x/2 = x/2

Finding an inverse?

We showed how to efficiently tell if there is an inverse.

Extend euclid to find inverse.

Euclid’s GCD algorithm.

(define (euclid x y)
(if (= y 0)

x
(euclid y (mod x y))))

Computes the gcd(x ,y) in O(n) divisions.

For x and m, if gcd(x ,m) = 1 then x has an inverse modulo m.

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

How do we find a multiplicative inverse?

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x (mod m)!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)
1

How did gcd get 11 from 35 and 12?
35−b35

12c12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−b12

11c11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11 = 12− (1)(35− (2)12) = (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(a,b) and d = ax +by .
Example: a−bx/yc ·b = 1−b11/1c ·0 = 10−b12/11c ·1 =−11−b35/12c · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)
ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Theorem: Returns (d ,a,b), where d = gcd(a,b) and

d = ax +by .

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d ,a,b) with

d = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = ay +b · (mod (x ,y))

= ay +b · (x−bx
y
cy)

= bx +(a−bx
y
c ·b)y

And ext-gcd returns (d ,b,(a−b x
y c ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x−b x
y c ·y) =⇒ d = bx− (a−b x

y cb)y
Returns (d ,b,(a−b x

y c ·b)).

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(1000)5 divisions.

Next Time.

