CS70: Lecture 8. Outline.

- Finish Up Extended Euclid.
- Cryptography
- 3. Public Key Cryptography
- 4. RSA system
 - 4.1 Efficiency: Repeated Squaring.
 - 4.2 Correctness: Fermat's Theorem.
 - 4.3 Construction.
- 5. Warnings.

Extended GCD Algorithm.

```
ext-gcd(x,y)
  if y = 0 then return(x, 1, 0)
    else
        (d, a, b) := ext-gcd(y, mod(x,y))
        return (d, b, a - floor(x/y) * b)
```

Theorem: Returns (d, a, b), where d = gcd(a, b) and

$$d = ax + by$$
.

Correctness.

Proof: Strong Induction.¹

Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y.

Induction Step: Returns (d, A, B) with d = Ax + ByInd hyp: **ext-gcd** $(y, \mod (x, y))$ returns (d, a, b) with $d = ay + b(\mod (x, y))$

ext-gcd(x,y) calls ext-gcd(y, mod(x,y)) so

$$d = ay + b \cdot (\mod(x, y))$$

$$= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$$

$$= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$$

And ext-gcd returns $(d, b, (a - \lfloor \frac{x}{v} \rfloor \cdot b))$ so theorem holds!

¹Assume *d* is gcd(x, y) by previous proof.

Review Proof: step.

```
ext-gcd(x,y)

if y = 0 then return(x, 1, 0)

else

(d, a, b) := ext-gcd(y, mod(x,y))

return (d, b, a - floor(x/y) * b)

Recursively: d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y

Returns (d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b)).

Iterative Algorithm? A bit easier. Later.
```

Wrap-up

```
Conclusion: Can find multiplicative inverses in O(n) time!
Very different from elementary school: try 1, try 2, try 3...
 2^{n/2}
Inverse of 500,000,357 modulo 1,000,000,000,000?
  < 80 divisions.
  versus 1,000,000
Internet Security.
Public Key Cryptography: 512 digits.
 512 divisions vs.
```

Xor

Computer Science:

1 - True

```
0 - False
1 \lor 1 = 1
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
A \oplus B - Exclusive or.
1 \lor 1 = 0
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
Note: Also modular addition modulo 2!
      {0,1} is set. Take remainder for 2.
Property: A \oplus B \oplus B = A.
By cases: 1 \oplus 1 \oplus 1 = 1....
```

Cryptography ...

Example:

One-time Pad: secret s is string of length |m|.

E(m,s) – bitwise $m \oplus s$.

D(x,s) – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m!$

...and totally secure!

...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Public key crypography.

$$m = D(E(m, K), k)$$

Private: k

Public: K

Message m
 $E(m, K)$

Bob

Eve

Everyone knows key K!Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K. (Only?) Alice can decode with k.

Is this even possible?

Is public key crypto possible?

```
We don't really know. ...but we do it every day!!!
```

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose *e* relatively prime to (p-1)(q-1).²

Compute $d = e^{-1} \mod (p-1)(q-1)$.

Announce $N(=p \cdot q)$ and e: K = (N, e) is my public key!

Encoding: $mod(x^e, N)$.

Decoding: $mod(y^d, N)$.

Does $D(E(m)) = m^{ed} = m \mod N$?

Yes!

²Typically small, say e = 3.

Iterative Extended GCD.

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since \gcd(7,60) = 1.

\gcd(7,60).
```

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$
 $7(-8)+60(1) = 4$
 $7(9)+60(-1) = 3$
 $7(-17)+60(2) = 1$

Confirm:
$$-119 + 120 = 1$$

 $d = e^{-1} = -17 = 43 = \pmod{60}$

Encryption/Decryption Techniques.

```
Public Key: (77,7) Message Choices: \{0,\ldots,76\}. Message: 2! E(2) = 2^e = 2^7 \equiv 128 \pmod{77} = 51 \pmod{77} D(51) = 51^{43} \pmod{77} uh oh! Obvious way: 43 multiplications. Ouch.
```

In general, O(N) multiplications!

Repeated squaring.

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1
(mod 77).
4 multiplications sort of...
Need to compute 51<sup>32</sup>...51<sup>1</sup>.?
51^1 \equiv 51 \pmod{77}
51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77}
51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77}
51^8 = (51^4) * (51^4) = 58 * 58 = 3364 \equiv 53 \pmod{77}
51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 \equiv 37 \pmod{77}
51^{32} = (51^{16}) * (51^{16}) = 37 * 37 = 1369 \equiv 60 \pmod{77}
5 more multiplications.
51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) * (53) * (60) * (51) \equiv 2 \pmod{77}.
```

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.

Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary.

$$x^{43} = x^{32} * x^8 * x^2 * x^1.$$

Modular Exponentiation: $x^y \mod N$. All *n*-bit numbers. Repeated Squaring:

O(n) multiplications.

 $O(n^2)$ time per multiplication.

 $\implies O(n^3)$ time.

Conclusion: $x^y \mod N$ takes $O(n^3)$ time.

RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

Remember RSA encoding/decoding!

$$E(m,(N,e)) = m^e \pmod{N}.$$

$$D(m,(N,d)) = m^d \pmod{N}.$$

For 512 bits, a few hundred million operations. Easy, peasey.

Always decode correctly?

$$E(m,(N,e)) = m^e \pmod{N}.$$

$$D(m,(N,d)) = m^d \pmod{N}.$$

$$N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$
Another view:
$$d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$$
Consider...

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

$$\Rightarrow a^{k(p-1)} \equiv 1 \pmod{p} \Rightarrow a^{k(p-1)+1} = a \pmod{p}$$

versus $a^{k(p-1)(q-1)+1} = a \pmod{pq}$.

Similar, not same, but useful.

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}.$

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \dots, p-1\}$ modulo p.

$$(a\cdot 1)\cdot (a\cdot 2)\cdots (a\cdot (p-1))\equiv 1\cdot 2\cdots (p-1)\mod p,$$

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1))\equiv (1\cdots(p-1))\mod p.$$

Each of $2, \dots (p-1)$ has an inverse modulo p, solve to get...

$$a^{(p-1)} \equiv 1 \mod p$$
.

Always decode correctly? (cont.)

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Lemma 1: For any prime p and any a, b,

 $a^{1+b(p-1)} \equiv a \pmod{p}$

Proof: If $a \equiv 0 \pmod{p}$, of course.

Otherwise

$$a^{1+b(p-1)} \equiv a^1 * (a^{p-1})^b \equiv a * (1)^b \equiv a \pmod{p}$$

...Decoding correctness...

Lemma 1: For any prime p and any a, b, $a^{1+b(p-1)} \equiv a \pmod{p}$

Lemma 2: For any two different primes p, q and any x, k, $x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$

Let a = x, b = k(p-1) and apply Lemma 1 with modulus q.

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{q}$$

Let a = x, b = k(q-1) and apply Lemma 1 with modulus p.

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{p}$$

 $x^{1+k(q-1)(p-1)} - x$ is multiple of p and q.

$$x^{1+k(q-1)(p-1)} - x \equiv 0 \mod (pq) \implies x^{1+k(q-1)(p-1)} = x \mod pq.$$

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k, $x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$

Theorem: RSA correctly decodes! Recall

$$D(E(x)) = (x^e)^d = x^{ed} \equiv x \pmod{pq},$$

where
$$ed \equiv 1 \mod (p-1)(q-1) \implies ed = 1 + k(p-1)(q-1)$$

$$x^{ed} \equiv x^{k(p-1)(q-1)+1} \equiv x \pmod{pq}.$$

Construction of keys....

1. Find large (100 digit) primes *p* and *q*?

Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \ge 17$

$$\pi(N) \geq N/\ln N$$
.

Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

- 2. Choose e with gcd(e,(p-1)(q-1)) = 1. Use gcd algorithm to test.
- 3. Find inverse d of e modulo (p-1)(q-1). Use extended gcd algorithm.

All steps are polynomial in $O(\log N)$, the number of bits.

Security of RSA.

Security?

- 1. Alice knows p and q.
- Bob only knows, N(= pq), and e.
 Does not know, for example, d or factorization of N.
- 3. I don't know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N. Breaking in general sense \implies factoring algorithm.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated; For example, several rounds of challenge/response.

One trick:

Bob encodes credit card number, *c*, concatenated with random *k*-bit number *r*.

Never sends just c.

Again, more work to do to get entire system.

CS161...

Signatures using RSA.

$$[C, S_{v}(C)] \qquad C = E(S_{V}(C), k_{V})?$$

$$[C, S_{v}(C)] \qquad [C, S_{v}(C)]$$

$$Amazon \qquad Browser. K_{v}$$

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign's key: $K_V = (N, e)$ and $k_V = d$ (N = pq.)

Browser "knows" Verisign's public key: K_V .

Amazon Certificate: C ="I am Amazon. My public Key is K_A ."

Versign signature of $C: S_v(C): D(C, k_V) = C^d \mod N$.

Browser receives: [C, y]

Checks $E(y, K_V) = C$?

$$E(S_{V}(C), K_{V}) = (S_{V}(C))^{e} = (C^{d})^{e} = C^{de} = C \pmod{N}$$

Valid signature of Amazon certificate C!

Security: Eve can't forge unless she "breaks" RSA scheme.

RSA

Public Key Cryptography:

$$D(E(m,K),k) = (m^e)^d \mod N = m.$$

Signature scheme:

$$E(D(C,k),K) = (C^d)^e \mod N = C$$

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Summary.

```
Public-Key Encryption.
```

RSA Scheme:

$$N = pq$$
 and $d = e^{-1} \pmod{(p-1)(q-1)}$.

$$E(x) = x^e \pmod{N}$$
.

$$D(y) = y^d \pmod{N}.$$

Repeated Squaring \implies efficiency.

Fermat's Theorem \implies correctness.

Good for Encryption and Signature Schemes.