CS70: Lecture 8. Outline.

—_

AW N

. Finish Up Extended Euclid.
. Cryptography
. Public Key Cryptography

RSA system

4.1 Efficiency: Repeated Squaring.
4.2 Correctness: Fermat’'s Theorem.
4.3 Construction.

. Warnings.



Extended GCD Algorithm.

ext-gcd(x,Vv)
if y = 0 then return(x, 1, 0)
else

(d, a, b) := ext-gcd(y, mod(x,y))

return (d, b, a - floor(x/y)

* D)



Extended GCD Algorithm.

ext-gcd(x,Vv)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * Db)

Theorem: Returns (d, a,b), where d = gcd(a, b) and

d=ax+by.



Correctness.

Proof: Strong Induction.

TAssume d is gcd(x, y) by previous proof.



Correctness.

Proof: Strong Induction.
Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x+(0)y.

TAssume d is gcd(x, y) by previous proof.



Correctness.

Proof: Strong Induction.
Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x+(0)y.

Induction Step: Returns (d, A, B) with d = Ax+ By
Ind hyp: ext-ged(y, mod (x,y)) returns (d, a, b) with
d=ay-+b( mod(x,y))

TAssume d is gcd(x, y) by previous proof.



Correctness.

Proof: Strong Induction.
Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x+(0)y.

Induction Step: Returns (d, A, B) with d = Ax+ By
Ind hyp: ext-ged(y, mod (x,y)) returns (d, a, b) with
d=ay-+b( mod(x,y))

ext-gcd(x, y) calls ext-ged(y, mod (x,y)) so

TAssume d is gcd(x, y) by previous proof.



Correctness.

Proof: Strong Induction.
Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x+(0)y.

Induction Step: Returns (d, A, B) with d = Ax+ By
Ind hyp: ext-ged(y, mod (x,y)) returns (d, a, b) with
d=ay+b( mod(x,y))

ext-gcd(x, y) calls ext-ged(y, mod (x,y)) so
d = ay+b-( mod(x,y))

TAssume d is gcd(x, y) by previous proof.



Correctness.

Proof: Strong Induction.
Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x+(0)y.

Induction Step: Returns (d, A, B) with d = Ax+ By
Ind hyp: ext-ged(y, mod (x,y)) returns (d, a, b) with
d=ay-+b( mod(x,y))

ext-gcd(x, y) calls ext-ged(y, mod (x,y)) so
d = ay+b-( mod(x,y))
X
= ay+b-(x=[7ly)

TAssume d is gcd(x, y) by previous proof.



Correctness.

Proof: Strong Induction.
Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x+(0)y.

Induction Step: Returns (d, A, B) with d = Ax+ By
Ind hyp: ext-ged(y, mod (x,y)) returns (d, a, b) with
d=ay-+b( mod(x,y))

ext-gcd(x, y) calls ext-ged(y, mod (x,y)) so
d = ay+b-( mod(x,y))
X
= ay+b-(x=[7ly)

bx+(a— L%J by

TAssume d is gcd(x, y) by previous proof.



Correctness.

Proof: Strong Induction.
Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x+(0)y.

Induction Step: Returns (d, A, B) with d = Ax+ By
Ind hyp: ext-ged(y, mod (x,y)) returns (d, a, b) with
d=ay-+b( mod(x,y))

ext-gcd(x, y) calls ext-ged(y, mod (x,y)) so
d = ay+b-( mod(x,y))
X
= ay+b-(x=[7ly)

bx+<a—L§J-b)y

And ext-gcd returns (d, b, (a— Lf,j - b)) so theorem holds!

TAssume d is gcd(x, y) by previous proof.



Correctness.

Proof: Strong Induction.
Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x+(0)y.

Induction Step: Returns (d, A, B) with d = Ax+ By
Ind hyp: ext-ged(y, mod (x,y)) returns (d, a, b) with
d=ay-+b( mod(x,y))

ext-gcd(x, y) calls ext-ged(y, mod (x,y)) so
d = ay+b-( mod(x,y))
X
= ay+b-(x=[7ly)

bx+(a— L%J by

And ext-gcd returns (d, b, (a— ij - b)) so theorem holds!

TAssume d is gcd(x, y) by previous proof.



Review Proof: step.

ext-gcd(x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * Db)



Review Proof: step.

ext-gcd(x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * Db)

Recursively: d = ay +b(x — 7] -y)



Review Proof: step.

ext-gcd(x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * Db)

Recursively: d = ay + b(x — Lﬂ y) = d=bx—(a- Lf,Jb)y



Review Proof: step.

ext-gcd(x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * Db)

Recursively: d = ay + b(x — Lﬂ y) = d=bx—(a—|%|b)y

y
Returns (d,b,(a—[}]-b)).



Review Proof: step.

ext-gcd(x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * Db)

Recursively: d = ay + b(x — Lﬂ y) = d=bx—(a- Lf,Jb)y
Returns (d,b,(a—[}]-b)).
Iterative Algorithm?



Review Proof: step.

ext-gcd(x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * Db)

Recursively: d = ay + b(x — Lﬂ y) = d=bx—(a- Lf,Jb)y
Returns (d,b,(a—[}]-b)).
Iterative Algorithm? A bit easier.



Review Proof: step.

ext-gcd(x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * Db)

Recursively: d = ay + b(x — Lﬂ y) = d=bx—(a- Lf,Jb)y
Returns (d,b,(a—[}]-b)).
Iterative Algorithm? A bit easier. Later.



Wrap-up

Conclusion: Can find multiplicative inverses in O(n) timel!



Wrap-up

Conclusion: Can find multiplicative inverses in O(n) timel!
Very different from elementary school: try 1, try 2, try 3...



Wrap-up

Conclusion: Can find multiplicative inverses in O(n) timel!

Very different from elementary school: try 1, try 2, try 3...
2n/2



Wrap-up

Conclusion: Can find multiplicative inverses in O(n) timel!

Very different from elementary school: try 1, try 2, try 3...
2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?



Wrap-up

Conclusion: Can find multiplicative inverses in O(n) timel!
Very different from elementary school: try 1, try 2, try 3...
2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?
< 80 divisions.



Wrap-up

Conclusion: Can find multiplicative inverses in O(n) timel!

Very different from elementary school: try 1, try 2, try 3...
2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?

< 80 divisions.
versus 1,000,000



Wrap-up

Conclusion: Can find multiplicative inverses in O(n) timel!

Very different from elementary school: try 1, try 2, try 3...
2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?

< 80 divisions.
versus 1,000,000



Wrap-up

Conclusion: Can find multiplicative inverses in O(n) timel!
Very different from elementary school: try 1, try 2, try 3...
2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?
< 80 divisions.
versus 1,000,000

Internet Security.



Wrap-up

Conclusion: Can find multiplicative inverses in O(n) timel!

Very different from elementary school: try 1, try 2, try 3...
2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?

< 80 divisions.
versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.



Wrap-up

Conclusion: Can find multiplicative inverses in O(n) timel!

Very different from elementary school: try 1, try 2, try 3...
2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?
< 80 divisions.
versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.



Wrap-up

Conclusion: Can find multiplicative inverses in O(n) timel!

Very different from elementary school: try 1, try 2, try 3...
2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?
< 80 divisions.
versus 1,000,000

Internet Security.

Public Key Cryptography: 512 digits.
512 divisions vs.
(10000000000000000000000000000000000000000000)° divisions.



Wrap-up

Conclusion: Can find multiplicative inverses in O(n) timel!

Very different from elementary school: try 1, try 2, try 3...
2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?
< 80 divisions.
versus 1,000,000

Internet Security.

Public Key Cryptography: 512 digits.
512 divisions vs.
(10000000000000000000000000000000000000000000)° divisions.



Xor

Computer Science:



Xor

Computer Science:
1 - True
0 - False



Xor

Computer Science:
1 - True
0 - False

1Tv1=1



Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0



Xor

Computer Science:

1 - True
0 - False
1vi=1
1v0=1
ovi=1
ovo=0

A® B - Exclusive or.



Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
1v1i=0



Xor

Computer Science:

1 - True
0 - False
1vi=1
1v0=1
ovi=1
ovo=0
A® B - Exclusive or.
1v1i=0
1v0=1
ovi=1

0v0=0



Xor

Computer Science:

1 - True
0 - False
1vi=1
1v0o=1
ovi=1
ovo=0
A® B - Exclusive or.
1v1=0
1v0o=1
ovi=1
ovo=0

Note: Also modular addition modulo 2!



Xor

Computer Science:

1 - True
0 - False
1vi=1
1v0o=1
ovi=1
ovo=0
A® B - Exclusive or.
1v1=0
1v0o=1
ovi=1
ovo=0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.



Xor

Computer Science:

1 - True
0 - False
1vi=1
1v0o=1
ovi=1
ovo=0
A® B - Exclusive or.
1v1=0
1v0o=1
ovi=1
ovo=0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.



Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
1v1=0
1v0o=1
ovi=1
ovo=0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A@Ba B=A.



Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
1v1=0
1v0o=1
ovi=1
ovo=0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A@Ba B=A.
By cases: 1®o1@1=1.



Xor

Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
1v1=0
1v0o=1
ovi=1
ovo=0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A@Ba B=A.
Bycases:1®1p1=1. ...



Cryptography ...

@ Bob
Eve




Cryptography ...

Secret s

Alice Bob
Eve



Cryptography ...

Secret s

Message m

Ali B
ice Eve ob




Cryptography ...

Secret s

Message m




Cryptography ...

Secret s

Message m




Cryptography ...

m= D(E(m,s),s) Secret s

Message m
n B
@ Eve ob



Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:



Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.



Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:
One-time Pad: secret s is string of length |m|.
E(m,s) — bitwise m& s.



Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:

One-time Pad: secret s is string of length |m|.
E(m,s) — bitwise m® s.

D(x,s) — bitwise x & s.



Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:

One-time Pad: secret s is string of length |m|.
E(m,s) — bitwise m& s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!



Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:

One-time Pad: secret s is string of length |m|.
E(m,s) — bitwise m® s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!



Cryptography ...

m= D(E(m,s),s) Secret s

Message m

Example:

One-time Pad: secret s is string of length |m|.
E(m,s) — bitwise m® s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.



Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

Example:

One-time Pad: secret s is string of length |m|.
E(m,s) — bitwise m® s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:



Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

Example:

One-time Pad: secret s is string of length |m|.
E(m,s) — bitwise m® s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!



Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

Example:

One-time Pad: secret s is string of length |m|.
E(m,s) — bitwise m® s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!
Uses up one time pad..



Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

Example:

One-time Pad: secret s is string of length |m|.
E(m,s) — bitwise m® s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!
Uses up one time pad..or less and less secure.



Public key crypography.

@ Bob

Eve



Public key crypography.

Public: K

@ Bob

Eve




Public key crypography.

Private: k Public: K

@ Bob

Eve




Public key crypography.

Private: k Public: K Message m

@ Bob

Eve




Public key crypography.

Private: k Public: K Message m

E(m,K)

Eve




Public key crypography.

Private: k Public: K Message m

(m,K)
@ Bob

Eve




Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Eve

Message m

Bob



Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Everyone knows key K!

Eve

Message m

Bob



Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Everyone knows key K!
Bob (and Eve

Eve

Message m

Bob



Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Everyone knows key K!
Bob (and Eve and me

Eve

Message m

Bob



Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Everyone knows key K!
Bob (and Eve and me and you

Eve

Message m

Bob



Public key crypography.

m = D(E(m,K),k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!
Bob (and Eve and me and you and you ...) can encode.



Public key crypography.

m = D(E(m,K),k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.



Public key crypography.

m= D(E(m,K), k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.



Public key crypography.

m = D(E(m,K),k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Is this even possible?



Is public key crypto possible?

2Typically small, say e = 3.



Is public key crypto possible?

We don’t really know.

2Typically small, say e = 3.



Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

2Typically small, say e = 3.



Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

2Typically small, say e = 3.



Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.

2Typically small, say e = 3.



Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p—1)(g—1).2

2Typically small, say e = 3.



Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p—1)(g—1).
Compute d=e"' mod (p—1)(g—1).

2

2Typically small, say e = 3.



Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1).2

Compute d=e"' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!

2Typically small, say e = 3.



Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1).2

Compute d=e"' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).

2Typically small, say e = 3.



Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1).2

Compute d=e"' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!
Encoding: mod (x¢,N).

Decoding: mod (y9,N).

2Typically small, say e = 3.



Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1).2

Compute d =e~' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!
Encoding: mod (x¢,N).

Decoding: mod (y9,N).

Does D(E(m)) = m® = m mod N?

2Typically small, say e = 3.



Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1).2

Compute d=e"' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).
Decoding: mod (y9,N).
Does D(E(m)) = m® = m mod N?

Yes!

2Typically small, say e = 3.



lterative Extended GCD.
Example: p=7,g=11.



lterative Extended GCD.

Example: p=7,g=11.
N=77.



lterative Extended GCD.

Example: p=7,g=11.
N=77.
(p—1)(g—1)=60



lterative Extended GCD.

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60
Choose e =7, since gcd(7,60) = 1.



lterative Extended GCD.

Example: p=7,g=11.

N=T77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).



lterative Extended GCD.

Example: p=7,g=11.

N=T77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60



lterative Extended GCD.

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).



lterative Extended GCD.

Example: p=7,g=11.
N=77.

(p—1)(g—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

7(
7(1)+60(0)

7(-8)+60(1) =

0)+60(1) =

60



lterative Extended GCD.

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).



lterative Extended GCD.

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

- w A~



lterative Extended GCD.

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

- w A~



lterative Extended GCD.

Example: p=7,g=11.
N=77.

(p—1)(g—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

Confirm:

- w A~



lterative Extended GCD.

Example: p=7,g=11.
N=77.

(p—1)(g—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

Confirm: —119+120 =1

- w A~



lterative Extended GCD.

Example: p=7,g=11.
N=77.

(p—1)(g—1)=60
Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

Confirm: —119+120 = 1

- w A~



Encryption/Decryption Techniques.



Encryption/Decryption Techniques.

Public Key: (77,7)



Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.



Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!



Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!
E(2)



Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!
E(2)=2¢



Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!
E(2)=2¢=27



Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!
E(2)=2° =27 =128 (mod 77)



Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!
E(2)=2° =27 =128 (mod 77) =51 (mod 77)



Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!

E(2)=2¢ =27 =128 (mod 77) =51 (mod 77)
D(51) = 513 (mod 77)



Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!

E(2)=2°=27=128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)

uh oh!



Encryption/Decryption Techniques.

Public Key: (77,7)

Message Choices: {0,...,76}.

Message: 2!

E(2)=2°=27=128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)

uh oh!

Obvious way: 43 multiplcations. Ouch.



Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!

E(2)=2°=27=128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)
uh oh!

Obvious way: 43 multiplcations. Ouch.
In general, O(N) multiplications!



Repeated squaring.



Repeated squaring.

Notice: 43 =32+8+2+1.



Repeated squaring.

Notice: 43 =32+8+2+1. 5143



Repeated squaring.

Notice: 43=32+8+2+1. 5143 = 5132+8+2+1



Repeated squaring.

Notice: 43 =32+48+2+1. 5143 = 513248+2+1 _ 5132 .518.512.511
(mod 77).



Repeated squaring.

Notice: 43 =32+48+2+1. 5143 = 513248+2+1 _ 5132 .518.512.511
(mod 77).
4 multiplications sort of...



Repeated squaring.

Notice: 43 =32 +8+2+1. 5143 = 5132+8+2+1 _ 5432 . 518.512. 511
(mod 77).

4 multiplications sort of...

Need to compute 5132...511.?



Repeated squaring.

Notice: 43 =32 +8+42+1. 5143 = 5132+8+2+1 _ 5132.518.512.511
(mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)



Repeated squaring.

Notice: 43 =32 +8+42+1. 5143 = 5132+8+2+1 _ 5132.518.512.511
(mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 =



Repeated squaring.

Notice: 43 =32 +8+42+1. 5143 = 5132+8+2+1 _ 5132.518.512.511
(mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51)%(51) = 2601 =60 (mod 77)



Repeated squaring.

Notice: 43 =32 +8+42+1. 5143 = 5132+8+2+1 _ 5132.518.512.511
(mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

51i = (51)%(51) =2601 =60 (mod 77)

514 =



Repeated squaring.

Notice: 43 =32 +8+2+1. 5143 = 5132+8+2+1 _ 5432 . 518.512. 511
(mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51)%(51) = 2601 =60 (mod 77)

514 = (512) % (512)



Repeated squaring.

Notice: 43 =32+48+2+1. 5143 = 513248+2+1 _ 5132 .518.512.511
(mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51)%(51) = 2601 =60 (mod 77)

514 = (512)%(512) = 60 +60 = 3600 = 58 (mod 77)



Repeated squaring.

Notice: 43 =32+48+2+1. 5143 = 513248+2+1 _ 5132 .518.512.511
(mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51)%(51) = 2601 =60 (mod 77)

51;1 (512) % (51%) = 6060 = 3600 = 58 (mod 77)

518 =



Repeated squaring.

Notice: 43 =32+ 8+2+4 1. 5143 = 5132+8+2+1 _ 5132518 . 512. 511
(mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51)%(51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60 +60 = 3600 = 58 (mod 77)

518 = (514)x(51%4)



Repeated squaring.

Notice: 43 =32+48+2+1. 5143 = 513248+2+1 _ 5132 .518.512.511
(mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51)%(51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60 +60 = 3600 = 58 (mod 77)

518 = (514) % (51%) = 58 %+ 58 = 3364 = 53 (mod 77)



Repeated squaring.

Notice: 43 =32+ 8+2+4 1. 5143 = 5132+8+2+1 _ 5132518 . 512. 511
(mod 77).
4 multiplications sort of...
Need to compute 5132...511.?
51" =51 (mod 77)
512 = (51)%(51) = 2601 =60 (mod 77)
514 = (512) % (512) = 60 +60 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58 %+ 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53453 = 2809 = 37 (mod 77)



Repeated squaring.

Notice: 43 =32+ 8+2+4 1. 5143 = 5132+8+2+1 _ 5132518 . 512. 511
(mod 77).
4 multiplications sort of...
Need to compute 5132...511.?
51" =51 (mod 77)
512 = (51)%(51) = 2601 =60 (mod 77)
514 = (512) % (512) = 60 +60 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58 %+ 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53453 = 2809 = 37 (mod 77)
5132 = (5116) % (51'6) = 37437 = 1369 = 60 (mod 77)



Repeated squaring.

Notice: 43 =32+ 8+2+4 1. 5143 = 5132+8+2+1 _ 5132518 . 512. 511
(mod 77).
4 multiplications sort of...
Need to compute 5132...511.?
51" =51 (mod 77)
512 = (51)%(51) = 2601 =60 (mod 77)
514 = (512) % (512) = 60 +60 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58 %+ 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53453 = 2809 = 37 (mod 77)
5132 = (5116) % (51'6) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.



Repeated squaring.

Notice: 43 =32+ 8+2+4 1. 5143 = 5132+8+2+1 _ 5132518 . 512. 511
(mod 77).
4 multiplications sort of...
Need to compute 5132...511.?
51" =51 (mod 77)
512 = (51)%(51) = 2601 =60 (mod 77)
514 = (512) % (512) = 60 +60 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58 %+ 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53453 = 2809 = 37 (mod 77)
5132 = (5116) % (51'6) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.
5132.518.512.511 = (60) % (53) % (60) * (51) =2 (mod 77).



Repeated squaring.

Notice: 43 =32+ 8+2+4 1. 5143 = 5132+8+2+1 _ 5132518 . 512. 511
(mod 77).
4 multiplications sort of...
Need to compute 5132...511.?
51" =51 (mod 77)
512 = (51)%(51) = 2601 =60 (mod 77)
514 = (512) % (512) = 60 +60 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58 %+ 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53453 = 2809 = 37 (mod 77)
5132 = (5116) % (51'6) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.
5132.518.512.511 = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!



Repeated squaring.

Notice: 43 =32+ 8+2+4 1. 5143 = 5132+8+2+1 _ 5132518 . 512. 511
(mod 77).
4 multiplications sort of...
Need to compute 5132...511.?
51" =51 (mod 77)
512 = (51)%(51) = 2601 =60 (mod 77)
514 = (512) % (512) = 60 +60 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58 %+ 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53453 = 2809 = 37 (mod 77)
5132 = (5116) % (51'6) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.

5132.518.512.511 = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring took 9 multiplications



Repeated squaring.

Notice: 43 =32+ 8+2+4 1. 5143 = 5132+8+2+1 _ 5132518 . 512. 511
(mod 77).
4 multiplications sort of...
Need to compute 5132...511.?
51" =51 (mod 77)
512 = (51)%(51) = 2601 =60 (mod 77)
514 = (512) % (512) = 60 +60 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58 %+ 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53453 = 2809 = 37 (mod 77)
5132 = (5116) % (51'6) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.

5132.518.512.511 = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.



Repeated Squaring: x



Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!!!

1. x¥: Compute x',



Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!!!

1. x¥: Compute x',x?,



Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!!!

2 4

1. x¥: Compute x',x?, x4,



Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!!!

2 4

1. x¥: Compute x',x2, x* ...,



Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!!!

lo
2 4 X2L QYJ.

1. x¥: Compute x',x2, x* ...,



Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!!!

2 4 ollogy]

1. x¥: Compute x',x%, x4, ..., x

2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.



Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!!!

2 4 ollogy]

1. x¥: Compute x',x%, x4, ..., x

2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.
Example:



Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!!!

2 4 ollogy]

1. x¥: Compute x',x%, x4, ..., x

2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.
Example: 43 =101011 in binary.



Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!!!

2 4 ollogy]

1. x¥: Compute x',x%, x4, ..., x

2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.
Example: 43 =101011 in binary.
X8 = x5 x8xx2x x1.



Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!!!

2 4 ollogy]

1. x¥: Compute x',x%, x4, ..., x

2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.
Example: 43 =101011 in binary.
X8 = x5 x8xx2x x1.

Modular Exponentiation: x¥ mod N.



Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!!!

2 4 ollogy]

1. x¥: Compute x',x%, x4, ..., x

2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.
Example: 43 =101011 in binary.
X8 = x5 x8xx2x x1.

Modular Exponentiation: x¥ mod N. All n-bit numbers. Repeated
Squaring:



Repeated Squaring: x¥

Repeated squaring O(log y) multiplications versus y!!!

2 4 ollogy]

1. x¥: Compute x',x%, x4, ..., x

2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.
Example: 43 =101011 in binary.
X8 = x5 x8xx2x x1.

Modular Exponentiation: x¥ mod N. All n-bit numbers. Repeated
Squaring:
O(n) multiplications.



Repeated Squaring: x¥

Repeated squaring O(log y) multiplications versus y!!!

2 4 ollogy]

1. x¥: Compute x',x%, x4, ..., x

2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.
Example: 43 =101011 in binary.
X8 = x5 x8xx2x x1.

Modular Exponentiation: x¥ mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.

O(n?) time per multiplication.



Repeated Squaring: x¥

Repeated squaring O(log y) multiplications versus y!!!

2 4 ollogy]

1. x¥: Compute x',x%, x4, ..., x

2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.
Example: 43 =101011 in binary.
X8 = x5 x8xx2x x1.

Modular Exponentiation: x¥ mod N. All n-bit numbers. Repeated
Squaring:
O(n) multiplications.
O(n?) time per multiplication.
= O(n®) time.
Conclusion: x¥ mod N



Repeated Squaring: x¥

Repeated squaring O(log y) multiplications versus y!!!

2 4 ollogy]

1. x¥: Compute x',x%, x4, ..., x

2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.
Example: 43 =101011 in binary.
X8 = x5 x8xx2x x1.

Modular Exponentiation: x¥ mod N. All n-bit numbers. Repeated
Squaring:
O(n) multiplications.
O(n?) time per multiplication.
= O(n®) time.
Conclusion: x¥ mod N takes O(n®) time.



RSA is pretty fast.

Modular Exponentiation: x mod N.



RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.



RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!



RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e))=m® (mod N).



RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).



RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).



RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!

E(m,(N,e)) =m¢ (mod N).
D(m,(N,d)) =m (mod N).

For 512 bits, a few hundred million operations.



RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.



Always decode correctly?

E(m,(N,e)) =mé (mod N).



Always decode correctly?



Always decode correctly?



Always decode correctly?



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want:



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— &P~ =1 (mod p)



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— aP-1 =1 (mod p) =



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— gP-1) =1 (mod p) = aklP-1)+1



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— 2PN =1 (mod p) = &P+ =a (mod p)



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— 2PN =1 (mod p) = &P+ =a (mod p)

versus @ (P-1(@-D+1 = g (mod pg).



Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— 2PN =1 (mod p) = &P+ =a (mod p)
versus  a¥P-1@= D+ = a (mod pg).

Similar, not same, but useful.



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof:



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).

Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a:1):(a-2)-++(a-(p—1)) =1-2::(p—1) modp,



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)--(a-(p-1)=1-2--(p~1) modp,
Since multiplication is commutative.



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)--(a-(p-1)=1-2--(p~1) modp,
Since multiplication is commutative.

aP= V(1 (p—1))=(1--(p—1)) modp.



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

P O(1-(p-1)=(1-(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p,



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

&P V(1 (p=1))=(1-(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

&P V(1 (p=1))=(1-(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

a®P =1 modp.



Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

&P V(1 (p=1))=(1-(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

a®P =1 modp.



Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

& '=1 (mod p).



Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

& '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)
Proof:



Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

& '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)
Proof: If a=0 (mod p), of course.



Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

& '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)
Proof: If a=0 (mod p), of course.

Otherwise
a1+bp-1) =



Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

& '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)
Proof: If a=0 (mod p), of course.

Otherwise
a1—¢—b(p71) = a1 " (ap71)b



Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

a'=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)
Proof: If a=0 (mod p), of course.

Otherwise
a'toP-1) = gl (2 1)b = ax(1)? = a (mod p)



...Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)



...Decoding correctness...
Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1)(a-1) = x (mod pq)



..Decoding correctness...
Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1)(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.



..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1)(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

X1+k(p*1)(<7*1) =X (mod q)



..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1)(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.
X1+k(p*1)(Q*1) =X (mod q)

Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.



..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1)(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

X1+k(p*1)(Q*1) =X (mod q)

Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.

x1TEP-D@) = x  (mod p)



..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

X1+k(p*1)(<7*1) =X (mod q)

Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.

XKD = x  (mod p)

x1+k(@=1(-1) _ x is multiple of p and q.

x'HK@=DE-1 _x =0 mod (pq)



..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

X1+k(p*1)(<7*1) =X (mod q)

Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.

XKD = x  (mod p)

x1+k(@=1(-1) _ x is multiple of p and q.

x'TH@DP-1) _x =0 mod (pg) = x'K@DFE-1) = x mod pg.



..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

X1+k(p*1)(<7*1) =X (mod q)

Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.

XKD = x  (mod p)

x1k@=1)(P-1) _ x is multiple of p and q.
x'TH@DP-1) _x =0 mod (pg) = x'K@DFE-1) = x mod pg.

O



RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)



RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
X1Hk(e-1a1) = x (mod pg)

Theorem: RSA correctly decodes!



RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x)?



RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),



RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)



RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

Xed



RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

Xed = Xk(p71)(qf1)+1



RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
X1+k(p*1)(Q*1) =X (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

x89 = xkKP=D@=-D+1 = x  (mod pg).



RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°)"=x**=x (mod pg),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

x®9 = xkKP=D@-D+1 = x  (mod pg).



Construction of keys.. ..

1. Find large (100 digit) primes p and g?



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime?



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test..



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).



Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.
2. Choose e with gcd(e,(p—1)(g—1)) =1.



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).



Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).
Use extended gcd algorithm.



Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).
Use extended gcd algorithm.

All steps are polynomial in O(log N), the number of bits.



Security of RSA.



Security of RSA.

Security?

1. Alice knows p and g.
2. Bob only knows, N(= pq), and e.



Security of RSA.

Security?

1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.



Security of RSA.

Security?

1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.



Security of RSA.

Security?

1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one | know or have heard of admits to knowing how to factor N.



Security of RSA.

Security?

1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one | know or have heard of admits to knowing how to factor N.
Breaking in general sense = factoring algorithm.



Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,



Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve seesit.



Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!



Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;



Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.



Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,



Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.



Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.



Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.
Again, more work to do to get entire system.



Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.
Again, more work to do to get entire system.
CS161...



Signatures using RSA.

|Verisign: |

Amazon Browser.



Signatures using RSA.

| Verisign: |

Amazon Browser.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...



Signatures using RSA.

| Verisign: ky, K, |

Amazon Browser.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)



Signatures using RSA.

| Verisign: ky, K, |

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)
Browser “knows” Verisign’s public key: Ky, .



Signatures using RSA.

| Verisign: ky, K, |

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.



Signatures using RSA.

| Verisign: ky, K, |

[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.




Signatures using RSA.

| Verisign: ky, K, |

[C,Sv(C)]
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.




Signatures using RSA.

| Verisign: ky, K, |

[C,Sv(C)]
[C,Sv(CO)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]




Signatures using RSA.

|Verisign: ky, KV|
[C,S/(C)] C=E(Sy(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?




Signatures using RSA.

|Verisign: ky, KV|
[C,S/(C)] C=E(Sy(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(Sv(C).Kv)




Signatures using RSA.

|Verisign: ky, KV|
[C.Sv(C)] C=E(Sv(C).ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(Sv(C).Kv) = (Sv(C))®




Signatures using RSA.

|Verisign: ky, KV|
[C.Sv(C)] C=E(Sv(C).ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C).Kv) = (Su(C))° = (C9)°




Signatures using RSA.

|Verisign: ky, KV|
[C.Sv(C)] C=E(Sv(C).ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C).Kv) = (Su(C))? = (C%)° = C*




Signatures using RSA.

|Verisign: ky, KV|
[C.Sv(C)] C=E(Sv(C).ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C),Ky) = (Sv(C))¢ = (CY)® = C% = C (mod N)




Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C),Ky) = (Sy(C))¢ = (CY)® = C% = C (mod N)

Valid signature of Amazon certificate C!




Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C),Ky) = (Sy(C))¢ = (CY)® = C% = C (mod N)

Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.



RSA



RSA

Public Key Cryptography:



RSA

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N =m.



RSA

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N =m.
Signature scheme:



RSA

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N =m.
Signature scheme:
E(D(C,k),K)=(C%® modN=C



Other Eve.



Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.



Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.



Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.



Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!



Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...



Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?



Summary.

Public-Key Encryption.



Summary.

Public-Key Encryption.
RSA Scheme:



Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"" (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y) =y (mod N).



Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"" (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y)=y? (mod N).

Repeated Squaring = efficiency.



Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y) =y (mod N).
Repeated Squaring = efficiency.

Fermat's Theorem = correctness.



Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y)=y? (mod N).

Repeated Squaring = efficiency.
Fermat’'s Theorem — correctness.
Good for Encryption



Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y)=y? (mod N).

Repeated Squaring — efficiency.
Fermat’s Theorem = correctness.
Good for Encryption and Signature Schemes.



