CS70: Lecture 8. Outline.

1. Finish Up Extended Euclid.
2. Cryptography
3. Public Key Cryptography
4. RSA system
4.1 Efficiency: Repeated Squaring.
4.2 Correctness: Fermat's Theorem.
4.3 Construction.
5. Warnings.

Extended GCD Algorithm.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```


Extended GCD Algorithm.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```

Theorem: Returns (d, a, b), where $d=\operatorname{gcd}(a, b)$ and

$$
d=a x+b y
$$

Correctness.

$$
\text { Proof: Strong Induction. }{ }^{1}
$$

${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Correctness.

Proof: Strong Induction. ${ }^{1}$
Base: ext- $\operatorname{gcd}(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$.
${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Correctness.

Proof: Strong Induction. ${ }^{1}$
Base: ext- $\operatorname{gcd}(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$.
Induction Step: Returns (d, A, B) with $d=A x+B y$ Ind hyp: ext-gcd $(y, \bmod (x, y))$ returns (d, a, b) with

$$
d=a y+b(\bmod (x, y))
$$

[^0]
Correctness.

Proof: Strong Induction. ${ }^{1}$
Base: ext- $\operatorname{gcd}(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$.
Induction Step: Returns (d, A, B) with $d=A x+B y$ Ind hyp: ext-gcd $(y, \bmod (x, y))$ returns (d, a, b) with

$$
d=a y+b(\bmod (x, y))
$$

$\operatorname{ext}-\operatorname{gcd}(x, y)$ calls ext-gcd $(y, \bmod (x, y))$ so
${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Correctness.

Proof: Strong Induction. ${ }^{1}$
Base: ext- $\operatorname{gcd}(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$.
Induction Step: Returns (d, A, B) with $d=A x+B y$ Ind hyp: ext-gcd $(y, \bmod (x, y))$ returns (d, a, b) with

$$
d=a y+b(\bmod (x, y))
$$

$\operatorname{ext}-\operatorname{gcd}(x, y)$ calls ext-gcd $(y, \bmod (x, y))$ so

$$
d=a y+b \cdot(\bmod (x, y))
$$

${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Correctness.

Proof: Strong Induction. ${ }^{1}$
Base: ext-gcd $(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$.
Induction Step: Returns (d, A, B) with $d=A x+B y$ Ind hyp: ext-gcd $(y, \bmod (x, y))$ returns (d, a, b) with

$$
d=a y+b(\bmod (x, y))
$$

$\operatorname{ext}-\operatorname{gcd}(x, y)$ calls ext-gcd $(y, \bmod (x, y))$ so

$$
\begin{aligned}
d & =a y+b \cdot(\bmod (x, y)) \\
& =a y+b \cdot\left(x-\left\lfloor\frac{x}{y}\right\rfloor y\right)
\end{aligned}
$$

${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Correctness.

Proof: Strong Induction. ${ }^{1}$
Base: ext-gcd $(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$.
Induction Step: Returns (d, A, B) with $d=A x+B y$ Ind hyp: ext-gcd $(y, \bmod (x, y))$ returns (d, a, b) with

$$
d=a y+b(\bmod (x, y))
$$

$\operatorname{ext}-\operatorname{gcd}(x, y)$ calls ext-gcd $(y, \bmod (x, y))$ so

$$
\begin{aligned}
d & =a y+b \cdot(\bmod (x, y)) \\
& =a y+b \cdot\left(x-\left\lfloor\frac{x}{y}\right\rfloor y\right) \\
& =b x+\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right) y
\end{aligned}
$$

${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Correctness.

Proof: Strong Induction. ${ }^{1}$
Base: ext-gcd $(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$.
Induction Step: Returns (d, A, B) with $d=A x+B y$ Ind hyp: ext-gcd $(y, \bmod (x, y))$ returns (d, a, b) with

$$
d=a y+b(\bmod (x, y))
$$

$\operatorname{ext}-\operatorname{gcd}(x, y)$ calls ext-gcd $(y, \bmod (x, y))$ so

$$
\begin{aligned}
d & =a y+b \cdot(\bmod (x, y)) \\
& =a y+b \cdot\left(x-\left\lfloor\frac{x}{y}\right\rfloor y\right) \\
& =b x+\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right) y
\end{aligned}
$$

And ext-gcd returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$ so theorem holds!
${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Correctness.

Proof: Strong Induction. ${ }^{1}$
Base: ext-gcd $(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$.
Induction Step: Returns (d, A, B) with $d=A x+B y$ Ind hyp: ext-gcd $(y, \bmod (x, y))$ returns (d, a, b) with

$$
d=a y+b(\bmod (x, y))
$$

$\operatorname{ext}-\operatorname{gcd}(x, y)$ calls ext-gcd $(y, \bmod (x, y))$ so

$$
\begin{aligned}
d & =a y+b \cdot(\bmod (x, y)) \\
& =a y+b \cdot\left(x-\left\lfloor\frac{x}{y}\right\rfloor y\right) \\
& =b x+\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right) y
\end{aligned}
$$

And ext-gcd returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$ so theorem holds!
${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Review Proof: step.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```


Review Proof: step.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod(x,y))
            return (d, b, a - floor(x/y) * b)
```

Recursively: $d=a y+b\left(x-\left\lfloor\frac{x}{y}\right\rfloor \cdot y\right)$

Review Proof: step.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```

Recursively: $d=a y+b\left(x-\left\lfloor\frac{x}{y}\right\rfloor \cdot y\right) \Longrightarrow d=b x-\left(a-\left\lfloor\frac{x}{y}\right\rfloor b\right) y$

Review Proof: step.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```

Recursively: $d=a y+b\left(x-\left\lfloor\frac{x}{y}\right\rfloor \cdot y\right) \Longrightarrow d=b x-\left(a-\left\lfloor\frac{x}{y}\right\rfloor b\right) y$
Returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$.

Review Proof: step.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```

Recursively: $d=a y+b\left(x-\left\lfloor\frac{x}{y}\right\rfloor \cdot y\right) \Longrightarrow d=b x-\left(a-\left\lfloor\frac{x}{y}\right\rfloor b\right) y$
Returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$.
Iterative Algorithm?

Review Proof: step.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```

Recursively: $d=a y+b\left(x-\left\lfloor\frac{x}{y}\right\rfloor \cdot y\right) \Longrightarrow d=b x-\left(a-\left\lfloor\frac{x}{y}\right\rfloor b\right) y$
Returns ($d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)$).
Iterative Algorithm? A bit easier.

Review Proof: step.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```

Recursively: $d=a y+b\left(x-\left\lfloor\frac{x}{y}\right\rfloor \cdot y\right) \Longrightarrow d=b x-\left(a-\left\lfloor\frac{x}{y}\right\rfloor b\right) y$
Returns ($d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)$).
Iterative Algorithm? A bit easier. Later.

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3... $2^{n / 2}$

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3... $2^{n / 2}$

Inverse of 500,000,357 modulo 1,000,000,000,000?

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3... $2^{n / 2}$

Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n / 2}$
Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus $1,000,000$

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n / 2}$
Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus $1,000,000$

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n / 2}$
Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus $1,000,000$
Internet Security.

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n / 2}$
Inverse of 500,000, 357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus $1,000,000$
Internet Security.
Public Key Cryptography: 512 digits.

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n / 2}$
Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus $1,000,000$
Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n / 2}$
Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus 1,000,000
Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.
$(1000)^{5}$ divisions.

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n / 2}$
Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus 1,000,000
Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.
$(1000)^{5}$ divisions.

Xor

Computer Science:

Xor
Computer Science:
1-True
0 - False

Xor

Computer Science:
1 - True
0 - False
$1 \vee 1=1$

Xor

Computer Science:
1 - True
0 - False
$1 \vee 1=1$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$

Xor

Computer Science:
1 - True
0 - False
$1 \vee 1=1$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
$A \oplus B$ - Exclusive or.

Xor

Computer Science:
1 - True
0 - False
$1 \vee 1=1$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
$A \oplus B$-Exclusive or. $1 \vee 1=0$

Xor

Computer Science:
1 - True
0 - False
$1 \vee 1=1$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
$A \oplus B$-Exclusive or.
$1 \vee 1=0$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$

Xor

Computer Science:
1 - True
0 - False
$1 \vee 1=1$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
$A \oplus B$-Exclusive or.
$1 \vee 1=0$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
Note: Also modular addition modulo 2!

Xor

Computer Science:
1 - True
0 - False
$1 \vee 1=1$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
$A \oplus B$-Exclusive or.
$1 \vee 1=0$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
Note: Also modular addition modulo 2 !
$\{0,1\}$ is set. Take remainder for 2.

Xor

Computer Science:
1 - True
0 - False
$1 \vee 1=1$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
$A \oplus B$-Exclusive or.
$1 \vee 1=0$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
Note: Also modular addition modulo 2 !
$\{0,1\}$ is set. Take remainder for 2.

Xor

Computer Science:
1 - True
0 - False
$1 \vee 1=1$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
$A \oplus B$-Exclusive or.
$1 \vee 1=0$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
Note: Also modular addition modulo 2 !
$\{0,1\}$ is set. Take remainder for 2.
Property: $A \oplus B \oplus B=A$.

Xor

Computer Science:
1 - True
0 - False
$1 \vee 1=1$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
$A \oplus B$ - Exclusive or.
$1 \vee 1=0$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
Note: Also modular addition modulo 2 !
$\{0,1\}$ is set. Take remainder for 2.
Property: $A \oplus B \oplus B=A$.
By cases: $1 \oplus 1 \oplus 1=1$.

Xor

Computer Science:
1 - True
0 - False
$1 \vee 1=1$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
$A \oplus B$-Exclusive or.
$1 \vee 1=0$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
Note: Also modular addition modulo 2 !
$\{0,1\}$ is set. Take remainder for 2.
Property: $A \oplus B \oplus B=A$.
By cases: $1 \oplus 1 \oplus 1=1 . \ldots$

Cryptography ...

Example:

Cryptography ...

Example:
One-time Pad: secret s is string of length $|m|$.

Cryptography ...

Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.

Cryptography ...

Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.

Cryptography ...

Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!

Cryptography ...

Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!
...and totally secure!

Cryptography ...

Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!
...and totally secure!
...given $E(m, s)$ any message m is equally likely.

Cryptography ...

Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!
...and totally secure!
...given $E(m, s)$ any message m is equally likely.
Disadvantages:

Cryptography ...

Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!
...and totally secure!
...given $E(m, s)$ any message m is equally likely.
Disadvantages:
Shared secret!

Cryptography ...

Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!
...and totally secure!
...given $E(m, s)$ any message m is equally likely.
Disadvantages:
Shared secret!
Uses up one time pad..

Cryptography ...

Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!
...and totally secure!
...given $E(m, s)$ any message m is equally likely.
Disadvantages:
Shared secret!
Uses up one time pad..or less and less secure.

Public key crypography.

Eve

Public key crypography.

Public: K

Eve

Public key crypography.

Private: k

Eve

Public key crypography.

Private: k

Public: $K \quad$ Message m

Eve

Public key crypography.

Private: k

Public: $K \quad$ Message m

Eve

Public key crypography.

Private: k

Eve

Public key crypography.

$$
m=D(E(m, K), k)
$$

Private: k

Alice

Public: K
Message m

Eve

Public key crypography.

$$
m=D(E(m, K), k)
$$

Private: k

Alice

Message m
Public: K

Public key crypography.

$$
m=D(E(m, K), k)
$$

Private: k

Alice

Message m
Public: K

Eve
Everyone knows key K! Bob (and Eve

Public key crypography.

$$
m=D(E(m, K), k)
$$

Private: k

Alice

Message m
Public: K

Eve
Everyone knows key K ! Bob (and Eve and me

Public key crypography.

$$
m=D(E(m, K), k)
$$

Private: k
Public: K
Message m

Eve

Everyone knows key K !
Bob (and Eve and me and you

Public key crypography.

$$
m=D(E(m, K), k)
$$

Private: k

Eve

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.

Public key crypography.

$$
m=D(E(m, K), k)
$$

Private: k

Eve

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K.

Public key crypography.

$$
m=D(E(m, K), k)
$$

Private: k
Public: K
Message m

Eve

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Public key crypography.

$$
m=D(E(m, K), k)
$$

Private: k

Alice

Public: K
Message m

Eve

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.
Is this even possible?

Is public key crypto possible?

${ }^{2}$ Typically small, say $e=3$.

Is public key crypto possible?

We don't really know.
${ }^{2}$ Typically small, say $e=3$.

Is public key crypto possible?

We don't really know.
...but we do it every day!!!
${ }^{2}$ Typically small, say $e=3$.

Is public key crypto possible?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
${ }^{2}$ Typically small, say $e=3$.

Is public key crypto possible?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
${ }^{2}$ Typically small, say $e=3$.

Is public key crypto possible?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{2}$
${ }^{2}$ Typically small, say $e=3$.

Is public key crypto possible?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{2}$ Compute $d=e^{-1} \bmod (p-1)(q-1)$.
${ }^{2}$ Typically small, say $e=3$.

Is public key crypto possible?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{2}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!

[^1]
Is public key crypto possible?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{2}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.

[^2]
Is public key crypto possible?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{2}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.

[^3]
Is public key crypto possible?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{2}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{e d}=m \bmod N$?

[^4]
Is public key crypto possible?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{2}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{e d}=m \bmod N$?
Yes!
${ }^{2}$ Typically small, say $e=3$.

Iterative Extended GCD.

Example: $p=7, q=11$.

Iterative Extended GCD.

Example: $p=7, q=11$.
$N=77$.

Iterative Extended GCD.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$

Iterative Extended GCD.

Example: $p=7, q=11$.

$$
N=77
$$

$$
(p-1)(q-1)=60
$$

$$
\text { Choose } e=7, \text { since } \operatorname{gcd}(7,60)=1
$$

Iterative Extended GCD.

Example: $p=7, q=11$.

$$
N=77
$$

$$
(p-1)(q-1)=60
$$

Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

Iterative Extended GCD.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

$$
7(0)+60(1)=60
$$

Iterative Extended GCD.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

$$
\begin{aligned}
& 7(0)+60(1)=60 \\
& 7(1)+60(0)=7
\end{aligned}
$$

Iterative Extended GCD.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

$$
\begin{aligned}
7(0)+60(1) & =60 \\
7(1)+60(0) & =7 \\
7(-8)+60(1) & =4
\end{aligned}
$$

Iterative Extended GCD.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

$$
\begin{aligned}
7(0)+60(1) & =60 \\
7(1)+60(0) & =7 \\
7(-8)+60(1) & =4 \\
7(9)+60(-1) & =3
\end{aligned}
$$

Iterative Extended GCD.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

$$
\begin{aligned}
7(0)+60(1) & =60 \\
7(1)+60(0) & =7 \\
7(-8)+60(1) & =4 \\
7(9)+60(-1) & =3 \\
7(-17)+60(2) & =1
\end{aligned}
$$

Iterative Extended GCD.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

$$
\begin{aligned}
7(0)+60(1) & =60 \\
7(1)+60(0) & =7 \\
7(-8)+60(1) & =4 \\
7(9)+60(-1) & =3 \\
7(-17)+60(2) & =1
\end{aligned}
$$

Iterative Extended GCD.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

$$
\begin{aligned}
7(0)+60(1) & =60 \\
7(1)+60(0) & =7 \\
7(-8)+60(1) & =4 \\
7(9)+60(-1) & =3 \\
7(-17)+60(2) & =1
\end{aligned}
$$

Confirm:

Iterative Extended GCD.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

$$
\begin{aligned}
7(0)+60(1) & =60 \\
7(1)+60(0) & =7 \\
7(-8)+60(1) & =4 \\
7(9)+60(-1) & =3 \\
7(-17)+60(2) & =1
\end{aligned}
$$

Confirm: $-119+120=1$

Iterative Extended GCD.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

$$
\begin{aligned}
7(0)+60(1) & =60 \\
7(1)+60(0) & =7 \\
7(-8)+60(1) & =4 \\
7(9)+60(-1) & =3 \\
7(-17)+60(2) & =1
\end{aligned}
$$

Confirm: $-119+120=1$
$d=e^{-1}=-17=43=(\bmod 60)$

Encryption/Decryption Techniques.

Encryption/Decryption Techniques.

Public Key: $(77,7)$

Encryption/Decryption Techniques.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.

Encryption/Decryption Techniques.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2!

Encryption/Decryption Techniques.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2!
$E(2)$

Encryption/Decryption Techniques.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2!
$E(2)=2^{e}$

Encryption/Decryption Techniques.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2!
$E(2)=2^{e}=2^{7}$

Encryption/Decryption Techniques.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2!

$$
E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)
$$

Encryption/Decryption Techniques.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2!

$$
E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)=51(\bmod 77)
$$

Encryption/Decryption Techniques.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2!

$$
\begin{aligned}
& E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)=51(\bmod 77) \\
& D(51)=51^{43}(\bmod 77)
\end{aligned}
$$

Encryption/Decryption Techniques.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2!

$$
\begin{aligned}
& E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)=51(\bmod 77) \\
& D(51)=51^{43}(\bmod 77) \\
& \text { uh oh! }
\end{aligned}
$$

Encryption/Decryption Techniques.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2!
$E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)=51(\bmod 77)$
$D(51)=51^{43}(\bmod 77)$
uh oh!
Obvious way: 43 multiplcations. Ouch.

Encryption/Decryption Techniques.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2!
$E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)=51(\bmod 77)$
$D(51)=51^{43}(\bmod 77)$
uh oh!
Obvious way: 43 multiplcations. Ouch.
In general, $O(N)$ multiplications!

Repeated squaring.

Repeated squaring.

Notice: $43=32+8+2+1$.

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$
$51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$
$51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$
5 more multiplications.

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$
$51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$
5 more multiplications.
$51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}=(60) *(53) *(60) *(51) \equiv 2(\bmod 77)$.

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$
$51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$
5 more multiplications.
$51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}=(60) *(53) *(60) *(51) \equiv 2(\bmod 77)$.
Decoding got the message back!

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$
$51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$
5 more multiplications.
$51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}=(60) *(53) *(60) *(51) \equiv 2(\bmod 77)$.
Decoding got the message back!
Repeated Squaring took 9 multiplications

Repeated squaring.

Notice: $43=32+8+2+1.51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$
$51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$
5 more multiplications.
$51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}=(60) *(53) *(60) *(51) \equiv 2(\bmod 77)$.
Decoding got the message back!
Repeated Squaring took 9 multiplications versus 43.

Repeated Squaring: x^{y}

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute x^{1},

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute x^{1}, x^{2},

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute x^{1}, x^{2}, x^{4},

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots$,

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2\lfloor\log y\rfloor}$.

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{[\log y\rfloor}$.
2. Multiply together x^{i} where the $(\log (i))$ th bit of y (in binary) is 1 .

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2[\log y]}$.
2. Multiply together x^{i} where the $(\log (i))$ th bit of y (in binary) is 1 . Example:

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2[\log y]}$.
2. Multiply together x^{i} where the $(\log (i))$ th bit of y (in binary) is 1 . Example: $43=101011$ in binary.

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2[\log y]}$.
2. Multiply together x^{i} where the $(\log (i))$ th bit of y (in binary) is 1 . Example: $43=101011$ in binary.

$$
x^{43}=x^{32} * x^{8} * x^{2} * x^{1}
$$

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2[\log y]}$.
2. Multiply together x^{i} where the $(\log (i))$ th bit of y (in binary) is 1 . Example: $43=101011$ in binary.

$$
x^{43}=x^{32} * x^{8} * x^{2} * x^{1}
$$

Modular Exponentiation: $x^{y} \bmod N$.

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2[\log y]}$.
2. Multiply together x^{i} where the $(\log (i))$ th bit of y (in binary) is 1 . Example: $43=101011$ in binary.

$$
x^{43}=x^{32} * x^{8} * x^{2} * x^{1}
$$

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. Repeated Squaring:

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2[\log y]}$.
2. Multiply together x^{i} where the $(\log (i))$ th bit of y (in binary) is 1 . Example: $43=101011$ in binary.

$$
x^{43}=x^{32} * x^{8} * x^{2} * x^{1}
$$

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. Repeated Squaring:
$O(n)$ multiplications.

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2\lfloor\log y\rfloor}$.
2. Multiply together x^{i} where the $(\log (i))$ th bit of y (in binary) is 1 . Example: $43=101011$ in binary.

$$
x^{43}=x^{32} * x^{8} * x^{2} * x^{1}
$$

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. Repeated Squaring:
$O(n)$ multiplications.
$O\left(n^{2}\right)$ time per multiplication.

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2\lfloor\log y\rfloor}$.
2. Multiply together x^{i} where the $(\log (i))$ th bit of y (in binary) is 1 .

Example: $43=101011$ in binary.

$$
x^{43}=x^{32} * x^{8} * x^{2} * x^{1}
$$

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. Repeated Squaring:
$O(n)$ multiplications.
$O\left(n^{2}\right)$ time per multiplication.
$\Longrightarrow O\left(n^{3}\right)$ time.
Conclusion: $x^{y} \bmod N$

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2\lfloor\log y\rfloor}$.
2. Multiply together x^{i} where the $(\log (i))$ th bit of y (in binary) is 1 .

Example: $43=101011$ in binary.

$$
x^{43}=x^{32} * x^{8} * x^{2} * x^{1}
$$

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. Repeated Squaring:
$O(n)$ multiplications.
$O\left(n^{2}\right)$ time per multiplication.
$\Longrightarrow O\left(n^{3}\right)$ time.
Conclusion: $x^{y} \bmod N$ takes $O\left(n^{3}\right)$ time.

RSA is pretty fast.

Modular Exponentiation: $x^{y} \bmod N$.

RSA is pretty fast.

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. $O\left(n^{3}\right)$ time.

RSA is pretty fast.

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. $O\left(n^{3}\right)$ time.
Remember RSA encoding/decoding!

RSA is pretty fast.

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. $O\left(n^{3}\right)$ time.
Remember RSA encoding/decoding!

$$
E(m,(N, e))=m^{e}(\bmod N)
$$

RSA is pretty fast.

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. $O\left(n^{3}\right)$ time.
Remember RSA encoding/decoding!

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

RSA is pretty fast.

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. $O\left(n^{3}\right)$ time.
Remember RSA encoding/decoding!

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

RSA is pretty fast.

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. $O\left(n^{3}\right)$ time.
Remember RSA encoding/decoding!

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

For 512 bits, a few hundred million operations.

RSA is pretty fast.

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. $O\left(n^{3}\right)$ time.
Remember RSA encoding/decoding!

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

For 512 bits, a few hundred million operations. Easy, peasey.

Always decode correctly?

$$
E(m,(N, e))=m^{e}(\bmod N)
$$

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) . \\
& N=p q
\end{aligned}
$$

Always decode correctly?

$$
\begin{aligned}
E(m,(N, e)) & =m^{e}(\bmod N) \\
D(m,(N, d)) & =m^{d}(\bmod N) \\
N=p q \text { and } d & =e^{-1}(\bmod (p-1)(q-1))
\end{aligned}
$$

Always decode correctly?

$$
\begin{aligned}
E(m,(N, e)) & =m^{e}(\bmod N) \\
D(m,(N, d)) & =m^{d}(\bmod N) \\
N=p q \text { and } d & =e^{-1}(\bmod (p-1)(q-1))
\end{aligned}
$$

Want:

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.
Another view:

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.
Another view:

$$
d=e^{-1}(\bmod (p-1)(q-1)) \Longleftrightarrow e d=k(p-1)(q-1)+1
$$

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.
Another view:

$$
d=e^{-1}(\bmod (p-1)(q-1)) \Longleftrightarrow e d=k(p-1)(q-1)+1 .
$$

Consider...

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.
Another view:

$$
d=e^{-1}(\bmod (p-1)(q-1)) \Longleftrightarrow e d=k(p-1)(q-1)+1 .
$$

Consider...
Fermat's Little Theorem: For prime p, and $a \equiv \equiv 0(\bmod p)$,

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.
Another view:

$$
d=e^{-1}(\bmod (p-1)(q-1)) \Longleftrightarrow e d=k(p-1)(q-1)+1 .
$$

Consider...
Fermat's Little Theorem: For prime p, and $a \equiv \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.
Another view:

$$
d=e^{-1}(\bmod (p-1)(q-1)) \Longleftrightarrow e d=k(p-1)(q-1)+1 .
$$

Consider...
Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
\begin{aligned}
& a^{p-1} \equiv 1(\bmod p) . \\
\Longrightarrow & a^{k(p-1)} \equiv 1(\bmod p)
\end{aligned}
$$

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.
Another view:

$$
d=e^{-1}(\bmod (p-1)(q-1)) \Longleftrightarrow e d=k(p-1)(q-1)+1 .
$$

Consider...
Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
\begin{aligned}
& a^{p-1} \equiv 1(\bmod p) . \\
\Longrightarrow & a^{k(p-1)} \equiv 1(\bmod p) \Longrightarrow
\end{aligned}
$$

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.
Another view:

$$
d=e^{-1}(\bmod (p-1)(q-1)) \Longleftrightarrow e d=k(p-1)(q-1)+1 .
$$

Consider...
Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
\begin{aligned}
& a^{p-1} \equiv 1(\bmod p) . \\
\Longrightarrow & a^{k(p-1)} \equiv 1(\bmod p) \Longrightarrow a^{k(p-1)+1}
\end{aligned}
$$

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.
Another view:

$$
d=e^{-1}(\bmod (p-1)(q-1)) \Longleftrightarrow e d=k(p-1)(q-1)+1 .
$$

Consider...
Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
\begin{aligned}
& a^{p-1} \equiv 1(\bmod p) . \\
\Longrightarrow & a^{k(p-1)} \equiv 1(\bmod p) \Longrightarrow a^{k(p-1)+1}=a(\bmod p)
\end{aligned}
$$

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.
Another view:

$$
d=e^{-1}(\bmod (p-1)(q-1)) \Longleftrightarrow e d=k(p-1)(q-1)+1 .
$$

Consider...
Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
\begin{aligned}
& a^{p-1} \equiv 1(\bmod p) . \\
\Longrightarrow & a^{k(p-1)} \equiv 1(\bmod p) \Longrightarrow a^{k(p-1)+1}=a(\bmod p)
\end{aligned}
$$

versus $\quad a^{k(p-1)(q-1)+1}=a(\bmod p q)$.

Always decode correctly?

$$
\begin{aligned}
& E(m,(N, e))=m^{e}(\bmod N) . \\
& D(m,(N, d))=m^{d}(\bmod N) .
\end{aligned}
$$

$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.
Another view:

$$
d=e^{-1}(\bmod (p-1)(q-1)) \Longleftrightarrow e d=k(p-1)(q-1)+1 .
$$

Consider...
Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
\begin{aligned}
& a^{p-1} \equiv 1(\bmod p) . \\
\Longrightarrow & a^{k(p-1)} \equiv 1(\bmod p) \Longrightarrow a^{k(p-1)+1}=a(\bmod p)
\end{aligned}
$$

versus $\quad a^{k(p-1)(q-1)+1}=a(\bmod p q)$.
Similar, not same, but useful.

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p)
$$

Proof:

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p.

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p-1\}$ modulo p.

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \quad \bmod p,
$$

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \quad \bmod p
$$

Since multiplication is commutative.

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \quad \bmod p,
$$

Since multiplication is commutative.

$$
a^{(p-1)}(1 \cdots(p-1)) \equiv(1 \cdots(p-1)) \quad \bmod p
$$

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \quad \bmod p,
$$

Since multiplication is commutative.

$$
a^{(p-1)}(1 \cdots(p-1)) \equiv(1 \cdots(p-1)) \quad \bmod p
$$

Each of $2, \ldots(p-1)$ has an inverse modulo p,

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \quad \bmod p,
$$

Since multiplication is commutative.

$$
a^{(p-1)}(1 \cdots(p-1)) \equiv(1 \cdots(p-1)) \quad \bmod p .
$$

Each of $2, \ldots(p-1)$ has an inverse modulo p, solve to get...

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \quad \bmod p,
$$

Since multiplication is commutative.

$$
a^{(p-1)}(1 \cdots(p-1)) \equiv(1 \cdots(p-1)) \quad \bmod p .
$$

Each of $2, \ldots(p-1)$ has an inverse modulo p, solve to get...

$$
a^{(p-1)} \equiv 1 \quad \bmod p .
$$

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \quad \bmod p,
$$

Since multiplication is commutative.

$$
a^{(p-1)}(1 \cdots(p-1)) \equiv(1 \cdots(p-1)) \quad \bmod p .
$$

Each of $2, \ldots(p-1)$ has an inverse modulo p, solve to get...

$$
a^{(p-1)} \equiv 1 \quad \bmod p .
$$

Always decode correctly? (cont.)

Fermat's Little Theorem: For prime p, and $a \equiv \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Always decode correctly? (cont.)

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Lemma 1: For any prime p and any a, b,

$$
a^{1+b(p-1)} \equiv a(\bmod p)
$$

Proof:

Always decode correctly? (cont.)

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Lemma 1: For any prime p and any a, b,

$$
a^{1+b(p-1)} \equiv a(\bmod p)
$$

Proof: If $a \equiv 0(\bmod p)$, of course.

Always decode correctly? (cont.)

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Lemma 1: For any prime p and any a, b,

$$
a^{1+b(p-1)} \equiv a(\bmod p)
$$

Proof: If $a \equiv 0(\bmod p)$, of course.
Otherwise
$a^{1+b(p-1)} \equiv$

Always decode correctly? (cont.)

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Lemma 1: For any prime p and any a, b,

$$
a^{1+b(p-1)} \equiv a(\bmod p)
$$

Proof: If $a \equiv 0(\bmod p)$, of course.
Otherwise
$a^{1+b(p-1)} \equiv a^{1} *\left(a^{p-1}\right)^{b}$

Always decode correctly? (cont.)

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Lemma 1: For any prime p and any a, b,

$$
a^{1+b(p-1)} \equiv a(\bmod p)
$$

Proof: If $a \equiv 0(\bmod p)$, of course.
Otherwise

$$
a^{1+b(p-1)} \equiv a^{1} *\left(a^{p-1}\right)^{b} \equiv a *(1)^{b} \equiv a(\bmod p)
$$

...Decoding correctness...
Lemma 1: For any prime p and any a, b,
$a^{1+b(p-1)} \equiv a(\bmod p)$

...Decoding correctness...

Lemma 1: For any prime p and any a, b, $a^{1+b(p-1)} \equiv a(\bmod p)$

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

...Decoding correctness...

Lemma 1: For any prime p and any a, b,

$$
a^{1+b(p-1)} \equiv a(\bmod p)
$$

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Let $a=x, b=k(p-1)$ and apply Lemma 1 with modulus q.

...Decoding correctness...

Lemma 1: For any prime p and any a, b,

$$
a^{1+b(p-1)} \equiv a(\bmod p)
$$

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Let $a=x, b=k(p-1)$ and apply Lemma 1 with modulus q.

$$
x^{1+k(p-1)(q-1)} \equiv x \quad(\bmod q)
$$

...Decoding correctness...

Lemma 1: For any prime p and any a, b,

$$
a^{1+b(p-1)} \equiv a(\bmod p)
$$

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Let $a=x, b=k(p-1)$ and apply Lemma 1 with modulus q.

$$
x^{1+k(p-1)(q-1)} \equiv x \quad(\bmod q)
$$

Let $a=x, b=k(q-1)$ and apply Lemma 1 with modulus p.

Decoding correctness...

Lemma 1: For any prime p and any a, b,

$$
a^{1+b(p-1)} \equiv a(\bmod p)
$$

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Let $a=x, b=k(p-1)$ and apply Lemma 1 with modulus q.

$$
x^{1+k(p-1)(q-1)} \equiv x \quad(\bmod q)
$$

Let $a=x, b=k(q-1)$ and apply Lemma 1 with modulus p.

$$
x^{1+k(p-1)(q-1)} \equiv x \quad(\bmod p)
$$

Decoding correctness...

Lemma 1: For any prime p and any a, b,

$$
a^{1+b(p-1)} \equiv a(\bmod p)
$$

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Let $a=x, b=k(p-1)$ and apply Lemma 1 with modulus q.

$$
x^{1+k(p-1)(q-1)} \equiv x \quad(\bmod q)
$$

Let $a=x, b=k(q-1)$ and apply Lemma 1 with modulus p.

$$
x^{1+k(p-1)(q-1)} \equiv x \quad(\bmod p)
$$

$x^{1+k(q-1)(p-1)}-x$ is multiple of p and q.

$$
x^{1+k(q-1)(p-1)}-x \equiv 0 \quad \bmod (p q)
$$

Decoding correctness...

Lemma 1: For any prime p and any a, b,

$$
a^{1+b(p-1)} \equiv a(\bmod p)
$$

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Let $a=x, b=k(p-1)$ and apply Lemma 1 with modulus q.

$$
x^{1+k(p-1)(q-1)} \equiv x \quad(\bmod q)
$$

Let $a=x, b=k(q-1)$ and apply Lemma 1 with modulus p.

$$
x^{1+k(p-1)(q-1)} \equiv x \quad(\bmod p)
$$

$x^{1+k(q-1)(p-1)}-x$ is multiple of p and q.

$$
x^{1+k(q-1)(p-1)}-x \equiv 0 \quad \bmod (p q) \Longrightarrow x^{1+k(q-1)(p-1)}=x \quad \bmod p q .
$$

Decoding correctness...

Lemma 1: For any prime p and any a, b,

$$
a^{1+b(p-1)} \equiv a(\bmod p)
$$

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Let $a=x, b=k(p-1)$ and apply Lemma 1 with modulus q.

$$
x^{1+k(p-1)(q-1)} \equiv x \quad(\bmod q)
$$

Let $a=x, b=k(q-1)$ and apply Lemma 1 with modulus p.

$$
x^{1+k(p-1)(q-1)} \equiv x \quad(\bmod p)
$$

$x^{1+k(q-1)(p-1)}-x$ is multiple of p and q.

$$
x^{1+k(q-1)(p-1)}-x \equiv 0 \quad \bmod (p q) \Longrightarrow x^{1+k(q-1)(p-1)}=x \quad \bmod p q .
$$

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Theorem: RSA correctly decodes!

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Theorem: RSA correctly decodes! Recall

$$
D(E(x))=\left(x^{e}\right)^{d}
$$

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Theorem: RSA correctly decodes!
Recall

$$
D(E(x))=\left(x^{e}\right)^{d}=x^{e d} \quad(\bmod p q)
$$

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Theorem: RSA correctly decodes!
Recall

$$
D(E(x))=\left(x^{e}\right)^{d}=x^{e d} \quad(\bmod p q)
$$

where $e d \equiv 1 \bmod (p-1)(q-1) \Longrightarrow e d=1+k(p-1)(q-1)$

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Theorem: RSA correctly decodes!
Recall

$$
D(E(x))=\left(x^{e}\right)^{d}=x^{e d} \quad(\bmod p q)
$$

where $e d \equiv 1 \bmod (p-1)(q-1) \Longrightarrow e d=1+k(p-1)(q-1)$

$$
x^{e d} \equiv
$$

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Theorem: RSA correctly decodes!
Recall

$$
D(E(x))=\left(x^{e}\right)^{d}=x^{e d} \quad(\bmod p q)
$$

where $e d \equiv 1 \bmod (p-1)(q-1) \Longrightarrow e d=1+k(p-1)(q-1)$

$$
x^{e d} \equiv x^{k(p-1)(q-1)+1}
$$

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Theorem: RSA correctly decodes!
Recall

$$
D(E(x))=\left(x^{e}\right)^{d}=x^{e d} \quad(\bmod p q)
$$

where $e d \equiv 1 \bmod (p-1)(q-1) \Longrightarrow e d=1+k(p-1)(q-1)$

$$
x^{e d} \equiv x^{k(p-1)(q-1)+1} \equiv x \quad(\bmod p q) .
$$

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k,

$$
x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)
$$

Theorem: RSA correctly decodes!
Recall

$$
D(E(x))=\left(x^{e}\right)^{d}=x^{e d} \equiv x \quad(\bmod p q)
$$

where $e d \equiv 1 \bmod (p-1)(q-1) \Longrightarrow e d=1+k(p-1)(q-1)$

$$
x^{e d} \equiv x^{k(p-1)(q-1)+1} \equiv x \quad(\bmod p q) .
$$

Construction of keys.. ..

1. Find large (100 digit) primes p and q ?

Construction of keys.. ..

1. Find large (100 digit) primes p and q ?

Prime Number Theorem: $\pi(N)$ number of primes less than N.For all $N \geq 17$

$$
\pi(N) \geq N / \ln N
$$

Construction of keys.. ..

1. Find large (100 digit) primes p and q ?

Prime Number Theorem: $\pi(N)$ number of primes less than N.For all $N \geq 17$

$$
\pi(N) \geq N / \ln N
$$

Choosing randomly gives approximately $1 /(\ln N)$ chance of number being a prime. (How do you tell if it is prime?

Construction of keys.. ..

1. Find large (100 digit) primes p and q ?

Prime Number Theorem: $\pi(N)$ number of primes less than N.For all $N \geq 17$

$$
\pi(N) \geq N / \ln N
$$

Choosing randomly gives approximately $1 /(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..

Construction of keys.. ..

1. Find large (100 digit) primes p and q ?

Prime Number Theorem: $\pi(N)$ number of primes less than N.For all $N \geq 17$

$$
\pi(N) \geq N / \ln N
$$

Choosing randomly gives approximately $1 /(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test..

Construction of keys.. ..

1. Find large (100 digit) primes p and q ?

Prime Number Theorem: $\pi(N)$ number of primes less than N.For all $N \geq 17$

$$
\pi(N) \geq N / \ln N
$$

Choosing randomly gives approximately $1 /(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

Construction of keys.. ..

1. Find large (100 digit) primes p and q ?

Prime Number Theorem: $\pi(N)$ number of primes less than N.For all $N \geq 17$

$$
\pi(N) \geq N / \ln N
$$

Choosing randomly gives approximately $1 /(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

Construction of keys.. ..

1. Find large (100 digit) primes p and q ?

Prime Number Theorem: $\pi(N)$ number of primes less than N.For all $N \geq 17$

$$
\pi(N) \geq N / \ln N
$$

Choosing randomly gives approximately $1 /(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.
2. Choose e with $\operatorname{gcd}(e,(p-1)(q-1))=1$.

Construction of keys.. ..

1. Find large (100 digit) primes p and q ?

Prime Number Theorem: $\pi(N)$ number of primes less than N.For all $N \geq 17$

$$
\pi(N) \geq N / \ln N
$$

Choosing randomly gives approximately $1 /(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.
2. Choose e with $\operatorname{gcd}(e,(p-1)(q-1))=1$.

Use gcd algorithm to test.

Construction of keys.. ..

1. Find large (100 digit) primes p and q ?

Prime Number Theorem: $\pi(N)$ number of primes less than N.For all $N \geq 17$

$$
\pi(N) \geq N / \ln N
$$

Choosing randomly gives approximately $1 /(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.
2. Choose e with $\operatorname{gcd}(e,(p-1)(q-1))=1$. Use gcd algorithm to test.
3. Find inverse d of e modulo $(p-1)(q-1)$.

Construction of keys.. ..

1. Find large (100 digit) primes p and q ?

Prime Number Theorem: $\pi(N)$ number of primes less than N.For all $N \geq 17$

$$
\pi(N) \geq N / \ln N
$$

Choosing randomly gives approximately $1 /(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.
2. Choose e with $\operatorname{gcd}(e,(p-1)(q-1))=1$. Use gcd algorithm to test.
3. Find inverse d of e modulo $(p-1)(q-1)$. Use extended gcd algorithm.

Construction of keys.. ..

1. Find large (100 digit) primes p and q ?

Prime Number Theorem: $\pi(N)$ number of primes less than N.For all $N \geq 17$

$$
\pi(N) \geq N / \ln N
$$

Choosing randomly gives approximately $1 /(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.
2. Choose e with $\operatorname{gcd}(e,(p-1)(q-1))=1$.

Use gcd algorithm to test.
3. Find inverse d of e modulo $(p-1)(q-1)$. Use extended gcd algorithm.

All steps are polynomial in $O(\log N)$, the number of bits.

Security of RSA.

Security of RSA.

Security?

1. Alice knows p and q.
2. Bob only knows, $N(=p q)$, and e.

Security of RSA.

Security?

1. Alice knows p and q.
2. Bob only knows, $N(=p q)$, and e. Does not know, for example, d or factorization of N.

Security of RSA.

Security?

1. Alice knows p and q.
2. Bob only knows, $N(=p q)$, and e. Does not know, for example, d or factorization of N.
3. I don't know how to break this scheme without factoring N.

Security of RSA.

Security?

1. Alice knows p and q.
2. Bob only knows, $N(=p q)$, and e. Does not know, for example, d or factorization of N.
3. I don't know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.

Security of RSA.

Security?

1. Alice knows p and q.
2. Bob only knows, $N(=p q)$, and e. Does not know, for example, d or factorization of N.
3. I don't know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N. Breaking in general sense \Longrightarrow factoring algorithm.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!
The protocols are built on RSA but more complicated;

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!
The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!
The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.
One trick:
Bob encodes credit card number, c,

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!
The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.
One trick:
Bob encodes credit card number, c, concatenated with random k-bit number r.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!
The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.
One trick:
Bob encodes credit card number, c, concatenated with random k-bit number r.
Never sends just c.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!
The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.
One trick:
Bob encodes credit card number, c, concatenated with random k-bit number r.
Never sends just c.
Again, more work to do to get entire system.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!
The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.
One trick:
Bob encodes credit card number, c, concatenated with random k-bit number r.
Never sends just c.
Again, more work to do to get entire system.
CS161...

Signatures using RSA.

Verisign:

Signatures using RSA.

Verisign:

Amazon Browser.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Signatures using RSA.

Verisign: k_{v}, K_{v}

Amazon Browser.
Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)

Signatures using RSA.

Verisign: k_{v}, K_{v}

Amazon Browser. K_{v}
Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.

Signatures using RSA.

Verisign: k_{v}, K_{v}

Amazon

 Browser. K_{v}Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."

Signatures using RSA.

Verisign: k_{v}, K_{v}

$\left[C, S_{v}(C)\right]$

Amazon

Browser. K_{v}

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{V}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.

Signatures using RSA.

Verisign: k_{v}, K_{v}

$\left[C, S_{v}(C)\right]$

$$
\left[C, S_{v}(C)\right]
$$

Amazon

Browser. K_{v}

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{V}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.

Signatures using RSA.

Verisign: k_{v}, K_{v}

$\left[C, S_{v}(C)\right]$

$\left[C, S_{v}(C)\right]$

Amazon

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]

Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?

Signatures using RSA.

Verisign: k_{v}, K_{v}

$\left[C, S_{v}(C)\right]$

$$
C=E\left(S_{V}(C), k_{V}\right) ?
$$

[$C, S_{v}(C)$]

Amazon

Browser. K_{v}

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)$

Signatures using RSA.

Verisign: k_{v}, K_{v}

$\left[C, S_{v}(C)\right]$

$$
C=E\left(S_{V}(C), k_{V}\right) ?
$$

$\left[C, S_{v}(C)\right]$

Amazon

Browser. K_{v}

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)=\left(S_{v}(C)\right)^{e}$

Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)=\left(S_{v}(C)\right)^{e}=\left(C^{d}\right)^{e}$

Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{V}(C), K_{V}\right)=\left(S_{V}(C)\right)^{e}=\left(C^{d}\right)^{e}=C^{d e}$

Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)=\left(S_{v}(C)\right)^{e}=\left(C^{d}\right)^{e}=C^{d e}=C(\bmod N)$

Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)=\left(S_{v}(C)\right)^{e}=\left(C^{d}\right)^{e}=C^{d e}=C(\bmod N)$
Valid signature of Amazon certificate C !

Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{V}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)=\left(S_{v}(C)\right)^{e}=\left(C^{d}\right)^{e}=C^{d e}=C(\bmod N)$
Valid signature of Amazon certificate C !
Security: Eve can't forge unless she "breaks" RSA scheme.

RSA

RSA

Public Key Cryptography:

RSA

Public Key Cryptography:

$$
D(E(m, K), k)=\left(m^{e}\right)^{d} \bmod N=m .
$$

RSA

Public Key Cryptography:
$D(E(m, K), k)=\left(m^{e}\right)^{d} \bmod N=m$.
Signature scheme:

RSA

Public Key Cryptography:
$D(E(m, K), k)=\left(m^{e}\right)^{d} \bmod N=m$.
Signature scheme:
$E(D(C, k), K)=\left(C^{d}\right)^{e} \bmod N=C$

Other Eve.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.
... and August 28, 2011 announcement.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
How does Microsoft get a CA to issue certificate to them ...

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
How does Microsoft get a CA to issue certificate to them ...
and only them?

Summary.

Public-Key Encryption.

Summary.

Public-Key Encryption.
RSA Scheme:

Summary.

Public-Key Encryption.
RSA Scheme:
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
$E(x)=x^{e}(\bmod N)$.
$D(y)=y^{d}(\bmod N)$.

Summary.

Public-Key Encryption.

RSA Scheme:
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
$E(x)=x^{e}(\bmod N)$.
$D(y)=y^{d}(\bmod N)$.
Repeated Squaring \Longrightarrow efficiency.

Summary.

Public-Key Encryption.
RSA Scheme:
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
$E(x)=x^{e}(\bmod N)$.
$D(y)=y^{d}(\bmod N)$.
Repeated Squaring \Longrightarrow efficiency.
Fermat's Theorem \Longrightarrow correctness.

Summary.

Public-Key Encryption.
RSA Scheme:
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
$E(x)=x^{e}(\bmod N)$.
$D(y)=y^{d}(\bmod N)$.
Repeated Squaring \Longrightarrow efficiency.
Fermat's Theorem \Longrightarrow correctness.
Good for Encryption

Summary.

Public-Key Encryption.
RSA Scheme:
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
$E(x)=x^{e}(\bmod N)$.
$D(y)=y^{d}(\bmod N)$.
Repeated Squaring \Longrightarrow efficiency.
Fermat's Theorem \Longrightarrow correctness.
Good for Encryption and Signature Schemes.

[^0]: ${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

[^1]: ${ }^{2}$ Typically small, say $e=3$.

[^2]: ${ }^{2}$ Typically small, say $e=3$.

[^3]: ${ }^{2}$ Typically small, say $e=3$.

[^4]: ${ }^{2}$ Typically small, say $e=3$.

