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ext-gcd(x,Vv)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * Db)

Theorem: Returns (d, a,b), where d = gcd(a, b) and

d=ax+by.
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Review Proof: step.

ext-gcd(x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,Vy))
return (d, b, a - floor(x/y) * Db)

Recursively: d = ay + b(x — Lﬂ y) = d=bx—(a- Lf,Jb)y
Returns (d,b,(a—[}]-b)).
Iterative Algorithm? A bit easier. Later.
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Computer Science:
1 - True
0 - False

1v1=1
1v0=1
ovi=1
0v0=0

A® B - Exclusive or.
1v1=0
1v0o=1
ovi=1
ovo=0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A@Ba B=A.
Bycases:1®1p1=1. ...
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m= D(E(m,s),s) Secret s

Message m
Bob

Example:

One-time Pad: secret s is string of length |m|.
E(m,s) — bitwise m® s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!
Uses up one time pad..or less and less secure.
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Public key crypography.

m = D(E(m,K),k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Is this even possible?
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Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1).2

Compute d=e"' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).
Decoding: mod (y9,N).
Does D(E(m)) = m® = m mod N?

Yes!

2Typically small, say e = 3.
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Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!

E(2)=2°=27=128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)
uh oh!

Obvious way: 43 multiplcations. Ouch.
In general, O(N) multiplications!
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Notice: 43 =32+ 8+2+4 1. 5143 = 5132+8+2+1 _ 5132518 . 512. 511
(mod 77).
4 multiplications sort of...
Need to compute 5132...511.?
51" =51 (mod 77)
512 = (51)%(51) = 2601 =60 (mod 77)
514 = (512) % (512) = 60 +60 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58 %+ 58 = 3364 = 53 (mod 77)
5116 — (518) % (51%) = 53453 = 2809 = 37 (mod 77)
5132 = (5116) % (51'6) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.

5132.518.512.511 = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.
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Repeated Squaring: x¥

Repeated squaring O(log y) multiplications versus y!!!

2 4 ollogy]

1. x¥: Compute x',x%, x4, ..., x

2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.
Example: 43 =101011 in binary.
X8 = x5 x8xx2x x1.

Modular Exponentiation: x¥ mod N. All n-bit numbers. Repeated
Squaring:
O(n) multiplications.
O(n?) time per multiplication.
= O(n®) time.
Conclusion: x¥ mod N takes O(n®) time.
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RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.
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Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— 2PN =1 (mod p) = &P+ =a (mod p)
versus  a¥P-1@= D+ = a (mod pg).

Similar, not same, but useful.
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Fermat’s Little Theorem: For prime p, and a0 (mod p),
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Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
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Proof: If a=0 (mod p), of course.
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Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

& '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)
Proof: If a=0 (mod p), of course.

Otherwise
a1—¢—b(p71) = a1 " (ap71)b
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Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

a'=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)
Proof: If a=0 (mod p), of course.

Otherwise
a'toP-1) = gl (2 1)b = ax(1)? = a (mod p)
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..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

X1+k(p*1)(<7*1) =X (mod q)

Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.

XKD = x  (mod p)

x1k@=1)(P-1) _ x is multiple of p and q.
x'TH@DP-1) _x =0 mod (pg) = x'K@DFE-1) = x mod pg.

O
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Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),
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RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

Xed = Xk(p71)(qf1)+1
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Lemma 2: For any two different primes p,q and any x, k,
X1+k(p*1)(Q*1) =X (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

x89 = xkKP=D@=-D+1 = x  (mod pg).



RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°)"=x**=x (mod pg),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

x®9 = xkKP=D@-D+1 = x  (mod pg).
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Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).
Use extended gcd algorithm.

All steps are polynomial in O(log N), the number of bits.
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Security of RSA.

Security?

1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one | know or have heard of admits to knowing how to factor N.
Breaking in general sense = factoring algorithm.
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Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.
Again, more work to do to get entire system.
CS161...
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Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C),Ky) = (Sy(C))¢ = (CY)® = C% = C (mod N)

Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.
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Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N =m.
Signature scheme:
E(D(C,k),K)=(C%® modN=C
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Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?
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Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y)=y? (mod N).

Repeated Squaring — efficiency.
Fermat’s Theorem = correctness.
Good for Encryption and Signature Schemes.



