
CHAPTER 

SIX 
FIRST-ORDER CIRCUITS 

Chapters 2 to 5 have been devoted exclusively to  circuits made of resistors and 
independent sources. The resistors may contain two or  more terminals and may 
be linear or nonlinear, time-varying o r  time-invariant. We have shown that 
these resistive circuits are always governed by algebraic equations. 

In this chapter, we introduce two new circuit elements, namely, two- 
terminal capacitors and inductors. We will see that these elements differ from 
resistors in a fundamental way: They are lossless, and therefore energy is not 
dissipated but merely stored in these elements. 

A circuit is said to be dynamic if it includes some capacitor(s) or some 
inductor(s) or both. In general, dynamic circuits are governed by differential 
equations. In this initial chapter on dynamic circuits, we consider the simplest 
subclass described by only one first-order differential equation-hence the 
name first-order circuits. They include all circuits containing one 2-terminal 
capacitor (or inductor), plus resistors and independent sources. 

The important concepts of initial state, equilibrium state, and time constant 
allow us to find the solution of any first-order linear time-invariant circuit 
driven by dc sources by inspection (Sec. 3.1). Students should master this 
material before plunging into the following sections where the inspection 
method is extended to include linear switching circuits in Sec. 4 and piecewise- 
linear circuits in Sec. 5. Here,-the important concept of a dynamic route plays a 
crucial role in the analysis of piecewise-linear circuits by inspection. 

l TWO-TERMINAL CAPACITORS AND INDUCTORS 

Many devices cannot be modeled accurately using only resistors. In this 
section, we introduce capacitors and inductors, which, together with resistors, 
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Let N be a two-terminal element driven by a voltage source v ( t )  [respec- 
tively, current source i(t)J and let i(r) [respectively, v(t)j  denote the correspond- 
ing current (respectively, voltage) response. If we plot the locus =!?(v, L) of 
( v ( ( ) ,  i ( t ) )  in the v-i plane and obtain afixed curve independent o f the  excitation 
waveforms, then N can be modeled as a two-terminal resistor. If 2 ( u ,  i) 
changes with the excitation waveform, then N does not behave jike a resistor 
and a different model must be chosen. In this case, we can calculate the 
associated charge waveform q(t) using Eq. (1.2a), or the flux waveform $ ( t )  
using Eq. ( f . 2 b ) ,  and see whether the corresponding locus 2 ( q ,  v) of 
(q ( t ) ,  ~ ( t ) )  in the q-v plane, or  Y(4, i )  of (4(r), in the #-i plane, is a fixed 
curve independent of the excitation waveforms. 

Exercises 
1.  Apply at t = 0 a voltage source v ( t )  = A sin w t  (in volts) across a l-F 
capacitor. (a) Calculate the associated current i ( t ) ,  flux @(r), and charge 
q ( t )  for t 2 0, using Eqs. ( 1 . 2 ~ )  and (1.2b). Assume # ( O )  = - 1 Wb and 
q(0) =OC. (b) Sketch the loci 2 ( v ,  i), 2(#, i ) ,  and T ( q ,  v )  in the v-i 
plane, 6 - i  plane, and q-U plane, respectively, for the following parameters 
( A  is in volts, o is in radians per second): 

( c )  Does it make sense to describe this element by a v-i characteristic? cb-i 
characteristic? g-U characteristic? Explain. 
2. Apply at t = 0 a current source i(t) = A sin wt (in amperes) across a l-H 
inductor. (a )  Calculate the associated voitage v ( t ) ,  charge q ( t ) ,  and flux 
+(t)  for t > O ,  using Eqs. (1.2a) and (1.2b). Assume q(0 )  = -1 C and 
+(O) = 0 W. ( b )  Sketch the loci 2 ( v ,  i ) ,  Y ( q ,  v ) ,  and Y ( 4 ,  i )  in the v-i 
plane, q-u plane, and 6-i plane, respectively, for the following parameters 
( A  is in amperes, w is in radians per second): 

( c )  Does it make sense to describe this element by a U-i characteristic? q-U 
characteristic? 4-1 characteristic? Explain. 

1.1 q-v and 4-i characteristics 

A two-terminal element whose A two-terminal element whose 
charge q ( t )  and voltage u( t )  fall on flux +(t) and current i ( t )  fall on 
some fixed curve in the q-v plane at some fixed curve in the 4 - i  plane at 
any time t is called a time-invariant any time t is called a time-invariant 
capacitor.3 This curve is called the inductor.' This curve is called the 

' This definition is generalized to that of This definition is generalized to that of 
a time-varying capacitor in Sec. 1.2. a time-varying inductor in Sec. 1.2. 



g-v characterlsfic of the capacitor. 
It may be represented by the 
equation5 

fcC% v) = 0 ( 1 . 3 ~ )  

If Eq. (1-3a) can be solved for 
v as a single-valued function of q, 
namely, 

the capacitor is said to be charge- 
controlled. 

If Eq.  ( 1 . 3 ~ )  can be solved for 
q as a single-valued function of v,  
namely, 

the capacitor is said to be voltage- 
controlled. 

If the function Ij(v) is differen- 
tiable, we can apply the chain rule 
to express the current entering a 
time-invariant voitage-controlled 
capacitor in a form similar to Eq. 
( 1 . 1 ~ ) : ~  

where 

is called the small-signal capaci- 
tance at the operating point v. 

Example la  (Linear time- 
invariant parallel-plate capa- 
citor) Figure l . l a  shows a 
familiar device made of two 
flat parallel metal plates sepa- 

This equation is also called the con- 
stitutive relation of the capacitor. 

6 We will henceforth use the notation 
5 A dv( t )  ldt. 

4 -i characterktic of the inductor. 
It may be represenited by the 
equation7 

fJA i) X 0 (1 .36)  

If Eq. ( E  .3b) can be solved for 
i as a single-valued function of #, 
namely, 

the inductor is said to be flux- 
controlled. 

I f  Eq .  (1.36) can be solved for 
4 as a single-valued function of i, 
namely, 

the inductor is said to be currenl- 
controlled. 

If the function $ ( i )  is differen- 
tiable, we can apply the chain rule 
to express the voltage across a 
tim-invariant current-controlled 
inductor in a form similar to Eq. 
(1.1 b y  

where 

is called the small-signal inductance 
at the operating point i .  

Example l b  (Linear time- 
invariant toroidal inductor) 
Figure 1 . 2 ~  shows a familiar 
device made of a conducting 
wire wound around a toroid 

This equation is also called the con- 
stitutive relation of the inductor. 

S We will henceforth use the notation 
di(t)  ldt. 
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( c )  

Figure 1.1 Parallel-plate capacitor. 

rated in free space by a dis- 
tance d. When a voltage u( t )  > 
0 is applied, we recali from 
physics that a charge equa1 to 

is induced at time t on the 
upper plate, and an equal but 
opposite charge is induced on 
the lower plate at time t. The 
constant of proportionality is 
given approximately by 

A 
d 

farad (F) 

where = 8.854 X 10-'' F /m  
is the dielectric constant in free 
space, A is the plate area in 
square meters, and d is the 
separation of the plates in 
meters. 

(C) 

Figure 1.2 Toroidal inductor. 

made of a nonmetallic material 
such as wood. When a current 
i ( t )  > O  is applied, we recall 
from physics that a flux equal 
to 

is induced at time t and circu- 
lates around the interior of the 
toroid. The constant of propor- 
tionality is given approximately 
by 

N% 
L=Po--~;- henry (H) 

where p. = 4 X 10-' H/m is 
the permeability of the wooden 
core, N is the number of turns, 
A is the cross-sectional area in 
square meters, and t is the 
midcircumference along the to- 
roid in meters. 
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Equation ( 1.8a) defines 
the q-v characteristic of a linear 
time-in va riaptt capacitor, name- 
ly, a straight line through the 
origin with slope equal to C, as 
shown in Fig. 1. l b. Its small- 
signal capacitance C(v) = C is 
a constant function (Fig. l. l c ) .  
Consequently, Eq. ( l .6a) re- 
duces to Eq. (1 - la ) .  

Example 2a (Nonlineas time- 
invariant parallel-plate capa- 
citor) If we fill the space be- 
tween the two plates in Fig. 
1.la with a nonlinear ferroelec- 
tric material (such as barium 
titanate), the measured q-v 
characteristic in Fig. 1.3a is no 
longer a straight line. This non- 
linear behavior is due to the 
fact that :he dielectric constant 
of ferroelectric materials is not 
a constant-it changes with the 
applied electric field intensity. 

Likewise, the small-signal 
capacitance shown in Fig. 1.3 b 
is a nonlinear function of v. 

Figure 1.3 Nonlinear q-u characteristic. 

Equation (1 .S b) defines 
the #-i characteristic of a linear 
time-invariant hdactor, name- 
ly, a straight line through the 
origin with slope equal to L, as 
shown in Fig. 1.2b. Its small- 
signal inductance L(i)  = L is a 
constant function (Fig. 1 .2~) .  
Consequently, Eq. (1.6b) re- 
duces to Eq. (l. l b). 

Example 2b (Nonlinear time- 
invariant toroidal inductor) If 
we repiace the wooden core in 
Fig. 1.20 with a nonlineas fer- 
romagnetic material (such as 
superperma3loy) the measured 
4-i characteristic in Fig. 1.4a is 
no longer a straight line. This 
nonlinear behavior is due to 
the fact that the permeability 
of ferrornagnetic materials is 
not a constant-it changes with 
the applied magnetic field in- 
tensity. 

Likewise, the small-signal 
inductance shown in Fig. 1.4b 
is a nonlinear function of i. 

Figure 1.4 Nonlinear 4-i characteristic. 
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Superconductor 

Oxide 
barrier 

Figure 1.5 q-v characteristic of a varactor Figure 1.6 4-i characteristic of a Josephson 
diode. junction. 

Example 3a (Varactor diode) 
The varactor diode9 shown in 
Fig. 1 . 5 ~  is a pn-junction diode 
designed specially to take ad- 
vantage of the depletion layer 
when operating in reverse bias, 
i.e., when v < V, (typically, 
0.2V < V, < 0.9V). Semicon- 
ductor physics proves that the 
charge q accumulated on the 
top layer is equal to 

Varactor diodes are widely used in 
many communication circuits. For example, 
modem radio and TV sets are automatically 
tuned by applying a suitable dc bias voltage 
across such a diode. 

Example 3b (Josephson junc- 
tion) The Josephson junction1° 
shown in Fig. l .6a consists of 
two superconductors separated 
by an insulating layer (such as 
oxide). Superconductor physics 
proves that the current i varies 
sinusoidally with 4, namely, 

10 Josephson proposed this exotic device 

in 1961 and was awarded the Nobel prize in 
physics in 1969 for this discovery. The 
Josephson junction has been used in numer- 
ous applications. 
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provided V < y,. Here, V,, is 
the contact potential and 

where E = permittivity of the 
material, Nu = number of ac- 
ceptor atoms per cubic cen- 
timeter, N,, = number of donor 
atoms per cubic centimeter, 
and A = cross-sectional area in 
square centimeters. 

Its small-signal capacitance 
(Fig. 1 . 5 ~ )  is obtained by dif- 
ferentiating Eq. (1.9a): 

i = l. sin k+ f l(&) 
j1.9b) 

where lf, is a device parameter 
and 

where e = electron charge and 
h = Planck's constant. 

Note that unlike the previ- 
ous example, the 4-i charac- 
teristic in Fig. 1.6b is not cur- 
rent-controlled. Consequently, 
its small-signal inductance 
L(i) \ dt$(i)idi is not uniquely 
defined. 

However, the Josephson 
junction is flux-controlled and 
has a well-defined slope (Fig. 
1 . 6 ~ )  

Note that unlike the previ- We call r($) the reciprocal 
ous examples, the q-v charac- small-signal inductance since it 
teristic in Fig. 1.5b is not de- has the unit of H-'. 
fined for v > V'. Hence, this 
capacitor is not voltage- 
controlled for all values of v > 
V,, . (For v > V,, the diode be- 
comes forward biased and be- 
haves like a nonlinear resistor.) 

REMARK Note that Eqs. (1.9a) and (1.96), as well as Eqs. ( 1 . 1 0 ~ )  and 
(1.10 b), are not strictly dual equations because the corresponding variables 
are not duals of each other. However, if we solved for v in terms of q in 
Eq. (1.9a), we would obtain a dual function v = v^(q). In this case, the 
derivative 

is called the reciprocal small-signal capacitance. 
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Exercise (a) Show that a one- 
port obtained by connecting 
port 2 of a gyrator (assume 
unity coefficient) across a k-M 
linear inductor is equivalent to 
that of a k-F linear capacitor in 
the sense that they have identi- 
cal q-u characteristics. (b) Is it 
possible to give a simple physi- 
cal interpretation of the charge 
associated with this element? 
(c) Generalize the property in 
(a) to the case where the in- 
ductor is nonlinear: 4 = $(Q.  

Exercise (a) Show that a one- 
port obtained by connecting 
port 2 of a gyrator (assume 
unity coefficient) across a k-F 
linear capacitor is equivalent to 
that of a k-H linear inductor in 
the sense that they have identi- 
cal 4-i characteristics. (b) Is It 
possible to give a simple physi- 
cal interpretation of the ~~ 
associated with this element? 
(c) Generalize the property in 
(a) to the case where the ca- 
pacitor is nonlinear: q = G(u). 

1.2 Time-Varying Capacitors and Inductors 

The examples presented so far are time-invariant in the sense that the q-v and 
4- i  characteristics do not change with time. 

If the g-v characteristic 
changes with time, the capacitor is 
said to be time-varying. 

For example, suppose we vary 
the spacing between the parallel- 
plate capacitor in Fig. l . l a ,  say by 
using a motor-driven cam mechan- 
ism, so that the capacitance C be- 
comes some prescribed function of 
time C(t). Then Eq. (1.8a) be- 
comes 

q(t) = C(t)v(t) (1.1 la )  

It folIows from Eq. (1.2a) that 

Note that the current in a time- 
varying linear capacitor differs 
from Eq. (1.la) not only in the 
replacement of C by C(t), but also 
in the presence of an extra term. 

If the - characteristic 
changes with time, the inductor is 
said to be rime-varying. 

For example, suppose we vary 
the number of turns of the 
winding in Fig. 1.2a, say by 
using a motor-driven sliding 
contact, so that the inductance 
L becomes some prescribed 
function of time L(t). Then Eq. 
(1.8b) becomes 

4(t) = L(t)i(t) (l. l l b) 

It follows from Eq. (1.26) that 

Note that the voltage in a time- 
varying linear inductor differs from 
Eq. (1.1 b)  not only in the replace- 
ment of L by L(t), but also in the 
presence of an extra term. 
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To be specific, assume 

C(t)  = 2 + sin f (1.113~) 

then 

q( t )  = (2 + sin t)v(t) (1.140) 

and 

i(t) = ( 2  + sin t) du(f) + (COS f)u(t) 
dt 

(1.15a) 

The q-v characteristic of a 
time-varying linear capacitor con- 
sists of a family of straight fines, 
each line valid for a given instant 
of time. For example, the q-u 
characteristic of the above time- 
varying linear capacitor is shown in 
Fig. 1.7a. Its associated smalI-sig- 
nal capacitance consists of a family 
of horizontal lines (Fig. 1.7b). 

(a! 

To be specific, assume 

L( t )  = 2 + sin t (1.13b) 

then 

+(t) = (2 + sin t)i(i)  (1.14b) 

and 

di(t) 
v ( t )  = (2 + sin t )  - 

dt 
+ (cos t>i(t) 

(1.15b) 

The 4-i characteristic of a 
time-varying linear inductor con- 
sists of a family of straight lines, 
each line valid for a given instant 
of time. For example, the h-i 
characteristic of the above time- 
varying linear inductor is shown in 
Fig. 1.8b. Its associated small-sig- 
nal inductance consists of a family 
of horizontal lines (Fig. 1.86). 

I 
(b!  (b 

Figure 1.7 Time-varying g-v characteristic of Figure 1.8 Time-varying 4-i characterisic of 
Eq. (1.14~). Eq. (1.146). 

1 
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Time-varying linear capacitors and inductors are useful in the modeling, 
analysis, and design of many communication circuits (e.g., modulators, de- 
modulators, parametric amplifiers). 

In the most general case, a In the most general case, a 
time-varying nonlinear capacitor is time-varying nonlinear inductor is 
defined by a family of time-depen- defined by a family of tirne-depen- 
dent and nonlinear q-v characteris- dent and nonlinear 4-i characteris- 
tics, namely, tics, namely, 

The two circuit variables used in defining a two-terminal resistor, inductor, 
or capacitor can be easily remembered with the help of the mnemonic diagram 
shown in Fig. 1.9. Note that out of the six exhaustive pairings of the four has$ 
variables v, i ,  g, and 4, two are related by definitions, namely, i = a and v = 4. 
The remaining pairs are constrained by the constitutive relation of a two- 
terminal element, three of which give us the resistor, inductor, and capacitor." 

We will use the symbols shown in Fig. 1.9 to denote a nonlinear two- 
terminal resistor, inductor, or capacitor, respectively. Note that a dark band is 
included in each symbol in order to distinguish the two terminals. Just as 
in the case of a nonbilateral two-terminal resistor, such distinction is necessary 
if the q-v or #-i characteristic is not odd symmetric. In the special case where 
the element is linear, the v-i, $ 4 ,  and q-v characteristics are odd symmetric 

Figure 1.9 Basic circuit element diagram. 

f R ( v , i , f ) = O  

Resistor 

11 A fourth nonlinear two-terminal element called the memristor is defined by the remaining 
relationship between q and b. This circuit element is described in L. 0. Chua, "Memristor-The 
Missing Circuit Element," IEEE Trans. on Circuit Theory, vol. 18, pp. 507-519, September 1971. 
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and hence remain unchanged after the two terminals are interchanged. In this 
case, we simply delete drawing the enclosing rectangle and revert to the 
standard symbol for a linear resistor, inductor, and capacitor. 

2 BASIC PROPERTIES EXHIBITED BY TIME-INVARIANT 
CAPACITORS AND INDUCTQRS 

Capacitors and inductors behave differently from resistors in many ways. The 
following typical properties illustrate some fundamental differences." 

2.1 Memory Property 

Suppose we drive the linear capacitor in Fig. l.la by a current source i(t).  The 
corresponding voltage at any time t is obtained by integrating both sides of Eq. 
(1L.la) from T = - X  to T = t. Assuming U(-=) = 0 (i.e., the capacitor has no 
initial charge when manufactured), we obtain 

Note that unlike the resistor voltage which depends on the resistor current only 
at one instant of time t ,  the above capacitor voltage depends on the entire past 
hbtory (i.e., -a < T < t )  of i(7). Hence, capacitor has memory. 

Now suppose the voltage v(t ,)  at some time t,, < t is given, then Eq. (l .  la)  
integrated from t = -2 to t becomes 

In other words, instead of specifying the entire past history, we need only 
specify v( t )  at some conveniently chosen initial time l,,. In effect, the initial 
condition u(t,) summarizes the effect of i(7) from T = -X to T = to on the 
present value of v(t). 

By duality, it follows that inductor has memory and that the inductor 
current is given by 

The "memory" in a capacitor o r  inductor is best manifested by the "dual" 
equivalent circuits shown in Fig. 2 . la  and b which asserts the following: 

I ? Unless otherwise specified, all capacitors and inductors are assumed to be time-in1 ~ r i a n t  in 
this book. 



Figure 2.1 lnitiai condition transfi>rrnation. 

Initial capacitor voltage transfor- 
mation A linear time-invariant 
capacitor with an initial voltage v,, 
is indistinguishable externally from 
a one-port made of an initially ltn- 

charged capacitor (having the same 
capacitance) in series with a battery 
of v,, volts. 

The circuits shown in Fig. 2.1~7 
are equivalent because the); are 
characterized by the same equa- 
tion, nameIy. Eq. (2.2). 

Initial inductor current transfor- 
mation A linear time-invariant in- 
ductor with an initial current i, is 
indistinguishable externally from a 
one-port made of an inductor (hav- 
ing the same inductance) with zero 
initial current in parallel with a cur- 
rent source of i, amperes. 

The circuits shown in Fig. 2. l b 
are equivalent because they are 
characterized by the same equa- 
tion, namely, Eq. (2.3). 

The memory property of capacitors and inductors has been exploited in the 
design of many practical circuits. For example, consider the "peak detector" 
circuit shown in Fig. 2.2a. Since the ideal diode current vanishes whenever 
vi,(t) 5 v,(?). it follows from Eq. (2.2) that at any time t , ,  v,(t) is equal to the 
maximum value of vi,(t) from t = -m to t = t , .  A typical waveform of v,(t) and 
vi,(t) is shown in Fig. 2.2b. In practice, this circuit is usually implemented as 
shown in Fig. 2 . 2 ~ ~  where the op-amp circuit from Fig. 3.13 of Chap. 4 is used 
to simulate an ideal diode and where the op-amp buffer from Fig. 2.1 of Chap. 
4 is used to avoid output loading effects. 

Exercise The switch S in the "track-and-hold" circuit shown in Fig. 2.3 is 
periodically open and closed every At seconds. Sketch v , ( t ) ,  and suggest a 
typical application. 



308 LINEAR AND NONLPMEAR CIRCUITS 

Figure 2.2 A peak detector circuit. 

Figure 2.3 A track-and-hold circuit. 

Equation (2.2) and Fig. 2 . l a  
are valid only when the capacitor is 
linear. To show that nonlinear 
capacitors also exhibit memory, 
note that its voltage v( t )  depends 
on the charge and by Eq. (1,2a),  

I 0" ,Off ,h, Off, on ,Off, o n , b f f ,  on, 
0 1 ' " " ' " '  2AT 4AT 6AT 8AT 

Equation (2 .3)  and Fig. 2.  l b  
are valid only when the inductor is 
linear. To show that nonlinear 
inductors also exhibit memory, 
note that its current i ( t )  depends 
on the flux and by Eq. (1.2b), 
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which in turn depends on the past which in turn depends on the past 
history of i ( ~ )  for - X  < T < t,, . history of U ( T )  for -m < I < t,. 

2.2 Continuity Property 

Consider the circuit shown in Fig. 2.4a7 where the current source is described 
by the "discontinuous" square wave shown in Fig. 2.4b. Assuming that 
v,(O) = 0 and applying Eq. (2.2). we obtain the "continuous" capacitor voltage 
waveform shown in Fig. 2 . 4 ~ .  This "smoothing" phenomenon turns out to be a 
general property shared by both capacitor voltages and inductor currents. 
More precisely, we can state this important property as follows: 

Figure 2.4 The discontinuous capacitor current waveform in ( 6 )  is smoothed out by the capacitor 
to  produce the continuous voltage waveform in (c). 

Capacitor voltage-inductor current continuity property 

(a) If the current waveform i,(t) in a linear time-invariant 
capacitor remains bounded in a closed interval [t,, t , ] ,  then 
the voltage waveform vc(t) across the capacitor is a continu- 
ous function in the open interval (t,, t,). In particular,'3 for 
any time T satisfying t, < T < t,, t',(T-) = v , ( T + ) .  

(6) If the voltage waveform vL(t) in a linear time-invariant 
inductor remains bounded in a closed interval [t,, t,], then 
the current waveform i,(t) through the inductor is a continu- 
ous function in the open interval (t,, t,). In particular, for 
any time T satisfying t, < T < t,, i,(T-) = iL(T+).  

13 We denote the left-hand limit and right-hand limit of a function f(t) at r = T by f(T-) and 
f ( T + ) ,  respectively. 
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PROOF We will prove only (a) since ( b )  follows by duality. Substituting 
t = T and t = T +  dt into Eq. (2.21, where fa < T < r, and t ,  T+ -( t , ,  
and subtracting, we get 

Since i,(r) is bounded in [t,, t,], there is a finite constant M such that 
li,(t)l< M for all t in [ t , ,  t,]. It follows that the area under the curve i , ( r )  
from T to T +  dt is at most M dt (in absolute value), which tends to zero as 
dt-Q. Hence Eq. (2.5) implies u,(T+ dt)+ v , (T)  as dt-, 0. This means 
that the waveform v,( S )  is continuous at r = T.  m 

REMARK The above continuity property does not hold if the capacitor 
current (respectiveky . inductor voltage) is unbounded. Before we illustrate 
this remark, let us first give an example showing how a capacitor current 
can become unbounded-at least in theory. 

Suppose we apply a voltage source across a l-F linear capacitor having 
the waveform shown in Fig. 2.5b. It follows from Eq. (1.la) that the 
capacitor current waveform i ,( t)  is a rectangular pulse with height equal to 
1/A and width equal to A, as shown in Fig. 2 . 5 ~ .  Note that the pulse height 
increases as A decreases. It is important to note that the area of this pulse 
is equai to 1,  independent of A,  Now in the limit where A-0, v,(t)  tends 
to the discontinuous "'unit step" function [henceforth denoted by l ( t ) ]  
shown in Fig. 2.5d, i.e., 14 

Figure 2.5 Circuit for generating a unit current impulse. 

14 The value of the unit step function l(t) at t = 0 does not matter from the ,physical point of 
view. However, sometimes it is convenient to define it to be equal to j in circuit theory. 



0 t<O 
Ifm v,(t) = l ( t>  = 
S-0 1 t>O 

T o  show that this discontinuity in the capacitor voltage does not 
contradict the preceding continuity property, note that the corresponding 
capacitor current is unbounded in this case, namely, 

lim i,.(t) = X at t  = 0  
l-4I 12.7) 

Since this waveform is of great importance in engineering analysis, let us 
pause to study its properties carefully. 

Impulse (delta function) As 3- 0, the height of the "rectangular" pulse in Fig. 
2 . 5 ~  tends to infinity at t  = 0, and to zero elsewhere, while the area under the 
pulse remains unchanged, i.e., A = l. This limiting waveform is called an 
impulse and will be denoted by 6jr). 

More precisely, an unbounded signal S ( t )  is called a unit impulse'\ff it 
satisfies the following rwo properties: 

singular t = 0 ( 2 . 8 ~ )  
1. 6 ( t )  A 

{O t#O (2.8b) 

2 .  /If, 6 ( t )  dt = l  for any E ]  2 0 and E ,  > 0 (2 .8~)  

Since the unit impulse is unbounded, we will denote it symbolically by a "bold" 
arrowhead as shown in Fig. 2.5e. 

Now, if E # l and C # l  in Fig. 2.5, the above discussion still holds 
provided the area A of the impulse is changed from A = 1 to A = CE. Note 
that this situation can be simulated by connecting an E-V battery across a C-F 
capacitor at t  = 0. The resulting current waveform would then be an impulse 
with an area equal to A = CE. '~  

Now that we have demonstrated how a current impulse can be generated, 
let us drive the circuit in Fig. 2 . 4 ~  with a current impulse of area A = 10 
applied at t = 5 S, as shown in Fig. 2 . 6 ~ .  It follows from Eq. (2.8) that this 
impulse can be denoted by 

15 In physics, the unit impulse is called a delta function. Using the theory of distribution in 
advanced mathematics, the unit impulse can be rigorously defined as a "generalized" function 
imbued with most of the standard properties of a function. In particular, most of the time S(t)  can 
be manipulated like an ordinary function. 

16 In practice, only a very large (but finite) current pulse is actually observed because all 
physical batteries have a small but nonzero internal resistance (recall Fig. 2.4a of Chap. 2). Given 
the value of R ,  we will be able to calculate the exact current waveform i,(t) in Sec. 3.1. 
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Substituting is([) into Eq. (2.2) with v(Q) = 0 we obtain 

A 
Defining a new drammy variable x = T - 5 and using Eq. (2.83, we obtain 

0 6 < 5 [in view of Eq. (2.8b)j 
2 t > 5 [in view of Eq. (2.8c)J 

(2.11)  

The resulting capacitor voltage waveform is shown in Fig. 2.6b .  Note that it is 
discontinuous at t = 5 S. 

Exercise Prove that whenever 
the current waveform i , ( t )  en- 
tering a C-F linear time- 
invariant capacitor contains an 
impulse of area A at t = to ,  the 
associated capacitor voltage 
waveform u,(t) will change ab- 
ruptly at to by an amount equal 
to AIC. 

Exercise Prove that whenever 
the voltage waveform v,(t) a- 
cross an - linear time- 
invariant inductor contains an 
impulse of area A at t = to, the 
associated inductor current 
waveform i ,  ( t )  will change ab- 
ruptly at t ,  by an amount equal 
to  AIL. 

2.3 Lossless Property 

Since p( t )  = ~ ( t )  i(t) is the instantaneous power in watts entering a two-terminal 
element at any time t, the total energy w( t , ,  t , )  in joules entering the element 
during any time interval Et,, t,] is given by 

Area A =  10 

/ .  "S Figure 2.6 The voltage waveform u,(t) IS discon- 
I tinuous at t = 5 S. 
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w( f ,  , f 2  ) = 1; ~ ( f )  i ( f )  di joules (2.12) 

For example, the total energy w,(t,, t,) entering a linear resistor with resis- 
tance R > 0 is given by 

This energy is dissipated in the form of heat and is lost as far as the circuit is 
concerned. Such an element is therefore said to be lossy. 

In general, the energy wft,, t , )  entering a two-terminal element during 
Etl, t2]  depends on the entire voltage waveform v( t )  or current waveform i(r) 
over the entire interval [ t ,  , t,]. For example, if we drive the 10-fl resistor in 
Fig. 2.7a by the waveforms shown in Fig. 2.7b and c, respectively, the energy 
dissipated during the interval [ S ,  $1 is given respectively by 

314  

W , ( L  , , z , ) = 10 L14 (2 sin 27rt)' dt = 10.00 joules (2.14) 

Note that W ,  ( $ , i) # W,(  $ , ) even though the resistor currents i ,  ( t ]  and i z ( t ) .  
and hence also their voltages v,(t)  and v,( t ) ,  are identical at the end points. 
namely, i,($) = i,($) = 2~ and i,(i) = i , ( i )  = -2 A. 

In sharp contrast to the above typical observations, the following calcu- 
lation shows that 

Figure 2.7 Resistor driven by two distinct current waveforms whose values coincide at t ,  = ! s and 
I ,  = t S.  
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The energy w,( t , ,  t,) entering 
a charge-controlled capacitor dur- 
ing any time intervaI It,, E,] is inde- 
pendent of the capacitor vslsage or 
charge waveforms: It is uniquely 
determined by the capacitor charge 
at the end points, namely by qQt,) 
and q( t2 ) .  Indeed, 

The energy w,(s , ,  C,) entering 
a flux-contraPled inductor during 
any time interval [ f , ,  E,] is iindepen- 
dent of the inductor current or flux 
waveforms: It is uniquely deter- 
mined by the inductor flux at the 
end points, namely, by + ( l , )  and 
4(t, 1. Indeed, 

It foliows from Eq. (2.26a) that It folPows from Eq. (2.16b) that 

where we switched from t to q as 
ii 

where we switched from r tf 4 as 
the dummy variable, and q,  = q ( t l )  the dummy varaible, and 4, = 4(r,) 

A 
and q2 = q( t z ) .  and #, #( t2) .  

Example For a C-F linear Example For an L-H linear in- 
capacitor, we have C(q)  = qiC ductor, we have 44) = $ t L 
and hence Eq. (2.17a) reduces and hence Eq. (2.17b) reduces 
to to: 

(2.18a) (2.18 b )  
where where 

A A A 
V, = v ( t , )  and V, = v( t , ) .  I i t  and I, = i(t ,) .  

Exercises 
1. Derive Eq. ( 2 . 1 8 ~ )  directly by substituting Eq. ( 1 . 1 ~ )  into E q .  (2 .12) .  
2. Derive Eq. (2.18b) directly by substituting Eq. (1.1 b )  into Eq. (2.12). 
3.  Give an example showing that Eq. (2.17a) does not hold if the capacitor 
is time-varying . 
4. Give an exampIe showing that Eq. (2.17b) does not hold if the inductor 
is time-varying. 1 
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Equation (2.17a) shows that 
the energy w,(t,, t,) entering a 
charge-controlled capacitor is equal 
to the shaded area shown in Fig. 
2.8a. Any waveform pair 
[U( - ), q( - )] taking the values 
[ ~ ( t l ) ,  q(t,) j  at f ,  and [v(t , ) -  9(t,)l 
at t, will give the same w,(t,, t?). 

Now suppose v(t) and q(t) are 
periodic with period T =  t z - f , .  

Then q(t,) = q( t ,  + T )  = q( t , ) .  and 
hence wc(t,, t,) = 0. Kn this case, 
P, and P, in Fig. 2.8a coincide, 
thereby resulting in a zero area. 

This observation can be surn- 
marized as follows: Urzder periodic 
excitation, the total energy entering 
a charge-conrrolled capacitor is 
zero over any period. 

Equation (2.17b) shows that 
the energy W , ( ! , ,  t,) entering a 
flux-controlled inductor is equal 
to the shaded area shown in Fig. 
2.8b. Any waveform pair 
f i ( . ) ,  #( )] taking the values 
[ i(t l) ,  +(t,>l at l ,  and [i(t,), 4(t,!l 
at t, will give the same w,ft,, t,). 

Now suppose i(t) and 4(t) are 
periodic with period T = t, - t ,  . 
Then 4(t,) = +(t, + T) = +(t,), and 
hence W,(?, , f,) = 0. In this case, 
P, and P, in Fig. 2.8b coincide, 
thereby resulting in a zero area. 

This observation can be sum- 
marized as follows: Under periodic 
excitation, the total energy entering 
a flux-controlled inductor is zero 
over any period. 

It follows from the above observation that the instantaneous power 
entering any charge-controlled capacitor or flux-controlled inductor is positive 
only during parts of each cycle, and must necessarily become negative 
elsewhere in order for the net area over each cycle to cancel out. Hence, unlike 
resistors, the power entering the capacitor or inductor is not dissipated. 
Rather, energy is stored during parts of each cycle and is "spit" out during the 
remaining part of the cycle. Such elements are therefore said to be lossless. 

One immediate consequence of this iossless property is that in a periodic 
regime where u(t) = v(t + T) and i(t) = i(t + T )  for all t, the voltage waveform 
V([) and current waveform i(r) associated with any capacitor or inductor must 
necessarily cross the time axis at different instants of time. Otherwise, the 
integrand in Eq. (2.12) would always be positive, or negative, for all t ,  thereby 
implying w(t,, t , )  # 0. 

U i 

Capacitor lnductor 
characteristic characteristic 

4 

(a )  (b )  

Figure 2.8 Geometric interpretation of w, ( t , ,  t,) and w, ( t , ,  t , ) .  



For a linear capacitor or inductor operating in a sinusoidat steady state, 
this distinct '"zero-crossing property" manifests itself as a 90" phase shqt 
between the voltage and current, respectively. For example, if we drive the 
linear capacitor in Fig. I .  l a  with a sinusoidal voatage vQt) = E sin of as shown 
in Fig. 2.9a, then the corresponding current it[) = wCEcos o t  leads the 
voltage by 90" as shown in Fig. 2.96. The locus 2 ( u ,  i) in the v-i plane is 
therefore an eElipse as shown in Fig. 2 . 9 ~ .  Note that this Iocus is frequency 
dependent. Indeed, by adjusting w from w = Q  to w = +X, the locus can be 
made to pass through any point lying within the vertical strip -E < v < E. 
Hence, it does not make sense to describe a capacitor, or an inductor, by a 
characteristic in the v-i plane. 

2.4 Energy Stored in a Linear Time-Invariant Capacitor or lnductor 

Consider a C-F linear capacitor having an initial voltage u ( t , )  = V and an initial 
charge q ( t , )  = Q = CV at t = t , .  Let the capacitor be connected to an external 
circuit, as shown in Fig 2.10a, at t = t , .  The energy entering the capacitor 
during [ t ,  , t,] is given by Eq. (2.17a): 

1 
wc( t l .  t,) = - [q2( t2)  - = 1 c [ v Z ( t 2 )  - v2] 

2C (2.19) 

Note that whenever q(t ,)  < Q, or v(t,) < V, then w,(t,, t,) < 0. This can also 
be seen in Fig. 2.10b where wc( t , ,  t,) is negative because we are integrating 
from right (P,) to left (P,) in the first quadrant. Note that w,(t,, t,) < 0 means 
energy is actually being spit out of the capacitor and returned to the external 
circuit N. It follows from Eq. (2.19) and Fig. 2.10b that w,( t , ,  t,) is most 
negative when q(t,) = u(t,) = 0,  whereupon wc(t , ,  t,) = - ~ ' 1 2 ~  = - CV'. 

delivered to 

( b )  ( c )  

Figure 2.9 Voltage and current waveforms in a linear capacitor. 
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External 4 

to1 (b  i 

Since this represents the maximum amount of energy that could be extracted 
from the capacitor, it is natural to say that an energy equal to 

is stored in a linear capacitor C having an initial voltage v( t , )  = V or initial 
charge q ( t , )  = Q = 0'. 

By duality, an energy equal to 

is stored in a linear inductor L having an initial current i(t,) = I or initial flux 
4 ( t , )  = c$ = LI. 

2.5 Energy Stored in a Nonlinear Time-Invariant Capacitor or 
~nductor l' 

Following the same reasoning for the linear case, we define the energy stored in 
a nonlinear capacitor or inductor to be equal to the magnitude of the maximum 
energy that can be extracted from the element at a given initial condition. Since 
the g-v (or 4 - i )  characteristic need not pass through the origin (Fig. 2 . 1 1 ~ )  and 

U 

$ v = sin q 

(0 1 ( b )  

Figure 2.11 Examples of nonlinear q-U characteristics. 

17 May be omitted without loss of continuity. 
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can have several zero crossings (Fig. 2.11b) or infinitely many zero crossings 
(Fig. 2. I lc), special care is needed to derive a formula for stored energy in the 
nonlinear case. 

Suppose it is possible to find a point q, on the g-v characteristic such that 

Now given any initial charge q(r , )  = Q ,  the energy entering a charge-controlled 
capacitor during [t,, t ,]  is given by Eq. ( 2 . 1 7 ~ ) :  

It folIows from Eq. (2.22) that the first term is negative whiIe the second 
term is positive if q(t,) # q* in Eq. (2 .23) .  Consequently, w,(t,, t,) is most 
negative when we choose q(t,) = q,, and the maximum energy that can be 
extracted is equal to w,(t,, tL j  = Jz* C ( q )  dq < 0. It follows from the lossless 
property that the energy stored in a charge-controlled capacitor having an initial 
charge q ( t , )  = Q is equal to 

where q* is any point satisfying Eq.  (2.22) .  Note that %,(Q) r 0 for all Q in 
view of Eq. (2 .22) .  

Since 8,(q,) = 0 ,  it follows that no energy is stored when the initial 
charge is equal to g,  and the capacitor is therefore said to be initially relaxed. 
Consequently, any point q ,  satisfying Eq. (2.22)  is called a relaxation point. 

For the q-v characteristic shown in Fig. 2.11, we find q, to be the only 
relaxation point in Fig. 2.11a and q, to be the only relaxation point in Fig. 
2.11 b. On the other hand, all points q = -C k 2 ~ ,  k = 0, 1 , 2 ,  . . . , qualify as 
relaxation points in Fig. 2 . 1 1 ~  because each of these points satisfies Eq. (2.22).  

By duality, the energy stored in a flux-coGtrolled inductor having an initial 
flux 4 ( t , )  = @ is equal to 

where 4+ is any relaxation point, namely, 
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! i ( # ) d 8 ? 0  for all - m < * < m  
a. 

Special case In the special case where the 

g-U characteristic passes through 4-i characteristic passes through 
the origin and satisfies the origin and satisfies 

the origin is a relaxation point and the origin is a relaxation point and 
the stored energy is simpty given the stored energy is simply given 

by by 

In this case, gC(Q)  is equal to the In this case, g,(@) is equal to the 
net area under the q-v characteris- net area under the 4-i characteris- 
tic from q = 0 to q = Q, as shown tic from 4 = 0 to 4 = a, as shown 
in Fig. 2 . 1 2 ~ .  in Fig. 2.12b. 

REMARK The results presented throughout Sec. 2 are valid only if the 
capacitors and inductors are time-invariant. When the element is time- 
varying, additional energy is contributed by an external energy source 
which causes the time variation. 

Figure 2.12 The net area under the curve is equal numerically to the stored energy. 
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Exercises 
1. Verify that out of the three zero crossings in Fig. 2.11 b, only q,  qualifies 
as a relaxation point. 
2. Find all relaxation paints associated with the Josephson junction defined 
earlier by Eq. (1.9b). 
3. Prove that if a nonlinear capacitor or inductor has more than one 
relaxation point, then each point will give the same stored energy %?,(Q) 
or  

3 FIRST-ORDER LINEAR CIRCUITS 

Circuits made of one capacitor (or one inductor), resistors, and independent 
sources are called first-order circuirs. Note that "resistor" is understood in the 
broad sense: It includes controlled sources, gyrators, ideal transformers, etc. 

In this section, we study first-order circuits made of linear time-invariant 
elements and independent sources. Any such circuit can be redrawn as shown 
in either Fig. 3. l a  or b. where the one-port N is assumed to include all other 
elements (e.g., independent sources, resistors, controlled sources, gyrators, 
ideal transformers, etc.)." 

Applying the ThPvenin-Norton equivalent one-port theorem from Chap. 5 ,  
we can, in most instances, replace N by the equivalent circuit shown in Fig. 
3.2a and b, respectively. 

(Q (b ) 

Figure 3.1 (a) First-order RC circuit. (b) First-order RL circuit. 

( 0 )  (6 

Figure 3.2 Equivalent first-order circuits. 

I8 Without loss of generality, we draw v, and i, as shown in Fig. 3 . lb  so that i, = i (the dual of 
v,. = v in Fig. 3 . 1 ~ ) .  This will guarantee the state equation (3.2b) will come out to be the dual of 
Eq. (3.2a). I 
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Applying KVL we obtain Applying KCL we obtain 

R,,i,- + v ,  = v,,(r) (3 .  l a )  CeqvL + iL = iSC (f) (3. l b) 

Substituting i, = Cc, and solving 
. 

Sub:tituting v, = Li, and solving 
for G,, we obtain for i,, we obtain 

When written in the above staodard form, this first-order linear differential 
equation is called a state eqrlntion and the variable v ,  (respectively, i,) is called 
a state variable. 

Given any iniiial condition 
v,(t,,) at any initial time t , ,  our 
objective is to find the solution 
u,(t) for all t z to. We will show 
that v,(t) depends only on the ini- 
tial condition vc(to)  and the 
waveform v,,(. ) over [ t o ,  t ] .  

Once the solution v,(.)  is 
found, we can apply the substi- 
tution theorem from Chap. 5 and 
replace the capacitor in Fig. 3 . l a  
by a voltage source v,(t). 

Given any initial condition 
i,(t,,) at any initiat time r,,. our 
objective is to find the solution 
i, ( t )  for all t r to. We will show 
that i,(t) depends only on the ini- 
tial condition ( and the 
waveform is,(. ) over [to, t ] .  

Once the solution l , ( . )  is 
found, we can apply the substi- 
tution theorem from Chap. 5 and 
replace the inductor in Fig. 3.1 b 
by a current source i,(t). 

The resulting equivalent circuit, being resistive, can then be solved using 
techniques developed in the preceding chapters. 

In Sec. 3.1 we show that the solution of any first-order linear circuit can be 
found by inspection, provided N contains only dc sources. By repeated 
application of this "inspection method," Sec. 3.2 shows how the solution can 
be easily found if N contains only piecewise-constant sources. This method is 
then applied in Sec. 3.3 for finding the solution--called the impulse response- 
when the circuit is driven by an impulse 6 ( t ) .  Finally, Sec. 3.4 gives an explicit 
integration formuia for finding solutions under arbitrary excitations. 

3.1 Circuits Driven by DC Sources 

When N contains only dc sources, v,,(t) = v,, and i,,(t) = is ,  are con- 
stants in Fig. 3.2 and in Eq. (3.2). Let us rewrite Eqs. (3.2a) and (3 .2b )  as 
follows: 



State 
equation 

where where 
.l A 

X = .U(. 
X = il. 

1 
( 3 . 4a )  .l x ( t J  = v,,(- X ( [ , )  = is,. ( 3 . 4 b )  

.l 
T = R,,,C A 

T = GCq L 

for the RC circuit. for the RL circuit. 

Given any initial condition X =  x( t , , )  at t = t,,, Eq. ( 3 . 3 )  has a unique 
solution l y  

which holds for all times t, i.e., - X  < t  < =. To verify that this is indeed the 
solution, simply substitute Eq. ( 3 . 5 )  into Eq. ( 3 . 3 )  and show that both sides 
are identical. Observe that at t  = t,, both sides of Eq. ( 3 . 5 )  reduce to 
X([,) - x( t , ) .  Note also that the solution given by Eq. (3 .5 )  is valid whether T is 
positive or negative. 

The solution ( 3 . 5 )  is determined by only three parameters: x(t , , ) ,  x ( t , ) ,  
and 7. We cail them initial state, equilibrium state, and time constant, respective- 
l y .  To see why X ( [ , )  is called the equifibrium state, note that if x(t , ,)  = X ( ? , ) ,  

then Eq.  ( 3 . 3 )  gives .?(to) = 0 and thus x ( t )  = x(t , )  for all t .  Hence the circuit 
remains "motioniess," or in equilibrium. 

Since the "inspection method" to be developed in this section depends 
crucially on the ability to sketch the exponential waveform quickly, the 
following properties are extremely useful. 

A. Properties of exponential waveforms Depending on whether T is positive or 
negative, the exponential waveform in Eq. ( 3 . 5 )  tends either to a constant or 
to infinity, as the time 1 tends to infinity. Hence, it is convenient to consider 
these two cases separately. 

r > 0 (Stable case) When r > 0, Eq. (3.5) shows that x( t )  - x(t,), i.e., the 
distance between the present state and the equilibrium state x( t , ) ,  decreases 
exponentially: For all initial states, the solution x ( t )  is sucked into the 
equilibrium and Ix(t) - .r(t,)l decreases exponentially with a time constant T. 

14 We write x[ t , )  on the left side to make it easier to remember this important formula. 



The solution (3.5) for T > 0 is sketched in Fig. 3.3 for two different initial 
states , f(t , ,)  and X ( ( , , )  for t r,,. Observe that because the time constant r is 
positive , 

Thus, when T > O ,  we say the equilibrium state xft,) is stable because any 
initial deviation x(t,,) - x ( t , )  decays exponentially and x(t)  --, x(t,) as t X. 

The exponential waveforms in Fig. 3.3 can be accurately sketched using the 
following observations: 

1. The tangent at t = t,, passes through the point it,,, x(t, ,)]  and the point 
If,, + 7 7  x(f,)l. 

2. After one time constant T, the distance between x(t)  and x(t,) decreases 
approximately by 63 percent of the initial distance Ix(t,,) - x(t,)l.  

3. After five time constants, x(t)  practically attains the steady-state value x(r , ) .  
(Indeed, e-5  = 0.007.) 

Example l (Op-amp voltage follower: Stable configuration) Consider the 
op-amp circuit shown in Fig. 3.4a. Using the ideal op-amp model, this 
circuit was analyzed earlier in Sec. 2.2 (Fig. 2.1) of Chap. 4. Assuming the 
switch is closed at t = 0, we found u,(t) = v,,(t) = 10 V for t r 0. 

In practice, the output is observed to reach the 10-V solution after a 
small but finite time. In order to predict the transient behavior before the 

Figure 3.3 The solution tends to the equilibrium state x(t,) as t + m  when the time constant r is 
positive. 
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Figure 3.4 Transient behavior of op-amp voltage follower circuit. 

equilibrium is reached, let us replace the op amp in Fig. 3.4a by the 
dynamic circuit model shown in Fig. 3.4b.20 Ta analyze this first-order 
circuit, we extract the capacitor and replace the remaining circuit by its 
ThCvenin equivalent as shown in Fig. 3.4c, where 

R R 
Re' = A+l ;i since A S= 1 

- l OA 
UOC - m = 10 since A B 1 (3.8) 

Assuming A = 10: R = 100 a, and C = 3 F, we obtain R,, = I o - ~  fl and 
v,, = 10 V. Consequently, the time constant and equilibrium state are 
given respectively by T = R,,C = 3 ms and v,(t,) = v,, = 10 V. Assuming 
the capacitor is initially uncharged, i.e., v,(O) = 0, the resulting output 
voltage can be easily sketched as shown in Fig. 3.4d. Note that after five 
time constants or 15 ms, the output is practically equal to 10 V. 

20 A more realistic dynamic op-amp circuit model for high-frequency applications would require 
several linear capacitors. The one-capacitor model chosen in Fig. 3.4, though not valid in general, 
does predict the transient behavior correctly for the voltage follower circuit. \, 



T < 0 (Unstable ease) When T < 0, Eq. (3.5) shows that the quantity x ( t )  - 
x(t , )  increases exponentially for all initial states, i.e., the solution x ( t )  diverges 
from the equilibrium, and x ( t )  - x ( t , )  increases exponentially with a time 
constant T. 

The solution (3.5) for T < 0 is sketched in Fig, 3.5 for two different initial 
states x(t , , )  and i ( t , , ) .  

Observe that, since the time constant T is negative, as t - m ,  x(t)--tr if 
X($, > > x( t ,  ) , and ~ ( t )  + - X  if x(t, ,) < x( t , ) .  

Thus, when 7 < 0. we say the equilibrium state X(!,) is unstable because 
any initial deviation x( t , , )  - x(t,) grows exponentially with time and I x ( t ) + z  
as t + x .  

However, if we run time backward, then 

Consequently, x( t , )  can be interpreted as a virtual equilibrium state. 
The exponential waveform in Fig. 3.5 can be accurately sketched using the 

following observations: 

1. The tangent at t = to passes through the point [ t , , ,  x ( t , , ) ]  and the point 
[to - 171. x( t=) l -  

2. At t = to  + 171, the distance Ix(t, + (71) - x(t,)I is approximately 1.72 times 
the initial distance lx(t,,) - x(t ,) l .  

Solution with initial state 
X([,) > x(t , )  tends to + 

Solution with initial state 
.r(fo) <x(t , )  tends to  - m I - 

Figure 3.5 The solution tends to the "virtual" equilibrium state x ( r , )  as t - t  -m when the time 
constant T is negative. 



Example 2 (Op-amp voltage follower: Unstable ctprtfiguratiion) The op-amp 
circuit in Fig. 3.6a is identical to that of Fig. 3.4a except for an interchange 
between the inverting C- 31 and the noninverting (+) terminals. Using the 
ideal op-amp model in the linear region, we would obtain exactly the same 
answer as before, namely, v,, = 10 V for t 2 8, provided E,,, > 10 Let us 
see what happens if the op amp is replaced by the dynamic model adopted 
earIier in Fig. 3.43. The resulting circuit shown in Fig. 3.6b resembles that 
of Fig. 3.4b except for an important difference: The polarity of v, is now 
reversed. The parameters in the Thkvenin equivalent circuit now become 

R R J i e q = - - = - -  
A 

since A S= l 
A - l  

10A --- 
' ~ c  - A - 1 - 10 since A S 1 

Assuming the same parameter vafues as in Example 1, we obtain R = 
:'" -IQ-' and v,, = 10 V. Consequently, the time constant and equilibr~um 

state are given respectively by T ---- -3ms and v,,(t,)= 10 V. Assuming 
v,(O) = U  as in Example 1, the resulting output voltage can be easily 
sketched as shown in Fig. 3.6d. 

Figure 3.6 Unstable transient behavior of op-amp voltage follower circuit. \ 
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Note that the solution differs drastically from that of Fig. 3.4d: It tends 
to -X! Of course, in practice, when v,(t) decreases to -E, , , ,  the op-am:, 
negative saturation voltage, the solution would remain constant at -E,,,. 
Clearly, this circuit would not function as a voltage follower in practice. 

B. Efapsed time formula We will often need to calculate the time interval 
between two prescribed points on an exponential waveform. For example. to 
obtain the actual solution waveform for the circuit in Fig. 3.6, we need to 
calculate the time that elapsed when v,, decreases from v,, = O  to U ,  = -15 V 
(assuming E,d, = 15 V) in Fig. 3-66. 

Given any two points [ft,, x(t,)) and (t,, x(t,))j on an exponential wave- 
form (see, e.g., Figs. 3.3 and 3.5). the time it takes to go from X([,) to x(t,) is 
given by 

Efapsed 
time formula 

To derive Eq. (3.13). let t = ti and t = t, in Eq. ( 3 . 9 ,  respectively: 

Dividing Eq. (3.13) by Eq. (3.14) and taking the logarithm on both sides. we 
obtain Eq. (3.12). 

REMARK The above derivation does not depend on whether T is positive or 
negative. 

C. Inspection method (First-order linear time-invariant circuits driven by dc 
sources) Consider first the first-order RC circuit in Fig. 3. la  where all indepen- 
dent sources inside N are dc sources. Equation (3.5) gives us the voltage 
waveform across the capacitor, namely, 

Suppose we replace the capacitor by a voltage source defined by Eq. (3.15). 
Assuming the resulting resistive circuit is uniquely solvable, we can apply the 
substitution theorem to conclude that the solution inside N of the resistive 
circuit is identical to that of the first-order RC circuit. 

Let vj, denote the voltage across any pair of nodes, say Q and @ and 
assume that N contains cu independent dc voltage sources V,,, I/,,, . . . , Vsa and 



p independent dc current sources I,, , fs,, . . . , I sp .  Applying the superposition 
theorem from Chap. 5 ,  we know the solution vjk(t)  is given by an expression of 
the form 

where &, Hi,  and K, are constatants (which depend on ekment values and 
circuit configuration). Substituting Eq. (3.15) for v,($) in Eq. (3.16) and 
rearranging terms, we obtain 

where 

and 

Since Eq. (3.17) has exactly the same form as Eq. (3.51, and since nodes @ 
and @ are arbitrary, we conclude that: 

The voltage ujk(t)  across any pair of nodes in a first-order RC circuit driven 
by dc sources is an exponential waveform having the same time constant r as that 
of vc( t ) .  

By the same reasoning, we conclude that: 
The current i j ( t )  in any branch j of a first-order RC circuit driven by dc 

sources is an exponential waveform having the same time constant T as that of 
vc(t) .  

It follows from duality that the voltage u,,(t) across any pair of nodes, or the 
current i j( t)  in any branch j of a first-order RL circuit driven by dc sources is an 
exponential waveform having the same time constant T as that of i,(t). 

The above "exponential solution waveform" property, of course, assumes 
that the first-order circuit is not degenerate, i.e., that it is uniquely solvable and 
that 0 < 171 < 03. 

It is important to remember that all voltage and current waveforms in a 
given first-order circuit have the same time constant T as defined in Eq. (3.4). 

Moreover, as we approach the equilibrium, i.e., when t-+ +a ( i f  T > 0 )  or 
t+ -m (if T < O ) ,  the capacitor current and the inductor voltage.both tend to 
zero. This follows from Figs. 3.3 and 3.5, i, = Cc,, and v, = Li,. 

Since an exponential waveform is uniquely determined by only three 
parameters [initial state x(t,), equilibrium state x(t,), and time con$tant T], the 
following "inspection method" can be used to find the voltage solution vjk( t )  



across any pair of nodes Q and @ or the current solution i,(t) in any branch j. 
in any uniquely solvable linear first-order circuit driven by dc sources: 

RC circuit: given v,(t,). RL circuit: given i,(t,,). 

1. Replace the capacitor by a 1. Replace the inductor by a 
dc voltage source with a dc current source with a 
terminal voltage equal to terminal current equal to 
v,(r,). Label the voltage i ,  (l,,). Label the voltage 
across node-pair 0, @ as across node-pair 0. @ as 
vik(to) and the current i, as u,,(f,,) and the current i, as 
i ( t  ). Solve the resulting i , ( t ,) .  Solve the resulting 
0 
resistive circuit for v,,(t,,) resistive circuit for v,,(r,,) 
or i,ft,). Or i , ( t ~ ) .  

2. Replace the capacitor by 2. Replace the inductor by a 
any open circuit. Label the short circuit. Label the vol- 
voltage across node-pair tage across node-pair 0, 
0, @ as u,,(t,) and the @ as u,,(t,) and the cur- 
current i, as i,(t,). Solve rent i, as i , ( t , ) .  Solve for 
for v j k ( t x )  or i , ( t x ) .  V,&) Or q t , ) .  

3. Find the Thivenin equiva- 3. Find the Norton equiva- 
lent circuit of N. Calculate lent circuit of N. Calculate 
the time constant T = the time constant T = 

ReqC. GeqL. 
4. If O <  I T ]  < X ,  use the 4. If O <  ( T I  < X ,  use the 

above three parameters to above three parameters to 
sketch the exponential so- sketch the exponential so- 
lution waveform. lution waveform. 

REMARKS 
1. The above inspection method eliminates the usual step of writing the 
differential equation: It reduces each step to resistive circuit calculations. 
2. The above method is valid only if the circuit is uniquely solvable. For 
example, if the one-port N in Fig. 3.1 does not have a Thivenin and 
Norton equivalent circuit, it is not uniquely solvable. 
3. The above method assumes the circuit is not degenerate in the sense 
that 0 <  IT^ <m. This means that Re, f 0 and is finite in Fig. 3.2a, and that 
G,, # O  and is finite in Fig. 3.2b. 

Circuits Driven by Piecewise-Constant Signals 

Consider next the case where the independent sources in N of Fig. 3.1 are 
piecewise-constant for t > to. This means that the semi-infinite time interval 
to 5 t < can be partitioned into subintervals [ t j ,  t j+ , ) ,  j = 1 ,2 ,  . . . , such that 
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all sources assume a constant value during each subinterval. Hence, we can 
analyze the circuit as a sequence of first-order circuits driven by dc sources, 
each one analyzed separately by the inspection method. Since the circuit 
remains unchanged except for the sources, the time constant T remains un- 
changed throughout the analysis. 

The initial state xl(t,,) and equilibrium state x(t,) will of course vary from 
one subinterval to another. Although the same procedure holds in the deter- 
mination of x( f , ) ,  one must be careful in calculating the initial value at the 
beginning of each subinterval t j  because at least one source changes its value 
discontinslous!y at each boundary time tj between two consecutive subintervals. 
In general, X(?,-)  # X([ ,+ ) ,  where the - and + denote the limit of x(t )  as t+  t, 
from the left aad from the right, respectively. The initial value to be used in the 
calculation during the subinterval [$, tj+ ,) is X($+). 

Although in general both vi,(t) and i j ( t )  can jump, the "continuity 
property" in Sec. 2.2 guarantees that in the usual case where the capacitor 
current (respectively, inductor voltage) waveform is bounded, the capacitor 
voltage (respectively, inductor current) waveform is a continuous function of 
time and therefore cannot jump. This property is the key to finding the 
solution by inspection, as illustrated in the following examples. 

Example 1 Consider the R C  circuit shown in Fig. 3 . 7 ~ :  v , ( . )  is given by 
Fig. 3 . 7 ~  and u,(O) = 0. Our objective is to find i,(t), v , ( t ) ,  and v,(t) for 

( d )  

Figure 3.7 Solution waveforms for RC circuit. Here, T denotes the time comran?of the expo- 
nential. 
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t 1 0 by inspection. Since v,(O) = 0 and v,(t) = 0 for t r 0, it follows that 
ic(t> = vc(t)  = VR(tj = 0 for t S 0. 

The solution waveforms for t > 0 consists of exponentials with a time 
constant 7 = RC. At t = 0+,  using the continuity property, we have 
vc(O-t-) = vc(O-) = 0. Therefore, v,(O+) = v,(O+) - vc(O+) = E and 
ic(O*) = v,(O+)IR = EIR. To find the equilibrium state, we open the 
capacitor and find t,(t,) = 0,  vc(t,) = E, and v,(t,) = 0. 

These three pieces of information allow us to sketch i,(t), v,(t), and 
v,( t )  for t 2 0  as shown in Fig. 3.7b, c, and d, respectively. Note that 
i,(t) = C dvc(t) ldt and v,(t) + v,(t) = E for E 2 0, as they should. Observe 
also that whereas v,([) is discontinuous at t = 0, v,(t) is continuous for all 
t ,  as expected. 

REMARKS 
1. The circuit in Fig. 3.7 is often used to model the situation where a dc 
voltage source is suddenly connected across a resistive circuit which 
normally draws a zero-input current. The linear capacitor in this case is 
used to model the small parasitic capacitance between the connecting 
wires. Without this capacitor, the input voltage would be identical to 
v,(t). However, in practice, a "transient" is always observed and the circuit 
in Fig. 3.7a represents a more realistic situation. In this case, the time 
constant T gives a measure of how "fast" the circuit can respond to a step 
input. Such a measure is of crucial importance in the design of high-speed 
circuits, say in computers, measuring equipment, etc. 
2. Since the term time constant is meaningful only for first-order circuits, a 
more general measure of "response speed" called the rise time is used in 
specifying practical equipments. 

The rise time t ,  is defined as the time it takes the output waveform to rise 
from 10 percent to 90 percent of the steady-state value after application of a 
step input. 

For first-order circuits, the following simple relationship between t ,  and T 
follows directly from Eq. (3.12): 

Rise 
time 

Example 2 Consider the RL circuit shown in Fig. 3.8a, driven by a 
periodic square-wave current source in Fig. 3.8b. Our objective is to find 
i,(t) through the resistor when (a) R = 10 k a ,  L = 1 m H  and (b) R = 1 kR, 
L = 10mH. 



332 LINEAR AND NONLINEAR CIRCUITS 

i,, mA 

Figure 3.8 (a )  RL circuit. (6 )  Input current waveform with 6, = l @S and 6, = 3 f i s .  (c) Output 
current waveform when 7.&8,. ( d )  Output current waveform when 7 9  6,. 

( a )  Small time constant case: 7 = GL = LIR = 0.1 PS.  Since T 4 6, = 107, 
the exponential waveform solution in each subinterval of width S ,  or 6, will 
have essentially reached its steady state and we only need to calculate i ,(t) 
over one period. In other words, the solution is periodic for all practical 
purposes. 

Since i , ( t )  = O  for t SO, the inductor is in equilibrium and can be 
replaced by a short circuit at t = 0- so that i,(O+) = i , ( O - )  = 0. Hence 
i ,(O+) = i,(O+) - i , ( O + )  = 10 - 0 = 10 mA. 

To find io(t,) for the circuit during the subinterval [0, ar), we replace 
the inductor by a short circuit and obtain i,(t,) = 10 mA and, io(t , )  = 0. 
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At t = 6, = 1 PS, iL(S1+) = iL(8,-) = 10 mA. Hence i,(S, +) = 
i,(6,+) - iL(6,+) = -5 - 10 = -15 mA. Hence i, jumps at t = 6, from 0 to 
- 15 mA. 

To find i,(t,) for the circuit during the subinterval [S,, S ,  + S,), we 
replace the inductor by a short circuit again and obtain io(t,) = 0. 

At t = 6, + 6, = 4 ps ,  i,(t) jumps again from 0 to 15mA, and the 
solution repeats itself thereafter, as shown in Fig. 3 . 8 ~ .  

( b )  Large time constant case: T = 10 P S .  Since T S 6, = 0.17, the exponen- 
tial waveform does not have enough time to reach a steady state during 
each subinterval. Consequently, the solution io(t) is not periodic and we 
will have to partition 0 r t < c 0  into infinitely many subintervals [O, S,), 
[a,, 6, + S,), [a, -t 6,, 28, + S,), . . . We will see, however, that io(t) will 
tend to a periodic waveform after a few periods. 

Starting at t = 0 as in (a), we find i,(O+) = 10 mA and io(t,) = 0. The 
exponential solution is drawn in a solid line during 0 S t < 6, and in a 
dotted line thereafter in Fig. 3.8d to emphasize the relative magnitudes of 
T and 8,. 

To determine i0(6, +) = i ,(l+), it is necessary to write the solution 
i,(t) = 10 exp(- t /  10) in order to calculate i,(l-) = 9.05 mA. This gives us 
i,(l-) = i,(l-) - i,(l-) = 10- 9.05 = 0.95 mA. Since i,(l+) = i,(l-) = 
0.95 mA, i,(l+) = i ,(l+) - iL( l+)  = -5 - 0.95 = -5.95 mA. Hence i,(t) 
jumps from 9.05 to -5.95 mA at t = 1 PS, as shown in Fig. 3.8d. 

Again, the exponential solution during [ l ,  4) has not reached steady 
state when i,(t) changes from -5 to 10 mA at t = 4 ps. To calculate i,(t) at 
t = 4+, it is necessary to write the solution i,(t) = -5.95 exp{- [(t - 
1) /10]) and obtain io(4-) = -4.41 mA. This gives i,(4+) = iL(4-) = 
i,(4-) - i,(4-) = -5 - (-4.41) = -0.59 mA and i0(4+) = i,(4+) - 
i,(4+) = 10 - (-0.59) = 10.59 mA. Hence i,(t) jumps from -4.41 to 
10.59 mA at t = 4 ,as, as shown in Fig. 3.8d. 

Repeating the above procedure, we find i,(t) jumps from 9.6 to 
-5.4mA at t = 5 ps,  from -4.0 to 11.0 mA at t = 8 PS, from 9.96 to 
-5.04 mA at t = 9 ps,  from -3.74 to 11.26 mA at t = 12 PS, from 10.20 to 
-4.8 mA at t = 13 ps, and from -3.6 to 11.4 mA at t = 16 ,us, etc., as 
shown in Fig. 3.8d. 

It is clear from Fig. 3.8d that i,(t) is tending toward a periodic 
waveform. To determine this periodic waveform, note that if we let I, 
denote the "peak" value of each "falling" exponential segment in Fig. 3.8d 
(e.g., I ,  = 10, 10.59, 11, 11.26, and 11.4mA at t = 0 ,  4, 8, 12, 16 ,us, etc.) 
then this periodic waveform must satisfy the following periodicity con- 
dition : 

-6, I, exp - - -62 15exp- + 15 = I, 
7 7 
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where S, = 1 PS, a2 = 3 PS, and T = 10 PS. The solution of this equation 
gives one point on the periodic solut.ion, namely, the peck value. 

Exercise 
(a) Calmlate the peak value 1, from the periodicity condition. 
(b )  Specify the initial inductor current i ,(0) in Fig. 3.80 so that the 
solution, i ,(t)  is periodic for t s: 0. 
( c )  Sketch this periodic solution. 

3.3 Linear Time-Invariant Circuits Driven by an IrnpuEse 

Consider the RC circuit shown in Fig. 3.40 and the RL circuit shown in Fig. 
3.9b. Let the input voltage source v,(!) and input current source i,(t) be a 
square pulse p A ( t )  of width A and height l l A ,  as shown in Fig. 3 . 9 ~ .  Assuming 
zero initial state [i.e., u, (O-)  = 0, i , ( O - )  = 01, the response voltage v , ( t )  and 
current i,(t) are given by the same waveform shown in Fig. 3.9d,  where 
7 = RC for the RC circuit and T = GL for the RL circuit. and 

The input and response corresponding to h = l , ; ,  and f s are shown in Fig. 
3.9e and f, respectively. Kote that as A-0, pA(t )  tends to the unit impulse 
shown in Fig. 3.9g [recall Eq. (2.8)], namely, 

lim pA(t )  = 6( t )  
A 4 0  

(3.22) 

Note also that the "peak" value h,(A) of the response waveform in Fig. 
3.9d increases as A decreases. To obtain the limiting value of hA(A) as A+ 0 ,  
we apply L7Hospital's rule: 

f '(A) ( 1 / ~ )  exp(-A/T)  1 lim h,(A) = Iim - - - lim - - 
A 4 0  A-0 &(A) A-0 1 7 

(3.23) 

Hence, the response waveform in Fig. 3.9f tends to the exponential waveform 

shown in Fig. 3.9h. Using the unit step function l ( t )  defined earlier in Eq. 
(2 .6) ,  we can rewrite Eq. (3.24) as follows: 

1 
h( t )  = - 7 exp (G) ~ ( t )  
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Figure 3.9 As A+O, the square pulse in (c) tends to the unit impulse 6 ( . )  in (g). The 
corresponding response tends to the impulse response h(t)  in (h) .  

Because h(t) is the response of the circuit when driven by a unit impulse 
under zero initial condition, it is called an impulse response. Note that h(t) = 0 
for t < 0. 

In Chap. 10, we will show that given the impulse response of any linear 
time-invariant circuit, we can use it to calculate the response when the circuit is 
driven by any other input waveform. 
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3.4 Circuits Driven by Arbitrary Signals 

Let us consider now the general case where the one-post N in Fig. 3.1 contains 
arbitrary independent sources. This means that the ThCvenin equivalent volt- 
age source a,,(t), or the Norton equivalent current source i,,(t), in Fig. 3.2 
can be any function of time, say, in practice, a piecewise-continuous function 
of time: square wave, triangular wave, synchronization signal of a TV set, etc. 
Our objective is to derive an explicit solution and draw the consequences. 

Consider first the RC circuit in Fig. 3 . 2 ~  whose state equation is 

A 
where 7 = ReqC. 

Explicit solution for first-order linear time-invariant RC circuits Given any 
prescribed waveform v,,(t), the solution of Eq. (3.25) corresponding to any 
initial state v,(t,) at t = to is given by 

-0 - to) -(t  - t ' )  
= vc(to) exP uoc(tf )dt f  

7 7 
L 

zero-input response zero-state response 

for all t 2 to. Here, T = ReqC. 

PROOF 
(a) At t = to, Eq.  (3.26) reduces to 

vc(t)lt=t,, = uc(to) (3.27) 
Hence Eq. (3.26) has the correct initial condition. 
(b) To prove that Eq. (3.26) is a solution of Eq. (3.25), let us differentiate 
both sides of Eq. (3.26) with respect to t: First we rewrite Eq. (3.26) as 

vc( t )  = vC(t0) exp -" 7 - + ( f exp +) 1: exP f vOc(tr)  
(3.28) 

Then upon differentiating we obtain for t > 0, 

1 cc(?) = - - 7 vc(to) exp -(t - + (- 5 exp 2) 7 7 

t' 
X io exp - T v0,(tt) dt' + (l T exp2)[exp 5 voc(r)], (3.29) 

7 
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where we used the fundamental theorem of calculus: 

If It f(tr)  dtf = f( t )  if f( - )  is continuous at time I 
dt o 

Simplifying Eq. (3.29), we obtain 

1 
;,(t) = - - vc(to)  exp - ( t  - 1 , )  

7 7 

- ' [l' ' exp 
- ( t  - t ')  

7 '0 7 7 

Hence Eq. (3.26) is a solution of Eq. (3.25).  
( c )  From mathematics we learned that the differential equation (3.25) has 
a unique solution. Hence Eq. (3.26) is indeed the solution. 

Zero-input response and zero-state response The solution (3.26) consists of two 
terms. The first term is called the zero-input response because when all 
independent sources in N are set to zero, we have vo,(t) = 0 for all times, and 
v,( t )  reduces to the first term only. The second term is caIfed the zero-state 
response because when the initial state v,(t,) = 0, v,( t )  reduces to the second 
term only. 

Example Let us find the solution v,(t)  of Fig. 3 . 7 ~  using the above general 
formula. In this case, we have 

vc(to) = 0 to = 0 and vo,(t) = E t  2 0 

Substituting these parameters into Eq. (3.26), we obtain 

( t  - 0 )  ( t  - 1') 
v , ( t )  = O  X exp [ - - ] + J o t ' , e x p [ - 7 ] . E d t '  

which coincides with that shown in Fig. 3.7c, as it should. 

By duality, we have the following: 



Explicit solution for first-order linear time-invariant RL circuit Given any 
prescribed waveform i,,(t), the solution of Eq. (3.26) corresponding to any 
initial state i,(t,,) at t = t,, is given by 

-0 - 4,) + j-' 1 exp -(t  - 5') 
iL(f) = iLffO) ~ X P  is,(tf) dt' 

7 41 7 7 
, , 

zero-input response zero-state response 
i 

for all t 2 r,,. Here, r = G,, L, 

REMARKS 
1. In both Eqs. (3.26) and (3.32), the zero-input response does not depend 
on the inputs and the zero-state response does not depend on the initial 
condition. In both cases, the total response can be interpreted as the 
superposition of two terms, one due to the initial condition acting alone 
(with all independent sources set to zero) and the other due to the input 
acting alone (with the initial condition set to zero). 
2. Formulas (3.26) and (3.32) are valid for both T > 0 and r 0. Consider 
the stable case 7 > 0. For values of t' such that t - t' %- r ,  the factor 
exp[-(t - t') l r ]  is very small: consequently the values of u,,(t) [respec- 
tively, i,,(t)] for such times contribute almost nothing to the integral in 
Eq. (3.26) [respectively, Eq. (3.32)). In other words, the stable RC circuit 
(respectively, the stable RL circuit) has a fading memory: Inputs that have 
occurred many time constants ago have practically no effect at the present 
time. 

Thus we may say that the time constant T is a measure of the memory 
time of the circuit. 
3. Using the impulse response h(t) for the RC circuit derived earlier in Eq. 
(3.24), we can rewrite the zero-state response in Eq. (3.26) as follows: 

h(t - t') vOc(tr) dtr 
I0 

Equation (3.33) is an example of a convolution integral to be deveioped in 
Chap. 10. 
4. Once v,(t) is found using Eq. (3.26), we can replace the capacitor in 
Fig. 3.2a by an independent voltage source described by v,(t). We can 
then apply tne substitution theorem to find the corresponding solution 
inside N by solving the resulting linear resistive circuit using the methods 
from the preceding chapters. 
5 .  The zero-state response due to a unit step input l(t) is called the step 
response, and will be denoted in this book by s(t). The step response for 
a first-order RC (respectively. RL) circuit can be found by thb inspection 
method in Sec. 3.1C, upon choosing v,(O) = 0 (respectively, i,(O) = 0). 
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The significance of the step response is that for any linear time- 
invariant circuit, the impulse response h ( t )  needed in the convoiutjon 
integral (6.5) of Chap. 10 can be derived from $ ( E )  (which is usually much 
easier to derive) via the formula 

This important relationship is the subject of Exercise I in Chap. 10, page 
615 [Eq. (4.64)]. 

The dual remark of course applies to the RL circuit in Fig. 3.2b. 

4 FIRST-ORDER LINEAR SWITCHING CIRCUITS 

Suppose now that the one-port N in Fig. 3.1 contains one or more switches, 
where the state (open or closed) of each switch is specified for all t 2 to. 
Typically, a switch may be open over several disjoint time intervals, and closed 
during the remaining times. Although a switch is a time-varying linear resistor, 
such a linear switching circuit may be analyzed as a sequence of first-order 
linear time-invariant circuits, each one valid over a time interval where all 
switches remain in a given state. This class of circuits can therefore be analyzed 
by the same procedure used in the preceding section. The only difference here 
is that unlike Sec. 3, the time constant T will generally vary whenever a switch 
changes state, as demonstrated in the following example. 

Example Consider the RC circuit shown in Fig. 4.la,  where the switch S is 
assumed to have been open for a long time prior to t = 0. 

Given that the switch is closed at t = l S and then reopened at t = 2 S, 
our objective is to find vc( t )  and vo(t)  for all t r 0. 

Since we are only interested in vc(t)  and vo( t ) ,  let us replace the 
remaining part of the circuit by its Thkvenin equivalent circuit. The result 
is shown in Fig. 4.1 b and c corresponding to the case where S is "open" or 
"closed," respectively. The corresponding time constant is T, = l s and 
T* = 0.9 S ,  respectively. 

Since the switch is initially open and the capacitor is initially in 
equilibrium, it follows from Fig. 4.lb that vc( t )  = 6 V  and v,(t) = 0 for 
t 5 l S. At t = 1 + we change to the equivalent circuit in Fig. 4. l c .  Since, by 
continuity, v,(l+) = v,(l-) = 6 V, we have i,(l+) = (10 - 6)V/(2  + 
1.6) k f l =  1.11 mA and hence v o ( l + )  = (1.6 kfl)(1.11 mA) == 1.78 V. 

To determine vc(t,) and vo(t,) for the equivalent circuit in Fig. 4.lc,  
we open the capacitor and obtain v,(t,) = 0. The waveforms of vc(t)  and 
v,(t) during [l, 2)  are drawn as solid lines in Figs. 4.1 d and e ,  respectively. 
The dotted portion shows the respective waveform if S had been left closed 
for all t r l S. 

Since S is closed at t = 2 S, we must write the equation of these two 
waveforms to calculate vc(2 -) = 8.68 V and v,(2-) = 0.59 V. 
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Figure 4.1 An RC switching circuit and the solution waveforms corresponding to the case where S 
is open during r < I s and t 2 2 S, and closed during 1 r t < 2. 

At t = 2+,  we return to the equivalent circuit in Fig. 4 . l b .  Since 
v,(&+) = vc(2-) = 8.68 V, we have i,(2+) = (6 - 8.68)V/(2.4 -+ 1.6) k i l =  
-0.67 mA and v0(2+) = (1.6 kS1)(-0.67 mA) .= -1.07 V. 

To determine v,(t,) and v,(t,) for the circuit in Fig. 4.lb, we open 
the capacitor and obtain v,(t,) = 6 V and vo(t,) = 0. The remaining solut- 
ion waveforms are therefore as shown in Figs. 4.ld and e, respectively. 

5 FIRST-ORDER PIECEWISE-LINEAR CIRCUITS 

Consider the first-order circuit shown in Fig. 5.1 where the resistive one-port N 
may now contain nonlinear resistors in addition to linear resistors and dc 
sources. As before, all resistors and the capacitor are time-invariant. This class 
of circuits includes many important nonlinear electronic circuits such as 
multivibrators, relaxation oscillators, time-base generators, etc. In this section, 
we assume that all nonlinear elements inside N are piecewise-linear so that the 
one-port N is described by a piecewise-linear driving-point characteqstic. 



Figure 5.1 (a) A piecewise-linear RC circuit. (b) Driving-point characteristic of N. 

Our main problem is to find the solution v,(t) for the RC circuit, or i,(t) 
for the RL circuit, subject to any given initial state. Since the corresponding 
port variables of N, namely, [v(t), i(t)], must fall on the driving-point charac- 
teristic of N ,  the evolution of [v([), i(t)j can be visualized as the motion of a 
point on the characteristic starting from a given initial point. 

5.1 The Dynamic Route 

Since the driving-point characteristic is piecewise-linear, the solution [v(t), i(t)] 
can be found by determining first the specific "route" and "direction," 
henceforth called the dynamic route, along the characteristic where the motion 
actually takes place. Once this route is identified, we can apply the "inspection 
method" developed in Sec. 3.1 to obtain the solution traversing along e,ach 
segment separately, as illustrated in the following examples. 

Exampie 1 Consider the RC circuit shown in Fig. 5.la, where the one-port 
N is described by the voltage-controlled piecewise-linear characteristic 
shown in Fig. 5.1 b. 

Given the initial capacitor voltage v,(O) = 2.5 V, our objective is to 
find v,(t) for all t r 0. 

Step 1. Identify the initial point. Since v(t) = v,(t), for all t ,  initially 
v(0) = v,(0) = 2.5 V. Hence the initial point on the driving-point 
characteristic of N is P,, as shown on Fig. 5. lb .  

Step 2. Determine the dynamic route. The dynamic route starting from P,, 
contains two pieces of information: (a) the route traversed and ( b )  the 
direction of motion. They are determined from the following infor- 
mation: 

Key to (a) The driving-point characteristic of N 
dynamic route 
for RC i(t> 
circuit (b) v'(t) = - - C 
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since v'(t) = - i ( t )  / C  < U whenever i ( t )  > 0, the voltage v(t)  decreases 
so long as the associated current i ( t )  is positive. Hence, for i ( t )  > 0, the 
dynamic route starting at  P, must always move along the v-i curve 
toward the left, as indicated by the bold directed line segments P,+ P, 
and P,  + P, in Fig. 5. lb.  The dynamic route for this circuit ends at P, 
because at P,, i  = Q ,  so v' = 0. Hence the capacitor is in equilibrium. 

Step 3. U btain the solution for each straight line segment. Replace N by a 
sequence of Thivenin equivalent circuia corresponding to  each line 
segment in the dynamic route. Using the method from Sec. 3.1, find a 
sequence of solutions w,( t ) .  For this example, the dynamic route 
P,+ P, 4 P2 consists of only two segments. The corresponding equiv- 
alent circuits are shown in Fig. 5 . 2 ~  and b, respectively. 

To obtain u,(t) for segment P,-, P,, we calculate 7 = -62.5 PS, 

v,(O) = 2.5 V, and v,(t,) = 3.25 V. Since the time constant in this case 
is negative, v,(t) consists of an "unstable" exponential passing through 
v,(O) = 2.5 V and tending asyrngtotical~y to the "unstable" equilibrium 
value v,(t,) =3.25 V as t+ -m. This solution is shown in Fig. 5 . 2 ~  
from P, to P,. To calculate the time t, when v,(t) = 2 V, we apply Eq. 
(3.12) and obtain 

Applying Eq. (3.5), we can write the solution from P, to  P, analytical- 
ly as follows (all voltages are in volts): 

Figure 5.2 (a) Equivalent circuit corresponding to P,,+ P,. ( b )  Equivalent circuit corresponding to 
P,- P?. (c) Solution v,( t) .  

1 
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- t  
v,(t) = 3.25 + [2.5 - 3.251 exp - 

62.5 

= 3.25 - 0.75 exp 
62.5 

p s  05i131.9ps  (5 -2)  

To obtain u,(t) for segment P,-, P,, we calculate r2 = 100 PS, 
u,(t,) = 2 V, to = 31.9 ps, and v,(t,) = 0 V. The resulting exponential 
solution is shown in Fig. 5 . 2 ~ .  Applying Eq. (3.5), we can write the 
solution from P, to P, analytically as foHows: 

v,(t) = 2 exp -r-31.9 ps ta31 .9  ps 
100 P S  

Example 2 Consider the RL circuit shown in Fig. 5.3a, where N is 
described by the piecewise-linear characteristic shown in Fig. 5.3b. 

Given the initial inductor current i,(t,) = - I , ,  our objective is to find 
i,(t) for all t L to. (Note I ,  is the initial current into the one-port). 

Step 1. Identify initial point. Since i(t,) = I,, we identify the initial point at 
P, on Fig. 5.3b. 

Step 2. Determine the dynamic route. The dynamic route starting from P,, 
is determined from the folfowing information: 

whenever v > 0 
, E r l  

I 

( b )  

Figure 5.3 A piecewise-linear RL circuit. 



344 LINEAR AND NONLINEAR CIRCUlTS 

Key am (a) The driving-point characteristic of N 
dynamic route 
Tor RL 
circuit 

v ( t )  ( b )  :(l) = - - 
L 

Since 4 t )  = - v ( t ) / L  0 whenever v(t) > 0, it follows that the current 
solution i( t)  must decrease so long as the associated u( t )  is positive.21 
Hence the dynamic route from P, must always move downward and 
consists of three segments P, + P,, P, -+ P,, and P, + P, as shown in 
Fig. 5.36. The dynamic route ends at P, because at P,, u = 0 so I= 0. 
Hence the inductos is in equilibrium. 

Step 3. Replacing N by a sequence of Norton equivalent circuits corres- 
ponding to each line segment in the dynamic route, we obtain the 
solution in Fig. 5 . 3 ~  by inspection. 

REMARKS 
1. After some practice, one can obtain the solution in Figs. 5 . 2 ~  and 5 . 3 ~  
directly from the dynamic route, i.e., without drawing the Thtvenin or 
Norton equivalent circuits. 
2. In the RC case, since ;(t) = - i ( t ) lC,  when T > 0, the dynamic route 
always terminates upon intersecting the v axis (i = 0). 
3. In the RL case, since i'(t) = -u( t )  / L ,  when r > 0, the dynamic route 
always terminates upon intersecting the i axis (v = 0). 

Exercise 
(a) Calculate the time constants T,, r,, and T, in Fig. 5.3~. 
( b )  Calculate t, and t,. 
(c) Write the solution i,(t) analytically for t r to. 
( d )  Write the solution v,(t) analytically for t r C,. 

5.2 Jump Phenomenon and Relaxation Oscillation 

Consider the RC op-amp circuit shown in Fig. 5.4a. The driving-point charac- 
teristic of the resistive one-port N was derived earlier in Fig. 3.8b of Chap. 4 
and is reproduced in Fig. 5.4b for convenience.*' Consider the four different 
initial points Q,, Q,, Q,, and Q, (corresponding to four different initial 
capacitor voltages at t = 0) on this characteristic. Since 3(t) = ;,(t) = -i( t) lC 
and C > 0, we have 

v'(t) > 0 for all t such that i( t)  < 0 ( 5 . 4 ~ )  

21 In order to use the v-i curve directly, we will find i(t) first. The desired solution is then simply 
iL(t)  = -i(t). 

22 Note that we have relabeled the two resistors R, and R, in Fig. 3.8b of Chap. 4 as R, and R,, 
respectively, in Fig. 5 . 4 ~ .  The symbols R,,  R,, and R, in Fig. 5.4 denote the reciprocal slope of 
segments 1, 2, and 3, respectively, in Fig. 5.46. ! 
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71 l I )  < 0 whenever i ( t )  > 0 

Figure 5.4 ( Q )  RC op-amp circuit. (b) Driving-point characteristic of N. (c)  Solution locus of 
(v(t), i(t)) for the remodeled circuit. (d) Dynamic route for the limiting case. ( e )  Voltage waveform 
~ ( t ) .  ( f )  Current waveform i(t). 

and v'(t) < 0 for all t such that i ( t )  > 0 (5.4b) 

Hence the dynamic route from any initial point must move toward the left in the 
upper half plane, and toward the right in the lower half plane, as indicated by 
the arrow heads in Fig. 5.4b. 



Since i # Q at the two breakpoints Q, and Q,,  they are not equilibrium 
points of the circuit. It follows from Eq. (3.12) that the amount of time T it 
takes to go from any initial point to Q, or Q, is finite [because X ( [ , )  # x(t , )] .  

Since the arrowheads from Q ,  and Q, (or from Q, and Q,) are oppositely 
directed, it is impossible to continue drawing the dynamic route (from any 
initial point P,) beyond Q, or Q,.  In other words, an impasse is reached 
whenever the solution reaches Q ,  or Q,, 

Any circuit which exhibits an impasse is the result of poor modeling. For 
the circuit of Fig. 5.4a, the impasse can be resolved by inserting a small linear 
inductor in series with the capacitor; this inductor models the inductance L of 
the connecting wires. 

As will be shown in Chap. 7, the remodeled circuit has a well-defined 
solution for all t 2: 0 SO Iong as L > Q .  A typical solution locus of ( v ( t ) ,  i ( t ) )  
corresponding to the initial condition at P, is shown in Fig. 5 . 4 ~ .  Our analysis 
in Chap. 7 will show that the transition time from P,  to P,, or from P, to P,, 
decreases with L. In the limit L+O, the solution locus tends to the limiting 
case shown in Fig. 5,4d with a zero transition time. In other words in the limit 
where L decreases to zero, the solution jumps from the impasse point P, to P,, 
and from the impasse point P, to P,. We use dotted arrows to emphasize the 
instantaneous transition. 

Both analytical and experimental studies support the existence of a jump 
phenomenon, such as the one depicted in Fig. 5.4d, whenever a solution 
reaches an impasse point such as P, or P,. This observation allows us to state 
the following rule which greatly simplifies the solution procedure. 

Jump rule 
Let Q be an impasse point of any first-order RC circuit 

(respectively, RL circuit). Upon reaching Q at t = T, the dynamic 
route can be continued by jumping (instantaneously) to another 
point Q' on the driving-point characteristic of N such that 
vc(T+) = vC(T-) [respectively, i , (T  t) = i,(T-)l provided Q' 
is the only point having this property. 

Note that the jump rule is also consistent with the continuity property of v,, or 
i , .  

OBSERVATIONS 
l. The concepts of an impasse point and the jump rule are applicable 
regardless of whether the driving-point characteristic of N is piecewise- 
linear or not. 
2. A first-order RC circuit has at least one impasse point if N is described 
by a continuous nonmonotonic current-controlled driving-point characteris- 
tic. The instantaneous transition in this case consists of a vertical jump in 
the v-i plane, assuming i is the vertical axis. i 
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3. A first-order RL circuit has at least one impasse point if N is described 
by a continuous nonrnonotonic voltage-controlled driving-point characteris- 
tic. The instantaneous transition in this case consists of a horizontal jump 
in the v-i plane, assuming i is the vertical axis. 
4. Once the dynamic route is determined, with the help of the jump rule, 
for all t > t,, the solution waveforms of v ( t )  and i ( t )  can be determined by 
inspection, as illustrated below. 

Example The solution waveforms v ( t )  and i ( t )  corresponding to the initial 
point P, in Fig. 5 . 4 ~  can be found as follows: 

Applying the jump rule at the two impasse points P, and P,, we obtain 
the closed dynamic route shown in Fig. 5 .4d .  This means that the solution 
waveforms become periodic after the short transient time interval from P, 
to P,. Since the rwo vertical routes occur instantaneously, the period of 
oscillation is equaf to the sum of the time it takes to go from P, to P, and 
from P, to P,. 

Following the same procedure as in the preceding examples, we obtain 
the voltage waveform v(.) shown in Fig. 5.4e and the current waveform 
i( - )  shown in Fig. 5.4f. As expected, these solution waveforms are periodic 
and the op-amp circuit functions as an oscillator. 

Observe that the oscillation waveforms of v ( € )  and i ( t )  are far from 
being sinusoidal. Such oscillators are usually called reluxution oscil l~ton.'~ 

Exercise 
(Q) Find the time constants r,, T,, T,, and the time instants t,, ti, and t, 
indicated in Fig. 5.4e and f i n  terms of the element values in Frg. 5 . 4 ~ .  
(Assume the ideal op-amp model.) 
(b) Use the v,-vs.+, transfer characteristic derived earlier in Fig. 3 . 8 ~  of 
Chap. 4 to show that the op-amp output voltage waveform v,(.) is a 
square wave of period T.  Calculate T in terms of the element parameters. 

5.3 Triggering a Bistable Circuit (Flip-Flop) 

Suppose we replace the capacitor in Fig. 5 . 4 ~  by the inductor-voltage source 
combination as shown in Fig. 5 . 5 ~ .  Consider first the case where v,(t) = 0 so 
that the inductor is directly connected across N. Since t t )  = -u ( t ) lL  and 
L > 0, it follows that dildt > 0 whenever v < 0 and dildt < 0 whenever v > 0. 
Hence the current i decreases in the right half v-i plane and increases in the left 
half v-i plane, as depicted by the typical dynamic routes in Fig. 5.5b. 

Since the equilibrium state of a first-order R L  circuit is determined by 
replacing the inductor by a short circuit, i.e., v = v ,  = 0, it follows that this 

23 Historically, relaxation oscillators are designed using only two vacuum tubes, or two 
transistors, such that one device is operating in a "cut-off'' or relaxing mode, while the other device 
is operating in an "active" or "saturation" mode. 



Figure 5.5 A bistable op-amp circuit and the dynamic routes corresponding to two typical 
triggering signals. 

i 
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circuit has three equilibrium points; namely, Q,,  Q,, and Q,. These equilib- 
rium points are the operating points of the associated resistive circuit obtained 
by short-circuiting the inductor L. 

Since the dynamic route in Fig. 5.5b either tends to Q ,  or Q,, but always 
diverges from Q,. we say that the equilibrium point Q, .. is unstable. Hence even 
though the associated resistive circuit has three operating points, Q, can never 
be observed in practice-the slightest noise voltage will cause the dynamic 
route to diverge from Q2, even if the circuit is operating initially at Q,. 

Whether Q, or Q, is actually observed depends on the initial condition. 
Such a circuit is said to be bistable. 

Bistable circuits (flip-flops) are used extensively in digital computers, 
where the two stable equilibrium points correspond to the two binary states; 
say Q, denotes "l" and Q, denotes "0." In order to perform logic operations, 
it is essential to switch from Q,  to Q,, and vice versa. This is done by using a 
small triggering signal. We will now show how the voltage source in Fig. 5.5a 
can serve as a triggering signal. 

Suppose initially the circuit is operating at Q , .  Let us at t = t ,  apply a 
square pulse of width T = r,  - t ,  as shown in Fig. 5 . 5 ~ .  During the time interval 
t, < t < t,, u,(t) can be replaced by an E-V battery, so that the inductor sees a 
translated driving-point characteristic as shown in Fig. 5.5d in broken line 
segments. Let us denote the original and the translated piecewise-linear 
driving-point characteristics by I' and T' respectively. Then r holds over the 
time intervals t <  t ,  and t >  t2 ,  whereas r' holds over the time interval 
t ,  <t<C2. 

Since the inductor current cannot change instantaneously [i ,( t ,-)= 
i,(t,+)], the dynamic route must jump horizontally from Q, to P, at time 
t =  t , .  From P,, the current i must subsequently decrease so long as o > O .  
Hence, the dynamic route will be as indicated ( Q ,  -* P, - P, -+ P, --t P:+ P,) 
in Fig. 5.5d. Here, we assume that at time t = t,- , the dynamic route arrives at 
some point P, in the lower half plane. At time t  = t,+, T' switches back to T, 
and the dynamic route must jump horizontally from P, to P, at t = t2+. After 
approximately five time constants, the dynamic route has essentially reached 
Q,, and we have succeeded in triggering the circuit from equilibrium point Q, 
to equilibrium point Q2. 

To trigger from Q, back to Q,, simply apply a similar triggering pulse of 
opposite polarity, as shown in Fig. 5.5e. The resulting dynamic route is shown 
in Fig. 5.5f. 

Triggering criteria The following two conditions must be satisfied by the 
triggering signal in order to trigger from Q, to Q,, or vice versa. 

Minimum pulse width condition If t, occurs before the dynamic route in Fig. 
5.5d (respectively, f )  crosses the v axis at P,, the route will jump (horizontally) 
to a point on r in the upper left half plane (respectively, lower right half plane) 
and return to Q, (respectively, Q,). Hence, for successful triggering, we must 
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require T > T,,,, where T,,, is the time it takes to go from P, to P, in Fig. 
5.5d or f. 

Minimum pube height conditian If E is too smalli such that the breakpoint P, on 
r-s located in the left half plgne, (respectively, the right half plane), then the 
dynamic route will also return to Q ,  (respectively, Q,). Hence, for successful 
triggering, we must require E Emin, where Emin = E l .  

Exercise 
fa) Express T,,, and Emi, in terms of the circuit parameters. 
( b )  Sketch the solution waveforms of i(l) and v,(t) for the case when 
T =  1.5Tm,, and E = 1.5Emin. 
( c )  Repeat ( b )  for the case where T = 0.5Tm,, and E = 0.5 Emin. 

SUMMARY 

A two-terminal element de- 
scribed by a q-v characteristic 
f,(q, v) = 0 is called a time- 
invariant capacitor. 
In the special case where q = CV, 
where C is a constant called the 
capacitance, the capacitor is 
linear and time-invariant. In this 
case, it can be described by 

m A linear time-varying capacitor is 
described by 

q = C(t)v 

This implies that 

requires an additional term com- 
pared to the time-invariant case. 

m A two-terminal element de- 
scribed by a $-i characteristic 
f,(#~, i )  = O  is called a time- 
invariant inductor. 

m In the special case where 4 = Li, 
where L is a constant called the 
inductance, the inductor is linear 
and time-invariant. In this case, 
it can be described by 

m A linear time-varying inductor is 
described by 

4 = L(t)i 

This implies that 

requires an additional term com- 
pared to the time-invariant case. 
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e Memory property: The capacitor 
voltage at any time T depends on 
the entire capacitor current 
waveform for all t < T. 
Initial capacitor voltage trans- 
formation: A C-F capacitor with 
an initial voltage v,(O) is equiv- 
alent to a C-F capacitor with 
zero initial voltage in series with 
a vc(0)-V voltage source. 
Capacitor voltage continuity 
property: For any t E ( t , ,  t ,) ,  

provided that, for some M, 

ji,(t)l I M < X 

for alI t E [ t ,  , t,] 

e Memory property: The inductor 
current at any time T depends on 
the entire inductor voltage 
waveform for all t < T,  
Initial inductor current trans- 
formation: An L-H inductor with 
an initial current i , (O) is equiv- 
alent to an L-M inductor with 
zero initial current in parallel 
with an i,(O)-A current sourcl. 

e Inductor current continuity prop- 
erty: For any t E (t,, t,), 

provided that, for some M, 

/ v , ( t ) l s  M < X 

for all t E [ t ,  , t ,  l 

A unit step function l ( t )  is defined by 

A unit impulse (or delta function) S(t)  is defined by the following two 
properties: 

singular t = 0 
S( t )  ' l O t f O  

1; ~ ( t )  dt = l for any E~ < 0 and > 0 

The zero-state response h( t )  to a unit impulse S ( t )  is called the impulse 
response. 
The zero-state response s(t) to a unit step l(t) is called the step response. 
For any linear time-invariant circuit, the impulse response h(t) and the step 
response s( t )  are related by 

Lossless property: A time- Lossless property: A time- 
invariant charge-controlled ca- invariant flux-controlled induc- 
pacitor cannot dissipate energy. tor cannot dissipate energy. 
Rather, energy is stored and can Rather, energy is stored and can 
be recovered subsequently. be recovered subsequently. 



e The energy W,. entering a time- 
invariant charge-controlled ca- 
pacitor during [ t ,  , t,] depends 
on the charge at the end points, 
namely, q , ( s , )  and q,.(t,). In 
particular, 

where 
A 41 P qc(4 1 and 

q 2  = qCCt?-) '  
e The energy E, stored in a C-F 

capacitor with initial voltage 
v,(O) = V is equal to 

g, is called a relaxation point 
for a time-invariant charge-con- 
trolled capacitor iff 

for ail -m< q < m  

The energy Ec stored in a time- 
invariant charge-controiled capac- 
itor with initial charge q ( 0 )  = Q 
is equal to 

where q ,  is any relaxation point 
of the capacitor. 
A first-order linear parallel RC 
circuit is described by a state 
equation 

where R,, is the Thkveliin equi- 
valent resistance and v,,(t) is 
the open-circuit voltage of the 
resistive one-port seen by the 
capacitor. 

0 The energy W ,  entering a time- 
invariant flux-controlled inductor 
during [ t l ,  t2] depends aniy on 
the flux at the end points, name- 
ly, +,([,) and 4,(t,). In par- 
ticular, 

where 4 P # ~ ( f ~ )  and 
42 A 4 . @ 2 ) .  

9 The energy 8, stored in an L-H 
inductor with initial current 
i , ( O )  = I is equal to 

4, is called a relaxation point for 
a time-invariant flux-controlled 
inductor iff 

for all - m <  C$ <m 

The energy stored in a time- 
invariant flux-controlled induc- 
tor with initial flux #(0)  = 4, is 
equal to 

where 4,  is any relaxation point 
of the inductor. 
A first-order linear series RL 
circuit is described by a state 
equation 

where G,, is the Norton equival- 
ent conductance and is,(t)  is the 
short-circuit current of the resis- 
tive one-port seen by the in- 
ductor. \ \. 
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Any first-order linear time-invariant circuit driven by dc sources is describ- 
ed by a state equation of the form 

where T is called the time constant, and x(t,) is called the equilibrium state. 

e T = R,, C for an R C  circuit T = G,,L for an RL circuit 

e The solution of the above state equation is always given explicitly by an 
exponential waveform: 

for all time t. 
This solution is uniquely specified by three pieces of information: the 

initial stare x(t,), the equilibrium state x(t,), and the time constant T. 
m Let x(t,) and x(t,) denote any two points on the above exponential 

waveform. The elapsed time between tj  and t, can be calculated explicitly as 
follows: 

m The solution of any first-order linear time-invariant circuit driven by dc 
sources. or by piecewise-constant signals, or circuits containing switches can 
be obtained by inspection (i.e., without writing the state equation): Simply 
determine the three relevant pieces of information over appropriate time 
intervals. 
The solution of any first-order piecewise-linear circuit can be determined 
by inspection by drawing the associated dynamic route. 
When the dynamic route contains impasse points, the capacitor voltage 
waveform and the inductor current waveform must exhibit one or more 
instantaneous jumps. 

PROBLEMS 
Nonlinear capacitors and inductors 

1 A varactor diode behaves like a capacitor when v V, (V, =0.5V in this case). Its q-v 
characteristic is given by 

(a) Calculate its small-signal capacitance C(v)  for v < 0.5 V. 
( 6 )  A voltage v( t )  = - 1 + 0.3 cos (2x1O8t) is applied. Obtain an explicit expression for the 

current through the capacitor. 

2 A time-invariant nonlinear inductor has the characteristic shown in Fig. P6.2. 
(a) Using the graph, estimate the small-signal inductance L(i) when i = 3 mA. 
(b) Repeat (a) for i = 2 mA. 


