Lumped Approximation

The dimension of the

 physical circuit is small enough so that electromagnetic waves propagate across the circuit "almost" instantaneously.Rule of Thumb

Lumped Approximation is valid if
 $$
d \ll c \cdot \Delta t
$$

$d=$ largest dimension of the physical circuit
$\Delta t=$ smallest signal response time of interest
$=1 /$ max. frequency of interest
$c=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$

Example : hi-fi set

max. frequency of interest $=25 \mathrm{Khz}$
\therefore Lumped approximation holds if
$d \ll 3\left(10^{8}\right) \mathrm{m} / \mathrm{s} \bullet \frac{1}{25\left(10^{3}\right)}=12 \mathrm{Km}$
≈ 7.5 miles
\therefore Even if the circuit is spread across a football stadium, it satisfies the lumped approximation.

Consequences of Lumped Approximation

1. Electrical behavior does not depend on the physical size, shape, and orientation. Only the physical interconnections are relevant. Hence each device can be lumped into a point, as in classical mechanics.
2. Voltages and currents at any terminal of the physical circuit are well defined.

Basic Circuit Theory

3 Postulates :

1. Lumped Approximation

2. Kirchhoff Current Law (KCL)

3. Kirchhoff Voltage Law (KVL)

Circuit Theory is applicable if, and only if, the above 3 postulates are satisfied.

Current is a

"through" variable

Current
 is
 always

measured by inserting an
Ammeter through 1 point
of a device terminal or wire.

Quantum Mechanical Tunneling
makes perfect contacts
Since the 2 metal prongs of an
electrical plug has a thin oxide layer
(perfect insulator) on all sides, the perfect
contact established when it is plugged into a
socket is due to a quantum-mechanical
phenomenon called tunneling.

Reference Current Direction and Voltage Polarity

Since the current $i(t)$ entering an electrical terminal (k) and the voltage $v_{j k}(t)$ across a pair of terminals (i) and (k) in a typical electrical circuit can assume a positive value at one instant of time, and a negative value at another instant of time, it is necessary to assign (arbitrarily) a current reference direction for each terminal current, and an a pair of voltage polarity reference, across every pair of terminals.

If the calculated current (resp., voltage) at some instant of time turns out or be a negative number, it simply means that the actual current (resp., voltage) is opposite in direction (resp., polarity) to the arbitrarily assigned reference at that instant of time.

4 possible reference assignments for a 2-terminal device

Reference current direction and reference voltage polarity can be arbitrarily assigned.

2 Among many possible reference assignments

Note: When two terminals whose voltage polarity is being assigned are far apart, we often draw a doubleheaded arrow to identify the associated pair of terminals.

Associated Reference Convention

Although the reference current direction and the voltage polarity can be arbitrarily assigned, for pedagogical reasons, we will agree on the following associated reference convention:

2-terminal device

3-terminal device

($n+1$)-terminal device

Current is assigned entering the positively referenced non-datum terminal.

> Voltage is an "across" variable

Voltage is always

measured by connecting a voltmeter across 2 device terminals or nodes.

Gustav Robert Kirchhoff (1824-1887)

Gaussian Surface

Any closed
 surface

that has an inside and an
outside
is
called
a

Gaussian surface.

KCL

KCL

Gaussian Surface 1: $i_{1}-i_{3}+i_{8}=0$

Nodes

Definition

Any terminal (i.e., wires) attached to a

 device in a circuit where 2 or more terminals are soldered together is called a node.
Remarks:

1. We can always draw a sufficiently small sphere centered at each node of a circuit such that the sphere is pierced only by the currents entering the node.
2. A sphere is the simplest Gaussian surface.

KCL

Applying KCL to a small Gaussian surface enclosing each node
\Rightarrow Corollary 1
The algebraic sum of all currents leaving a node is zero.

KCL

Gaussian Surface 2

Gaussian Surface 2: $i_{3}+i_{5}+i_{7}=0$

KCL

Gaussian Surface 3:

$$
i_{1}-i_{3}+i_{4}-i_{6}+i_{8}=0
$$

Cut set

Definition:

A subset of currents $i_{a}, i_{b} \ldots, i_{m}$ from a physically connected circuit forms a cut set iff the following 2 conditions are satisfied:

1. Cutting (say, with a plier) all " m " terminals (wires) would physically disconnect the circuit into 2 or more components.
2. Cutting only $m-1$ terminals (wires) from (the subset of currents would not physically disconnect the circuit.

Remarks:

1. Given any cut set $\left\{i_{a}, i_{b} \ldots, i_{m}\right\}$, we can always draw a Gaussian surface pierced only by $\left\{i_{a}, i_{b} \ldots, i_{m}\right\}$.
2. Once a Gaussian surface is chosen, we define the direction of each current entering the surface to be the positive orientation of the cut set.
3. A cut set with an assumed positive orientation is said to be an oriented cut set.

KCL

Positive orientation

Gaussian Surface enclosing a cut set
$\left\{i_{2}, i_{4}, i_{5}, i_{8}\right\}$ is a cut set because

1. It cuts the circuit into 2 parts.
2. Any 3 out of 4 currents in the set will not cut the circuit.

KCL

Positive orientation

Gaussian Surface enclosing a cut set
$\left\{i_{2}, i_{3}, i_{4},, i_{5}, i_{8}\right\}$ is not a cut set because
the smaller subset $\left\{i_{2}, i_{4}, i_{5}, i_{8}\right\}$
can already cut the circuit into 2 parts.

KCL

Gaussian surface defining a cut set

Applying KCL to a Gaussian surface associated with a cut set

\Rightarrow Corollary 2

The algebraic sum of all currents in a cut set relative to its assigned positive orientation is zero.

KCL

Applying KCL to a Gaussian surface enclosing each device \Rightarrow

$$
\begin{aligned}
& -i_{1}+i_{2}=0 \\
& i_{3}-i_{4}+i_{5}=0 \\
& i_{6}+i_{7}=0
\end{aligned}
$$

Node-to-datum and Branch voltages

In order for work to occur, the test charge has to be moved over some distance. So voltage always involves two positions, a starting point and an ending point.

To avoid ambiguity, we must always specify a voltage across 2 points in a circuit, called nodes, unless one of the 2 nodes is the circuit ground node, called the datum node. Such a voltage is called a node-to-datum voltage, and will always be denoted by $\boldsymbol{e}_{\mathrm{j}}$.

Any other voltage is called a branch voltage, and will be denoted by v_{j}.

Kirchhoff Voltage Law

KVL

The voltage $v_{j k}(t)$ between any 2 nodes

and k is equal to the difference between the 2

 associated node-to-datum voltages e_{j} and e_{k}, for alltimes t.

$$
v_{j k}(t)=e_{j}(t)-e_{k}(t)
$$

KVL

Corollary 1

(around closed node sequences)

Algebraic sum of all
voltages around any closed node sequence in any connected circuit is equal to zero at all times t.

$\mathrm{KVL} \Rightarrow$

$$
\begin{array}{ll}
v_{1}=e_{1}-e_{3} & v_{5}=e_{4}-e_{3} \\
v_{2}=e_{2}-e_{4} & v_{6}=e_{5}-e_{1}=-e_{1} \\
v_{3}=e_{2}-e_{1} & v_{7}=e_{4}-e_{5}=e_{4} \\
v_{4}=e_{2}-e_{3} & v_{8}=e_{2}-e_{5}=e_{2}
\end{array}
$$

Consider Loop formed by closed

 node sequence$$
\text { (1) } \rightarrow \text { (2) } \rightarrow \text { (5) } \rightarrow \text { (1) : }
$$

$$
-v_{3}+v_{8}+v_{6}
$$

$$
=-\left(e_{2}-e_{1}\right)+\left(e_{2}-e_{5}\right)+\left(e_{5}-e_{1}\right)
$$

$$
=0
$$

$$
\begin{aligned}
& v_{1}=e_{6}-e_{5}=-e_{5}, \quad v_{4}=e_{2}-e_{5} \\
& v_{2}=e_{1}-e_{5} \\
& v_{3}=e_{6}-e_{1}=-e_{1}, \quad v_{6}=e_{2}-e_{4}
\end{aligned}
$$

e_{2}

KVL around closed node sequence

$$
\begin{aligned}
&(1) \rightarrow(3) \\
& v_{4}-v_{5}+v_{6} \rightarrow 0
\end{aligned}
$$

Loop

Definition

A closed node sequence $\left(n_{a}, n_{b}, \ldots\right.$,

 n_{m}) is called a loop iff, there is a 2 terminal circuit element connecting each consecutive pair of nodes(n_{k}, n_{k+1}), where n_{k} is any node in the sequence.

KVL

Corollary 2 (around loops)

Algebraic sum of all
voltages around any loop in a connected circuit is equal to zero at all times t.

KVL around loop

$$
\begin{aligned}
\text { (6) } & \rightarrow \text { (5) } \rightarrow \text { (6) } \\
v_{1}-v_{2}-v_{3} & =0
\end{aligned}
$$

KVL around loop formed by the 3 devices

$$
\begin{aligned}
& \quad \mathrm{D}_{1} \rightarrow \mathrm{D}_{2} \rightarrow \mathrm{D}_{3} \rightarrow \mathrm{D}_{1}: \\
& v_{1}-v_{2}-v_{3} \\
& =\left(e_{6}-e_{5}\right)-\left(e_{1}-e_{5}\right)-\left(e_{6}-e_{1}\right)=0
\end{aligned}
$$

Basic Nonplanar Graph 1

It is impossible to redraw this circuit without intersecting wires.
Hence, we can not define meshes in this circuit.

Basic Nonplanar Graph 2

It is impossible to redraw this circuit without intersecting wires. Hence, we can not define meshes in this circuit.

How to test for Planar G

Kuratowski’s Theorem

A necessary and sufficient condition for G to be a planar graph is that it does not contain either Basic Nonplanar Graph 1 or Basic Nonplanar Graph 2, as a subgraph.

Remark

We can define meshes in a circuit iff its associated graph is planar

Definition:

Planar Graph G

A graph G is said to be

 planar iff G can be redrawn on a plane with no intersecting branches except at the nodes.
Mesh

Any loop formed by

branches of a circuit is called

 a mesh iff the loop encloses no other branches, or wires inits interior.

A Mesh is like a window.

There are 4 meshes in this circuit.

Every mesh is a loop, but NOT all loops are meshes!

