
CHAPTER 

THREE 
MULTITERMINAL RESISTORS 

Whife the conventional resistor is probably the most familiar circuit element, 
the transistor is certainly the most useful electronic device. A transistor is a 
three-terminal device which behaves like a two-terminal resistor when viewed 
from any peir of terminals at dc. This is why its inventors (Nobel laureates 
Bardeen, Bratten, and Shockley) christened it a "transfer resistor," or transis- 
tor in brief. Numerous n-terminal electronic devices available commercially 
also behave like n-terminal resistors at dc and low-frequency operations. The 
purpose of this chapter is to generalize our study from two-terminal resistors to 
three-terminal and multiterminal resistors. 

A resistive two-port is a two-port which is made of resistive elements only. 
We will start this chapter with the analysis of a simple linear resistive two-port. 
Recall that a three-terminal element can be viewed as a grounded two-port. 
Thus by studying resistive two-ports we automatically bring three-terminal 
resistors into consideration. Both are specified in terms of a set of two voltages 
and a set of two currents. Therefore, we need to generalize the v-i charac- 
teristic of a two-terminal resistor (or a resistive one-port) to a vector relation 
among the two voltages and two currents of a three-terminal resistor (or a 
resistive two-port). 

We will introduce some ideal two-port elements which are especially useful 
in modeling. We will present the dc characteristics of the bipolar and MOS 
transistors and illustrate them with examples. We conclude the chapter with 
brief discussions of two useful resistive three-ports and a four-terminal ele- 
ment. A more general discussion of two-ports and n-ports will be given in 
Chap. 13. 

-% 



1 RESISTIVE TWO-PORTS 

Figure 1.1 shows a three-terminal element wlth node @ chosen as the datum 
node. There are t\vo (terminal) voltages v ,  and v-. and two (terminal) currents 
i ,  and i,, and these are the circuit variables describing the three-terminal 
element. Figure 1.2 shows a two-port with port voltages c, and v, and port 
currents i ,  and i, as its circuit variables. Whereas three-terminal resistors often 
pertain to an intrinsic device in practice. two-port resistors are usually made up 
of an interconnection of resisri~le elements (e.g.. nvo-terminal resistors. three- 
terminal resistors. etc.). Therefore, for convenience. we often speak of resis- 
tive two-ports in this and succeeding sections instead of three-terminal re- 
sistors. 

The generalization from a two-terminal resistor to a resistive two-port 
amounts to estending from scalar voltage and current variables to two- 
dimensional vector voltage and current variables. In other ~vords. the c-i 
characteristic of a resistive one-port is generalized to a relation between two 
vectors: the port r oltage t-ector v and the port crrrrerzt \.ector i. where 

and we need nvo equations in general to express the relation. 
A three-terminal element or a two-port will be called a (time-invariant) 

resistor if its port voltages and port currents satisfy the follo\ving relation: 

This relation,' similar to the two-terminal resistor given by Eq. (1.2) in Chap. 
2, will be called the v-i characteristic of a three-terminal resistor o r  a resistive 
two-port. The difference is that we need rwo scalar functions f,(-) and h(-) to 
characterize a two-port and there are four scalar variables v, ,  v,. i,, and i,; the 
characteristic is in general a two-dimensional surface in a four-dimensional 
space. 

Figure 1.1 Three-terminal element with Figure 1.2 A nvo-port with its port voltage 
node @ chosen as the datum node. v : ,  v2 and port currents i , ,  iz. 

' If. in addition, the functions f, and f2 in Eq. (1 .1)  depend explicitly on time t ,  R, is called 
rime-varying. 



When we deal with two-ports, we often need to distinguish the ports, so 
one of them is marked port 1 and the other is marked port 2 as shown in Fig. 
1.2. As a tradition port 1 is often referred to as the input port and port 2 is 
often referred to as the ourput port. 

In the following we will first consider linear resistors and use them to bring 
out pertinent concepts in the generalization from a one-port to a two-port. 

1.1 A Linear Resistive Two-Fort Example 

Consider a resistive two-port made up of three linear resistors as shown in Fig. 
1.3. Let us apply two independent current sources to the two-port as shown. 
KCL applied to nodes @. 0, and @ yields 

- 
I s 1 = l 1  Is2 - i3 = il + i, 

Using Ohm's law and KVL for node sequences Q-@-@-Q and @-@-B-@, 
we obtain tk,e two equations characterizing the resistive two-port: 

U, = R,i ,  + R,(i, + il) = ( R ,  + R,)i, + R,il (1 .24 

v, = R2J, + R3(i l  + i Z )  = R3il + (Rl + R3)i2 (1.2b) 

In terms of the port voltage vector and the port current vector, we can 
rewrite the above equations in matrix form as 

where 

is called the resistance marrix of the linear resistive two-port. I t  is linear 
because v = Ri expresses v as a linear function of i.2 Equation (1.3) gives the 

Figure 1.3 A linear resistive two-port. 

As will be seen later, a two-port containing independent sources and linear circuit elements is 
defined as a linear two-port. This is similar to the definition of a linear circuit. If a linear two-port 
contains independent sources, it will have an affine representation. This is discussed in Chap. 5, 
Sec. 4. 



current-controlled representation of the linear resistive two-port because the 
voltages are expressed as functions of currents. The vector equation v = Ri 
represents two linear constraints imposed by the two-port on the four variables 
v,. v,, i , .  and i,. [See Eq. (1.1).] 

In the circuit in Fig. 1.3, the two currents i ,  = i,, and iz = i,, are the 
sources and the two voltages U ,  and v, are the responses. Thus i, and i, in Eqs. 
(1.20 and b) are the independent va-riables and v ,  and v, are the dependent 
variables. Of course, we can also solve for i, and i, in terms of v ,  and c, from 
the two equations ( 1 . 2 ~  and b), or directIy from the vector equation (1.3) to 
obtain 

i = G v  (1.5) 

A 
where G = R-'  = 

1 
RlR2 + R2R3 + R3Ri  

-R' ] (1.6) 
R ,  i R,  

is called the conductance nratriv of the linear resistive two-port. In scalar form. 
Eqs. (1.5) and (1.6) can be written as 

The two equations above give an alternative representation of the same 
two-port. It is called the voltage-controlled representation. If we view the 
resistance matrix R of a two-port as the generalization of the resistance R of a 
linear two-terminal resistor, then the conductance matrix G =R-' of the same 
two-port is the generalization of the conductance G = 1IR of the same 
two-terminal resistor. 

1.2 Six Representations 

With four scalar variables v,, v,, i,, and i, and two equations to characterize a 
resistive two-port, there exist other representations besides the two just 
introduced. Since in most instances we may choose any two of the four 
variables as independent variables, the remaining two are then the dependent 
variables. Thus, altogether there are C: = (4 X 3) 12 = 6 possibilities. Table 3.1 
gives the classification of the six representations according to independent and 
dependent variables. Table 3.2 gives the equations of the six possible repre- 
sentations of a linear resistive two-port. As pointed out in Sec. 1.1, G is the 
inverse matrix of R. Similarly, from Table 3.2, we also have H' =H- '  and 
T' = T-l .  We call H and H' the hybrid matrices because both the dependent 
and independent variables are mixtures of a voltage and a current. We call T 
and T' the transmission matrices because they relate the variables pertaining to 
one port to that pertaining to the other and the two-port serves as a 
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Table 3.1 Six reepesentati~ns of a two-port 

Representations Independent variables Dependent variables 
. . 

Current-cc>ntrulled 1 : .  l2  C:. L', 
. , 

Voltage-controlled C, .  C, I ! .  1: 

Hybrid 2 C , .  i2 i!. L', 

Transmiss~on 1 v.. - r .  - v:. 1 ,  

Transmission 2 v , .  l l  c:. i2 

Table 3.3 Equations for the six representations of a linear 
resistive two-port 

Reoresentations Scalar equations Vector e~uat ions  

Current- 
controlled 

Xbltage- 
controlled 

Hybrid 1 

Hybrid 2 

Transmission I t  

Transmission Z* 

t. For historical reasons, a minus sign is used in conjunction with il. 
Because of the reference direction chosen for i,, -i, gives the current 
leaving the output port. 

transmission media. Transmission matrices are important in the study of 
communication networks and will be treated in Chap. 13. 

Example Consider the two-port in Fig. 1.3. Let R,  = 1 a, R, = 2 fl, and 
R, = 3 LR. Equations (1.212 and b) give the following current-controlled 
representation: 

v, = 4i, + 3i2 (1-9) 

v, = 3i, + 5i, (1.10) 

The voltage-controlled representation is given by Eqs. (1.7) and (1.8): 
- 5 3 
2 1  = i i v 1 -  i i v 2  (1.11) 

4 = --Lv + --v 
12 11 1 i l  2 (1.12) 
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I t  is straightforward to derive the other four representations from the 
equations above. The general treatment will be given in Chap. 13; 
however. it is easy to obtain, for example. the hybrid representations: 
Using Eqs. (1.10) end (1.11) and solving for i, in terms of v ,  and i,, we 
have 

ivhich is the first equation of the hybrid 2 representation. Similarly. we 
obtain the second equation 

3 I 1  . v? = T V ,  + 31, ( l .  14) 

Equations (1.13) and ( 1.11) define the hybrid 2 matrix 

The hybrid 1 matrix can be obtained by simply taking the inverse of H', 
thus 

Exercise Determine the transmission 1 and the transmission 2 rep- 
tions of the resistive two-port shown in Fig. 1.3. 

1.3 Physical Interpretations 

In the example in Sec. 1.1, we derived the current-controlled representation by 
using two current sources at the two ports and determining the two port 
voltages. This is shown in Fig. 1 . 4 ~ .  We can similarly interpret the voltage- 
controlled and the two hybrid representations by using appropriate sources as 
shown in Fig. 1.4b, c, and d. It is seen that in the two hybrid representations, 
we use a current source and a voltage source as inputs, thus the responses are a 
voltage and a current. 

Current-controlled representation In Chap. 2 we defined a linear two-terminal 
resistor as one having a straight line characteristic passing through the origin in 
the v-i plane. For two-ports we have four variables and two equations, e.g., the 
current-controlled representation is 

U *  = r l l i l  + rt t i2 
(1.15) 

v2 = r2,il + r2J2 

These two equations impose two linear constraints on the port voltages and the 
port currents and hence the point representing the four variables; namely, 
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Figure 1.4 Sources 2nd responses to two-ports for ( U )  current-controlled representation. ( h )  
voltage-contmiled representation. ( c )  hybrid I representation. and ( d )  h>brid 2 representation. 

(v,. U,, i,. i,), is constrained to a two-dimensional subspace in the four- 
dimensional space spanned by v , ,  v,, i ,  , i,. Of course this is difficult to 
visualize. However, if we take one equation at a time, we can represent it by a 
famify of curves in the appropriate i-U planes. Consider plotting, in the i ,-v,  
plane. the straight lines 

where i, is considered as a fixed parameter which is given successively several 
values. The result is a family of parallel straight lines with a slope equal to r , ,  . 
These straight lines are as shown in Fig. 1.5a. Similarly, in Fig. 1.56 we plot, in 
the &-U, - .. plane, the straight Iines 

(a) U ,  = r I l i ,  +rI2i2  ( b )  v2 = r 2 1 i I  +rZZi2 

Figure 1.5 Two-port characteristin plotted on the i , -v ,  plane with iz as a parameter and on the 
i2-v2 plane with i ,  as a parameter. 



and we use i ,  as a parameter. These two families of parallel straight lines in the 
i l - v ,  plane and i,-v, plane depict the current-controlled representation of the 
linear resistive two-port described by Eq. (1.15). 

From the first eqcation in (1.15) we can give the following interpretations 
to r , ,  and r l 2 :  

Thus r , ,  is called the dri~.ing-point resistance at port 1 when i, = 0, i.e.. port 2 
is kept open-circuited. Also. from the first equation of (1.15). if i, is set to 
zero. \ye obtain v ,  = rl,i,. Thus the v,-axis intercept of the i, = l charac- 
teristic in the i,-v, plane is equal to r,,. Like Eq. (1.15). r,: can be interpreted 
b 

which is called the transfer resistance when i ,  = 0, i.e.. port 1 is kept 
open-circuited. 

Similarly, from the second equation in j 1.15). we can give the following 
interpretations: 

r,, -- = % l 
I ?  i l = O  

where r,, is the driving-point resistance at port 1 when i ,  = 0 ,  i.e., port 1 is 
kept open-circuited; and r,, is the transfer resistance when il = 0 ,  i.e., port 2 is 
kept open-circuited. 

In Fig. 1.6 we give the physical interpretations of r, ,  , r,?, r,, , and r,, 
according to Eqs. (1.16) to (1.19). Note that in each case the input is a current 
source and the response is a voltage across a port which is open-circuited. 
Recalling, from Chap. 2. that an independent current source has infinite 
internal resistance, we call the resistance matrix R the open-circuit resistance 
matrix and the four parameters r , , ,  r,,, r,, and r,, open-circuit resistance 
parameters af the linear resistive two-port. More specifically, r,, and r,, -- are the 
open-circuit driving-point resistance~ at port l and port 2, respectively; r,, and 
r I 2  are the open-circuit fonvard and reverse transfer resistances, respectively. 

It is easy to go through a dual treatment to give the corresponding 
interpretations for the voltage-con trolled representation. We shall leave that as 
an exercise. 



('2, F,, =: 1 
I ?  = 0 

(df I,, =2 
12 I i , = o  

Figure 1.6 Interpretations of (a )  r , ,  . (6) r,,.  ( c )  r 2 , ,  and ( d )  r ,? .  

Exercise Give the physical interpretation of the voltage-controlled repre- 
sentation of a linear resistive two-port. Use Fig. 1.7 to interpret the 
short-circuit conductances g,, , g,,, g2,, and g,, - - in terms of port voltages 
and port currents. 

Figure 1.7 Interpretation of (a )  g,, ,  ( b )  giz* (C) g*,, and ( d )  
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Hybrid representation The two equations for the hybrid 1 representation read: 

U ,  = h , , i ,  + hllu,  j 1.20) 

i, = h Z l i l  + hZluZ (1 21) 

Following the same treatment as the current-controlled representation. we 
write 

h , ,  = >/  
l I  u 2 = 0  

The physical interpretation in terms of sources, responses, and external 
connections for the fcur hybrid parameters is given in Fig. 1.8. 

Note that the four hybrid parameters h,,, h12, and h,, -- represent a 
driving-point resistance, a reverse voltage transfer ratio. a forward current 
transfer ratio, and a driving-point conductance, respectively. Furthermore. in 
each case, the external connection for port l is either a current source or  an 
open circuit, and the external connection for port 2 is either a voltage source 

( d )  h,, =.!L l ,  v1 i. = 0 

Figure 1.8 Interpretations of (a) h,,. ( b )  h,Z. ( C )  h,,, and (d) hz,. 



or a short circuit. As will be seen later in the chapter, hybrid representation is 
commonly used in dealing with the common-emitter configuration of the 
bipolar transistor. 

2 USEFUL RESISTIVE TWO-PORTS 

There are a number of (ideal) two-port circuit elements which are extremely 
useful in rnodeling and in exhibiting specific properties of devices. We will 
describe the most important ones in this section. namely. the linear controlled 
sources. the ideal transformer. and the gyrator. All of them are linear circuit 
elements and are characterized i n  terms of the four port variables v,, v,, i,, 
and i,. - Thus they are resistive two-ports according to our definition. 

2.1 Linear Controlled Sources 

Up to this point {ye have encountered independent voltage sources and current 
sources. Independent sources are used as inputs to a circuit. In this section we 
\vill introduce another type of sources, called controlled sonrces or dependent 
sources. A connolled sortrce is a resistive two-port element consisting of two 
branches: a primary branch which is either an open circuit or a short circuit and 
a secondary branch which is either a voltage source or a current source. The 
voltage or current waveform in the secondary branch is controlled by (or 
dependent upon) the voltage or current of the primary branch. Therefore, 
there exist four types of controfled sources depending on whether the primary 
branch is an open circuit or a short circuit and whether the secondary branch is 
a voltage source or a current source. The four types of controlled sources are 
shown in Fig. 2.1. They are the current-controlled voltage source (CCVS) ,  the 
voltage-controlled current source (VCCS) , the current-controlled current source 
(CCCS), and the voltage-conrrolled voltage source (VCVS). Note that we use a 

-1 I- - 
c--.-- 

(a)  CCVS (b)  VCCS 
I- -- I- (d)  VCVS -- - 

C------ 

(C) CCCS 

Figure 2.1 Four t y p e s  of linear controlled sources. 



diamond-shaped symbol to denote controlled sources. This is to differentiate 
them from the independent sources which, as we see repeatedly in the sequel, 
have very different properties. Each linear controlled source is characterized 
by two linear equations. 

CCVS: v 1  = 0 v3 = rr lr i l  (1.1) 

VCCS: i ,  = 0 l ?  = ~ , , , U I  (3.2) 

CCCS: v ,  = 0 i? = a i l  ( 2 . 3 )  

VCVS: i l  = 0 u1 = pul { 2 .-l) 

where r,,, is called the transresista!lce. g,,, is called the rr~trscolzd~tcrance. cr is 
called the crtrrent rrnrlsfer ratio. and p is called the voltage transfer mrio. They 
are all constants. thus the four controlled sources are linear time-invariant 
two-port resistors. More generally, if a CCVS is characterized by the ttvo 
equations: v ,  = 0 and v, = f(i,). where f(.) is a given ~zonlinenr function. then 
that CCVS is a norrlirzenr co,~trolled source. Similarly. if a CCCS is character- 
ized by the two equations: c, = 0, i, = cr(t)i,.  where a ( . )  is a ~ i v e n  function c\f 

time. then this CCCS is a lirzenr time-vnryiq controlled sortrce. 
In the previous section we demonstrated with an example that a linear 

resistive two-port has six representations. In the case of linear controlled 
sources, Eqs. (2.1) to (2.4) can be put in matrix form each corresponding to 
one representation: 

CCVS: 

VCCS: 

CCCS: 

VCVS: 

In Eq. (2.5) we have the current-controlled representation for the CCVS. 
Since the resistance matrix is singular, its inverse does not exist; therefore, 
there is no voltage-controlled representation for a CCVS. As a matter of fact, 
it is easy to see that neither of the hybrid representations exist as well. We can 
make similar statements for the other three controlled sources, i.e., only one of 
the representations in the first four rows of Table 3.2 exists. 

Linear controlled sources are ideal coupling circuit elements, yet they are 
extremely useful in modeling electronic devices and circuits. This will be illus- 
trated later in Sec. 4 of the chapter. In Chap. 4 we will see that all four 
controlled sources can be realized physically (to a good approximation) by 
using operational amplifiers. 



Equivalent circuits of linear resistive two-ports Controlled sources are useful in 
modeling resistive ttvo-ports. Consider the current-controlled representation of 
a linear resistive two-port: 

Equation (2.9) can be interpreted as a series connection of a linear resistor 
uith resistance r , ,  and a CCVS whose voltage is dependent on the current i, at 
port 2.  Similarly. Eq. (2.10) can be interpreted as a series connection of a 
linear resiftor with resistance r, ,  - and a CCVS whose voltage is dependent on 
the currenl i, at port 1. Therefore. we may use the equivalent circuit shown in 
Fig. 2.3 to represent the two-port. This equivalent circuit puts in evidence the 
meanings of the four parameters r , , ,  r , , ,  r , ,  . and r, ,  introduced earlier. The 
reader should review Eqs. ( l .  16) to (1.19) and use 6;. 2.2 to give appropriate 
interpretations of the four resistance parameters. 

Exercises 
1. Show that  thc circuit shown in Fig. 2.3 is the equivalent circuit of a 

voltage-controlled linear resistive two-port. 
3. Show that the circuit shown in Fig. 2.4 is the equivalent circuit 

corresponding to the hybrid 1 representation of a linear resistive 
tulo-port . 

C l  

- Figure 2.2 Equivalent circuit of a current-controlled 
linear resistive two-port. 

Figure 2.3 Equivalent circuit of a 
voltage-controlled linear resistive 
two-port . 

"1 Figure 2.4 Equivalent circuit based on the 
hybrid 1 representation of a linear resistive 

- two-port: h , ,  is a resistance (in ohms) and h,, is 
a conductance (in siemens). 
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In the following we will give three examples to illustrate additional 
properties of controlled sources. 

Example l Consider the circuit shown in Fig. 2.5 where a battery with 
internal resistance R, is connected to the primary branch of a VCVS. Since 
i l  = 0 and v, = p v I  = p E,, the output behaves like an independent dc 
voltage source with zero internal resistance irrespective of the battery 
resistance R,. 

Example 2 In Fig. 2.6 the primary branch and the secondary branch of a 
CCVS are connected in such a fashion that the resulting one-port behaves 
like a linear resistor. Here i, = i, and v, = r,,,i, = r,,,i,. Thus looking 
backwards from port 2 .  we have a linear resistor with resistance equal to  
' m .  

Exercise Modify the connection of the circuit in Fig. 2.6 so that the 
resistance seen at port 2 is - r , .  

Example 3 Consider the circuit in Fig. 2.7 where the CCCS has its two 
branches connected at a common node @ to a linear resistor with 
resistance R, .  An independent voltage source v, serves as the input. and 

Figure 2.5 A VCVS connected at the primary side by a battery with internal resistance R, 
functions as an independent dc voltage source. 

Figure 2.6 The CCVS functions as a linear Figure 2.7 A power amplifier using a CCCS. 
resistor. 



we wish to determine the output voltage v,, across the second linear resistor 
with resistance R, acting as a load. Using KCL at node a, we have 
i ; = i ,  + i , = ( I  + n ) i , .  Thus 

The pcrwer delivered by the source v, to the circuit is 

The po\s.er delivered by the circuit to the load resistor R, is 

Therefore the po\ver pain is 

Clear]). by choosing R ,  and R,  we can obtain an arbitrarily large gain for 
any given value of a. Thus cont-rolled sources can be used in the design of a 
power amplifier. 

Exercise Demonstrate that a nonlinear controlled source in Fig. 2.80 can 
be realized \vith the circuit shown in Fig. 2.8b. which contains a two- 
terminat nonlinear resistor. a CCCS, and a CCVS. 

2.2 Ideal Transformer 

The ideal trarzsforrner is an ideal two-port resistive circuit element which is 
characterized by the following two equations: 

U, = nuz (2.11) 

and i ,  = -ni, (2.12) 

where n is a real number called the turns ratio. The symbol for the ideal 

Figure 2.8 (a )  A nonlinear VCVS and (h)  its equivalent realization using linear controlled sources. 
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transformer is shown in Fig. 2.9. The ideal transformer is a linear resistive 
two-port since its equations impose linear constraints on its port voltages and 
port currents. Note that neither the current-controlled representation nor the 
voltage-controlled representation exists for the ideal transformer. Equations 
(2.11) and (2.12) can be tvritten in matrix form in terms of the hybrid matrix 
representation: 

The ideal transformer is an idealization of a physical transformer that is used in 
many applications. The properties of the physical transformer will be discussed 
in Chap. 3. 

We wish to stress that because the ideal transformer is an ideal element 
defined by Eqs. (2.11) and (2.12), the relation between port voltages and 
between port currents holds for all waveforms and for all frequencies, including 
dc. 

Two fundamental properties of the ideal transformer 
1. The ideal transformer neither dissipates nor stores energy. Indeed, the 

power entering the two-port at time t from Eq. (2.13) is 

Thus, like the ideal diode. the ideal transformer is a non-energic element. 
2. When an ideal transformer is terminated at the output port with an R-fl 

linear resistor. the input port behaves as a linear resistor with resistance 
n ' ~  Cl. This situation is shown in Fig. 2.10 where 

v, = - Ri, 

Therefore U1 nu2 -=-- - n ' ~  
11 - i2 /n  

is the resistance of the equivalent linear resistor at the input port. 

Mechanical analog The ideal transformer is the electrical analog of an ideal 
pair of mechanical gears shown in Fig. 2.11. Since the velocity at A, the point 

Figure 2.9 An ideal transformer defined by Figure 2.10 An ideal transformer tenni- 
the single parameter n,  the turns ratio. nated at the output port with a resistor. 
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Figure 2.11 A pair of gears. 

of contact of the gears. must be the same for both gears. we have 

~vhere w ,  and u, - are the angular velocities of the two gears [radians per second 
frad/s)l. and r ,  and r ,  are the radii. On the other hand the forces applied by 
one gear to the other at point A must be equal in magnitude and opposite in 
direction. thus 

where T~ and 7, are the torques applied to the two gears. 
Comparing the two defining equations for the ideal transformer with the 

two equations above for the pair of gears, we note the following analogs: 

Electric circuits 3lechanical systems 

Voltage c Anpuiar velocity o 
Current i Torque 7 
Turns ratio 11 Radius ratio r,.'r, 

Mechanical analogs are helpful in understanding the property of electric 
circuits. In Chap. 7 we will encounter other analogous mechanical systems 
when we introduce other circuit elements: capacitors and inductors. 

2.3 Gyrator 

A gyrator is an ideal two-port element defined by the following equations: 

i, = Gv, (2.16) 

and iz = - Gv, (2.17) 

where the constant G is called the gyration condrtctance. In vector form we 
have the voltage-controlled representation: 

The symbol for a gyrator is shown in Fig. 2.12. It is easy to check that the ideal 



d I Figure 2.11 An ideal %).rator 

gvrator is also a non-energic element, i.e., at all times the power delivered to 
L - 
the two-port is identically zero. 

The fundamental property of an ideal gyrator is given by the following 
equation: 

V I  G - -- I -i, - 
i, Gu, G' U? 

That is. when a g!.rator is terminated at the output port with an R,  -0 linear 
resistor as shown in Fig. 2.13. th2 input port behaves as a linear resistor with 
resistance G,/c' 0. where G, = ] / R , .  As will be clear in Chap. 6. if the 
output port of an ideal g)rator is terminated with a capacitor. the input port 
behaves like an inductor. Thus a gyrator is a useful element in the design of 
inductorless filters. 

Another interesting observation is the following: If the output port of a 
gvrator is connected to a current-controlled two-terminal resistor, i.e.. v, = 
G ,  

f(-i,). then the input port becomes a voltage-controlled resistor. For example, 
setting G = l in Eqs. (2.16) and (2.17),  we easily obtain 

The resulting current-controlled resistor is then the dual of the original 
voltage-controlled resistor. 

Physical gyrators which approximate the property of an ideal gyrator over 
low operating frequencies (below 10 kHz) are available commercially in the 
form of integrated circuit modules. 

3 NONIJIMEAR RESISTIVE TWO-PORTS 

In the previous two sections we discussed linear resistive two-ports and their 
various characterizations and properties. In the real world we need to deal with 

il 
t :  - /G7 
+ 

V1 G, 
T=F "l  

- 

12 - 
+ 

2 

- - Figure 2.13 A gyrator terminated 
at the output port with a resistor. 
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r~ortlirrrar resistive two-ports and three-terrnina! devices such as transistors. 
Much of the material ~ i v e n  in the previous two sections can be extended and 
generalized to the rro~llirzeor case. This section illustrates the basic idea of 
nonlinear tkvo-port representation with an exampIe. Sections 4 and 5 will treat 
the modeling and characterizations of bipolar and MOS transistors together 
with dc analysis and the small-signal analysis. 

Recall that the definition of a resistive two-port is expressed by Eq. (1.1) in 
terms of two functions and four variables. Thus, for example, the following two 
equations characterize a nonlinear two-port resistor: 

l 1 3  - f , ( o , . u ~ . i , . i , ) = i l + 2 i , - ( u , + u , ) 3 - 2 ( ~ 2 - ~ , )  - 0  
113 

f2(c,.  i l .  i2) = 2il - i2 - ?(vl + v2l3 + (v2 - v l )  - 0 (3.1) 

Similar to linear resistive two-ports, there are six possible explicit represen- 
tations for nonlinear resistive two-ports, which express two variables in terms 
of the tivo others. This is a contrived example which has the remarkable 
property that can find the analytic forms of all six representations. They are 
eivsn as follo~vs: - 

1. p I  = !(ii 3 2. i, = ( U ,  + u2) 

c. = icii - t . i l  1 3 )  i2 = (v, - v,)"3 
. I  3 - 

3. cl = ( I ,  U?) 4. i, = (2u, + i:)3 
- 1 ' 3  1 '3  

i. = (2v, - I ,  ) V? = ( i i  + U , )  (3.2) 

5. c ,  = ( v 2  - is) 1 ' 3  6 ,  v , = - v , + i ,  

i ,  = (- i i  + 2c2)' i2 = ( i ; l 3  - 2 ~ ~ ) " ~  

These are the six representations of the same nonlinear resistive two-port. 
As in the case of the linear two-port (shown in Table 3.2), we summarize 

the six representations in Table 3.3. 
Each of the six representations can be plotted as two families of curves, 

each parameterized by a third variable as shown in Fig. 3.la through f, 
respectively. 

Table 3.3 Equation for the six representations of a nonlinear 
resistive two-port 
pp - 

Current-controlled representation 
ul = 61(i17 i?) 

= c2(i l ,  i Z )  

Hybrid 1 representation 
uI  = f l ( i , .  u2) 
i2 = i2( i l ,  vZ)  

Transmission I representation 
u1 = j l ( u 2 ,  -i2) 
i, = i,(uz, -iz) 

Voltage-controlled representation 
il = i,(u1, v,) 
iz = i,(v,, v,) 

Hybrid 2 representation 
il = i j ( u l ,  i2) 
uz = C,(v,, 4 )  

Transmission 2 representation 
= V^?(ulr i l l  

-i2 = L(u1, i l )  
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u1 = (i, -v2 ) 

Figure 3.1 Two families of v-i characteristics: (a )  current-controlled representation. ( b )  voltage- 
controlled representation, (c)  hybrid 1 representation. 



Figure 3.1 (Continued) Two families of v-i characteristics: (d) hydrid 2 representation, (e) 
transmission 1 representation, and (f)  transmiss,ion 2 representation. 


