1. (Reading Assignment)

Sections $6.2,6.3,6.6$ and 6.8 of Chapter 6 as well as sections 11.1 and 11.2 of Chapter 11: Hambley $3{ }^{\text {rd }}$ edition.

2. Problem 5.53

Since the reactance is negative, the load is capacitive
Power delivered is $P_{d}=I_{r m s}{ }^{2} \times R=(15)^{2} \times 100=22.5 \mathrm{~kW}$
Reactive power is $P_{r}=I_{r m s}{ }^{2} \times X=(15)^{2} \times(-50)=-11.25 \mathrm{kVAR}$
Power factor is

$$
P_{f}=\cos (\theta)=\cos \left[\tan ^{-1}\left(\frac{P_{r}}{P_{d}}\right)\right]=\cos \left[\tan ^{-1}(-0.5)\right]=\cos \left[26.57^{\circ}\right]=89.44 \%
$$

3. Problem 5.56

First let us compute the rms current ($I_{r m s}$)

$$
I=\frac{240 \sqrt{2} \angle 50^{\circ}-220 \sqrt{2} \angle 30^{\circ}}{1+j 2}=52 . \angle 52.71^{\circ} \Rightarrow I_{r m s}=36.8 A
$$

Knowing the current ($I_{r m s}$), we can now compute the power for each source (absorbed or delivered)

- Power delivered by source A
$P_{A}=240 I_{r m s} \times \cos (50-52.71)=8.8 \mathrm{~kW}$
$Q_{A}=240 I_{r m s} \times \sin (50-52.71)=-0.42 K V A R$
- Power dissipated/absorbed by source B
$P_{B}=220 I_{r m s} \times \cos (30-52.71)=7.5 \mathrm{~kW}$
$Q_{B}=220 I_{r m s} \times \sin (30-52.71)=-3.1 K V A R$
- Power dissipated/absorbed by the resistor

$$
P_{R}=I_{r m s}^{2} \times R=(36.8)^{2} \times 1 \Omega=1.35 \mathrm{~kW}
$$

- Power dissipated/absorbed by the inductor

$$
P_{r}=I_{r m s}{ }^{2} \times X=(36.8)^{2} \times(2 \Omega)=2.7 \mathrm{kVAR}
$$

4. Problem 5.68

We are asked to find the Thevenin and Norton of the circuit given:
After Zeroing the sources, we have:

Now we can compute the Thevenin impedance as follow:

$$
Z_{t}=\frac{1}{1 / 10+1 / j 5}=4.472 \angle 63.43^{\circ}=2+j 4
$$

Using KCL to compute for the current flowing at the upper end of the current source under open circuit conditions, we get:
$\frac{V_{O C}-100 \angle 45^{\circ}}{10}+\frac{V_{O C}}{j 5}=5$, Solving for V_{OC}, we get

$$
V_{t}=V_{O C}=62.56 \angle 93.80^{\circ}
$$

And $I_{t}=\frac{V_{t}}{Z_{t}}=13.99 \angle 30.36^{\circ}$
Therefore, the Thevenin and Norton equivalences are given by:

- The maximum power that this circuit can deliver to a load with complex impedance is computed as follow:

$$
P_{\text {load }}=I_{\text {rms-load }}{ }^{2} \times Z_{\text {load }}
$$

Given $Z_{\text {load }}=2-j 4$ and $I_{\text {load }}=\frac{V_{t}}{Z_{t}+Z_{\text {load }}}=\frac{62.56 \angle 93.80^{\circ}}{2+j 4+2-j 4}=15.64 \angle 93.80^{\circ}$

$$
P_{\text {load }}=I_{r m s-l o a d}^{2} \times Z_{\text {load }}=244.6 \mathrm{~W}
$$

- The maximum power that this circuit can deliver to a load with complex impedance is computed as follow:
$P_{\text {load }}=I_{\text {rms-load }}{ }^{2} \times Z_{\text {load }}$
Given $Z_{\text {load }}=R_{\text {load }}=4.472 \& I_{\text {load }}=\frac{V_{t}}{Z_{t}+Z_{\text {load }}}=\frac{62.56 \angle 93.80^{\circ}}{2+j 4+4.472}=8.223 \angle-62.08^{\circ}$ $P_{\text {load }}=I_{\text {rms-load }}{ }^{2} \times R_{\text {load }}=151.2 \mathrm{~W}$

5. Problem 6.9

The phasors for the steady state input and output of this filter are given as follow:
$V_{\text {in }}=2 \angle-25^{\circ}$ and $V_{\text {out }}=1 \angle 20^{\circ}$
Therefore, the complex value of the filter transfer function at $\mathrm{f}=5,000 \mathrm{~Hz}$ will be given as:
$H(5,000)=\frac{V_{\text {out }}}{V_{\text {in }}}=0.5 \angle 45^{\circ}$

6. Problem 6.12

Given the input signal provided as
$V_{\text {in }}(t)=1+2 \cos (2000 \pi t)+3 \sin (3000 \pi t)+4 \cos (4000 \pi t)$
One can extract the following frequency components: $0,1000,1500$ and 2000 Hz The transfer function for each of these frequencies is compute by dividing the corresponding output to the input. This results in the following:
$H(0)=\frac{3}{1}=3, \quad H(1,000)=\frac{4 \angle 30^{\circ}}{2 \angle 0^{\circ}}=2 \angle 30^{\circ}$
$H(1,500)=\frac{3 \angle 0^{\circ}}{3 \angle-90^{\circ}}=1 \angle 90^{\circ}, \quad H(2,000)=\frac{0}{4 \angle 0^{\circ}}=0$

7. Problem 6.19

Given the input signal to be $V_{i n}(t)=1+2 \cos (2000 \pi t)+3 \sin (3000 \pi t)+4 \cos (4000 \pi t)$ with frequencies components of 250,500 and 1000 Hz
The half power of the filter frequency is $f_{b}=\frac{1}{2 \pi R C}=500 \mathrm{~Hz}$

The transfer function is given by equation 6.9 in the text book $H(f)=\frac{1}{1+\left(f / f_{b}\right)}$
After computing the transfer function for the different component frequencies of $V_{i n}$, we get the following:
$H(250)=\frac{1}{1+j(250 / 500)}=0.89 \angle-26.57^{\circ}$
$H(500)=\frac{1}{1+j(500 / 500)}=0.707 \angle-45^{\circ}$
$H(1000)=\frac{1}{1+j(1000 / 500)}=0.44 \angle-63.43^{\circ}$
Applying the appropriate value of the transfer function to each of these component of the input signal allows us to an expression for the output signal which results to:

$$
V_{\text {out }}(t)=4.472 \cos \left(500 \pi t-26.57^{\circ}\right)+3.535 \cos \left(1000 \pi t-45^{\circ}\right)+2.236 \cos \left(2000 \pi t-63.43^{\circ}\right)
$$

8. Problem 6.33

To convert to decibels, we need to take 20 times the common logarithm of a transfer function. Therefore, we have:

$$
20 \log (0.5)=-6.021 d B \quad \text { and } \quad 20 \log (2)=+6.021 d B
$$

