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Preface: introduction and objectives

The digital communication industry is an enormous and rapidly growing industry, roughly com-
parable in size to the computer industry. The objective of this text is to study those aspects
of digital communication systems that are unique to those systems. That is, rather than focus-
ing on hardware and software for these systems, which is much like hardware and software for
many other kinds of systems, we focus on the fundamental system aspects of modern digital
communication.

Digital communication is a field in which theoretical ideas have had an unusually powerful
impact on system design and practice. The basis of the theory was developed in 1948 by
Claude Shannon, and is called information theory. For the first 25 years or so of its existence,
information theory served as a rich source of academic research problems and as a tantalizing
suggestion that communication systems could be made more efficient and more reliable by using
these approaches. Other than small experiments and a few highly specialized military systems,
the theory had little interaction with practice. By the mid 1970’s, however, mainstream systems
using information theoretic ideas began to be widely implemented. The first reason for this was
the increasing number of engineers who understood both information theory and communication
system practice. The second reason was that the low cost and increasing processing power
of digital hardware made it possible to implement the sophisticated algorithms suggested by
information theory. The third reason was that the increasing complexity of communication
systems required the architectural principles of information theory.

The theoretical principles here fall roughly into two categories - the first provide analytical tools
for determining the performance of particular systems, and the second put fundamental limits on
the performance of any system. Much of the first category can be understood by engineering un-
dergraduates, while the second category is distinctly graduate in nature. It is not that graduate
students know so much more than undergraduates, but rather that undergraduate engineering
students are trained to master enormous amounts of detail and to master the equations that deal
with that detail. They are not used to the patience and deep thinking required to understand
abstract performance limits. This patience comes later with thesis research.

My original purpose was to write an undergraduate text on digital communication, but experi-
ence teaching this material over a number of years convinced me that I could not write an honest
exposition of principles, including both what is possible and what is not possible, without losing
most undergraduates. There are many excellent undergraduate texts on digital communication
describing a wide variety of systems, and I didn’t see the need for another. Thus this text is
now aimed at graduate students, but accessible to patient undergraduates.

The relationship between theory, problem sets, and engineering/design in an academic subject is
rather complex. The theory deals with relationships and analysis for models of real systems. A
good theory (and information theory is one of the best) allows for simple analysis of simplified
models. It also provides structural principles that allow insights from these simple models
to be applied to more complex and realistic models. Problem sets provide students with an
opportunity to analyze these highly simplified models, and, with patience, to start to understand
the general principles. Engineering deals with making the approximations and judgment calls to
create simple models that focus on the critical elements of a situation, and from there to design
workable systems.

The important point here is that engineering (at this level) cannot really be separated from the-
ory. Engineering is necessary to choose appropriate theoretical models, and theory is necessary
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to find the general properties of those models. To oversimplify it, engineering determines what
the reality is and theory determines the consequences and structure of that reality. At a deeper
level, however, the engineering perception of reality heavily depends on the perceived structure
(all of us carry oversimplified models around in our heads). Similarly, the structures created by
theory depend on engineering common sense to focus on important issues. Engineering some-
times becomes overly concerned with detail, and theory overly concerned with mathematical
niceties, but we shall try to avoid both these excesses here.

Each topic in the text is introduced with highly oversimplified toy models. The results about
these toy models are then related to actual communication systems and this is used to generalize
the models. We then iterate back and forth between analysis of models and creation of models.
Understanding the performance limits on classes of models is essential in this process.

There are many exercises designed to help understand each topic. Some give examples showing
how an analysis breaks down if the restrictions are violated. Since analysis always treats models
rather than reality, these examples build insight into how the results about models apply to real
systems. Other exercises apply the text results to very simple cases and others generalize the
results to more complex systems. Yet others explore the sense in which theoretical models apply
to particular practical problems.

It is important to understand that the purpose of the exercises is not so much to get the ‘answer’
as to acquire understanding. Thus students using this text will learn much more if they discuss
the exercises with others and think about what they have learned after completing the exercise.
The point is not to manipulate equations (which computers can now do better than students)
but rather to understand the equations (which computers can not do).

As pointed out above, the material here is primarily graduate in terms of abstraction and pa-
tience, but requires only a knowledge of elementary probability, linear systems, and simple
mathematical abstraction, so it can be understood at the undergraduate level. For both under-
graduates and graduates, I feel strongly that learning to reason about engineering material is
more important, both in the workplace and in further education, than learning to pattern match
and manipulate equations.

Most undergraduate communication texts aim at familiarity with a large variety of different
systems that have been implemented historically. This is certainly valuable in the workplace, at
least for the near term, and provides a rich set of examples that are valuable for further study.
The digital communication field is so vast, however, that learning from examples is limited,
and in the long term it is necessary to learn the underlying principles. The examples from
undergraduate courses provide a useful background for studying these principles, but the ability
to reason abstractly that comes from elementary pure mathematics courses is equally valuable.

Most graduate communication texts focus more on the analysis of problems with less focus on
the modeling, approximation, and insight needed to see how these problems arise. Our objective
here is to use simple models and approximations as a way to understand the general principles.
We will use quite a bit of mathematics in the process, but the mathematics will be used to
establish general results precisely rather than to carry out detailed analyses of special cases.
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Chapter 1

Introduction to digital
communication

Communication has been one of the deepest needs of the human race throughout recorded
history. It is essential to forming social unions, to educating the young, and to expressing a
myriad of emotions and needs. Good communication is central to a civilized society.

The various communication disciplines in engineering have the purpose of providing technological
aids to human communication. One could view the smoke signals and drum rolls of primitive
societies as being technological aids to communication, but communication technology as we
view it today became important with telegraphy, then telephony, then video, then computer
communication, and today the amazing mixture of all of these in inexpensive, small portable
devices.

Initially these technologies were developed as separate networks and were viewed as having little
in common. As these networks grew, however, the fact that all parts of a given network had to
work together, coupled with the fact that different components were developed at different times
using different design principles, forced increasing attention on developing both understanding
and archtectural principles to make the systems continue to evolve.

This need for understanding was probably best understood at American Telephone and Tele-
graph (AT&T) where Bell Laboratories was created as the research and development arm of
AT&T. The Math center at Bell Labs became the predominant center for communication re-
search in the world, and held that position until quite recently. The central core of the principles
of communication technology were developed at that center.

Perhaps the greatest contribution from the math center was the creation of Information Theory
[17] by Claude Shannon in 1948. For perhaps the first 25 years of its existence, Information
Theory was regarded as a beautiful theory but not as a central guide to the architecture and
design of communication systems. After that time, however, both the device technology and the
engineering understanding of the theory were sufficient to enable system development to follow
information theoretic principles.

A number of information theoretic ideas and how they affect communication system design
will be explained carefully in subsequent chapters. One pair of ideas, however, is central to
almost every topic. The first is to view all communication sources, e.g., speech waveforms,
image waveforms, text files, as being representable by binary sequences. The second is to design

1



2 CHAPTER 1. INTRODUCTION TO DIGITAL COMMUNICATION

communication systems that first convert the source output into a binary sequence and then
convert that binary sequence into a form suitable for transmission over particular physical media
such as cable, twisted wire pair, optical fiber, or electromagnetic radiation through space.

Digital communication systems, by definition, are communication systems that use such a digital1

sequence as an interface between the source and the channel input (and similarly between the
channel output and final destination) (see Figure 1.1).

Source � Source
Encoder

� Channel
Encoder

�

Channel

� Source
Decoder

� Channel
Decoder

Binary
Interface

�Destination

Figure 1.1: Placing a binary interface between source and channel. The source en-
coder converts the source output to a binary sequence and the channel encoder (often
called a modulator) processes the binary sequence for transmission over the channel.
The channel decoder (demodulator) recreates the incoming binary sequence (hopefully
reliably), and the source decoder recreates the source output.

The idea of converting an analog source output to a binary sequence was quite revolutionary
in 1948, and the notion that this should be done before channel processing was even more
revolutionary. By today, with digital cameras, digital video, digital voice, etc., the idea of
digitizing any kind of source is commonplace even among the most technophobic. The notion
of a binary interface before channel transmission is almost as commonplace. For example, we
all refer to the speed of our internet connection in bits per second.

There are a number of reasons why communication systems now usually contain a binary inter-
face between source and channel (i.e., why digital communication systems are now standard).
These will be explained with the necessary qualifications later, but briefly they are as follows:

• Digital hardware has become so cheap, reliable, and miniaturized, that digital interfaces are
eminently practical.

• A standardized binary interface between source and channel simplifies implementation and
understanding, since source coding/decoding can be done independently of the channel,
and, similarly, channel coding/decoding can be done independently of the source.

1A digital sequence is a sequence made up of elements from a finite alphabet (e.g., the binary digits {0, 1},
the decimal digits {0, 1, . . . , 9} , or the letters of the English alphabet) . The binary digits are almost universally
used for digital communication and storage, so we only distinguish digital from binary in those few places where
the difference is significant.
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• A standardized binary interface between source and channel simplifies networking, which
now reduces to sending binary sequences through the network.

• One of the most important of Shannon’s information theoretic results is that if a source
can be transmitted over a channel in any way at all, it can be transmitted using a binary
interface between source and channel. This is known as the source/channel separation
theorem.

In the remainder of this chapter, the problems of source coding and decoding and channel coding
and decoding are briefly introduced. First, however, the notion of layering in a communication
system is introduced. One particularly important example of layering was already introduced in
Figure 1.1, where source coding and decoding are viewed as one layer and channel coding and
decoding are viewed as another layer.

1.1 Standardized interfaces and layering

Large communication systems such as the Public Switched Telephone Network (PSTN) and the
Internet have incredible complexity, made up of an enormous variety of equipment made by
different manufacturers at different times following different design principles. Such complex
networks need to be based on some simple architectural principles in order to be understood,
managed, and maintained.

Two such fundamental architectural principles are standardized interfaces and layering.

A standardized interface allows the user or equipment on one side of the interface to ignore all
details about the other side of the interface except for certain specified interface characteris-
tics. For example, the binary interface2 above allows the source coding/decoding to be done
independently of the channel coding/decoding.

The idea of layering in communication systems is to break up communication functions into a
string of separate layers as illustrated in Figure 1.2.

Each layer consists of an input module at the input end of a communcation system and a ‘peer’
output module at the other end. The input module at layer i processes the information received
from layer i+1 and sends the processed information on to layer i−1. The peer output module at
layer i works in the opposite direction, processing the received information from layer i−1 and
sending it on to layer i.

As an example, an input module might receive a voice waveform from the next higher layer and
convert the waveform into a binary data sequence that is passed on to the next lower layer. The
output peer module would receive a binary sequence from the next lower layer at the output
and convert it back to a speech waveform.

As another example, a modem consists of an input module (a modulator) and an output module
(a demodulator). The modulator receives a binary sequence from the next higher input layer
and generates a corresponding modulated waveform for transmission over a channel. The peer
module is the remote demodulator at the other end of the channel. It receives a more-or-
less faithful replica of the transmitted waveform and reconstructs a typically faithful replica
of the binary sequence. Similarly, the local demodulator is the peer to a remote modulator
(often collocated with the remote demodulator above). Thus a modem is an input module for

2The use of a binary sequence at the interface is not quite enough to specify it, as will be discussed later.
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input� input
module i

� input
module i−1

� · · · � input
module 1

�

channel

output
module i−1

�� · · · output
module 1

layer 1layer i−1layer i

output� output
module i

� �

interface
i−2 to i−1

interface
i−1 to i−2

interface
i−1 to i

interface
i to i−1

Figure 1.2: Layers and interfaces: The specification of the interface between layers
i and i−1 should specify how input module i communicates with input module i−1,
how the corresponding output modules communicate, and, most important, the in-
put/output behavior of the system to the right of interface. The designer of layer i−1
uses the input/output behavior of the layers to the right of i−1 to produce the required
input/output performance to the right of layer i. Later examples will show how this
multi-layer process can simplify the overall system design.

communication in one direction and an output module for independent communication in the
opposite direction. Later chapters consider modems in much greater depth, including how noise
affects the channel waveform and how that affects the reliability of the recovered binary sequence
at the output. For now, however, it is enough to simply view the modulator as converting a
binary sequence to a waveform, with the peer demodulator converting the waveform back to the
binary sequence.

As another example, the source coding/decoding layer for a waveform source can be split into 3
layers as shown in Figure 1.3. One of the advantages of this layering is that discrete sources are
an important topic in their own right (treated in Chapter 2) and correspond to the inner layer
of Figure 1.3. Quantization is also an important topic in its own right, (treated in Chapter 3).
After both of these are understood, waveform sources become quite simple to understand.

The channel coding/decoding layer can also be split into several layers, but there are a number
of ways to do this which will be discussed later. For example, binary error-correction cod-
ing/decoding can be used as an outer layer with modulation and demodulation as an inner
layer, but it will be seen later that there are a number of advantages in combining these layers
into what is called coded modulation.3 Even here, however, layering is important, but the layers
are defined differently for different purposes.

It should be emphasized that layering is much more than simply breaking a system into com-
ponents. The input and peer output in each layer encapsulate all the lower layers, and all these
lower layers can be viewed in aggregate as a communication channel. Similarly, the higher layers
can be viewed in aggregate as a simple source and destination.

The above discussion of layering implicitly assumed a point-to-point communication system
with one source, one channel, and one destination. Network situations can be considerably

3Notation is nonstandard here. A channel coder (including both coding and modulation) is often referred to
(both here and elsewhere) as a modulator. It is also often referred to as a modem, although a modem is really a
device that contains both modulator for communication in one direction and demodulator for communication in
the other.
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waveform
input � sampler � quantizer � discrete

encoder

�
binary
channel

table
lookup

� discrete
decoderwaveform

output� analog
filter
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symbol
sequence

analog
sequence

binary
interface

Figure 1.3: Breaking the source coding/decoding layer into 3 layers for a waveform
source. The input side of the outermost layer converts the waveform into a sequence
of samples and output side converts the recovered samples back to the waveform. The
quantizer then converts each sample into one of a finite set of symbols, and the peer
module recreates the sample (with some distortion). Finally the inner layer encodes
the sequence of symbols into binary digits.

more complex. With broadcasting, an input module at one layer may have multiple peer output
modules. Similarly, in multiaccess communication a multiplicity of input modules have a single
peer output module. It is also possible in network situations for a single module at one level
to interface with multiple modules at the next lower layer or the next higher layer. The use of
layering is at least as important for networks as for point-to-point communications systems. The
physical layer for networks is essentially the channel encoding/decoding layer discussed here, but
textbooks on networks rarely discuss these physical layer issues in depth. The network control
issues at other layers are largely separable from the physical layer communication issues stressed
here. The reader is referred to [1], for example, for a treatment of these control issues.

The following three sections give a fuller discussion of the components of Figure 1.1, i.e., of the
fundamental two layers (source coding/decoding and channel coding/decoding) of a point-to-
point digital communication system, and finally of the interface between them.

1.2 Communication sources

The source might be discrete, i.e., it might produce a sequence of discrete symbols, such as letters
from the English or Chinese alphabet, binary symbols from a computer file, etc. Alternatively,
the source might produce an analog waveform, such as a voice signal from a microphone, the
output of a sensor, a video waveform, etc. Or, it might be a sequence of images such as X-rays,
photographs, etc.

Whatever the nature of the source, the output from the source will be modeled as a sample
function of a random process. It is not obvious why the inputs to communication systems
should be modeled as random, and in fact this was not appreciated before Shannon developed
information theory in 1948.
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The study of communication before 1948 (and much of it well after 1948) was based on Fourier
analysis; basically one studied the effect of passing sine waves through various kinds of systems
and components and viewed the source signal as a superposition of sine waves. Our study of
channels will begin with this kind of analysis (often called Nyquist theory) to develop basic
results about sampling, intersymbol interference, and bandwidth.

Shannon’s view, however, was that if the recipient knows that a sine wave of a given frequency
is to be communicated, why not simply regenerate it at the output rather than send it over
a long distance? Or, if the recipient knows that a sine wave of unknown frequency is to be
communicated, why not simply send the frequency rather than the entire waveform?

The essence of Shannon’s viewpoint is that the set of possible source outputs, rather than any
particular output, is of primary interest. The reason is that the communication system must be
designed to communicate whichever one of these possible source outputs actually occurs. The
objective of the communication system then is to transform each possible source output into a
transmitted signal in such a way that these possible transmitted signals can be best distinguished
at the channel output. A probability measure is needed on this set of possible source outputs
to distinguish the typical from the atypical. This point of view drives the discussion of all
components of communication systems throughout this text.

1.2.1 Source coding

The source encoder in Figure 1.1 has the function of converting the input from its original
form into a sequence of bits. As discussed before, the major reasons for this almost universal
conversion to a bit sequence are as follows: digital hardware, standardized interfaces, layering,
and the source/channel separation theorem.

The simplest source coding techniques apply to discrete sources and simply involve representing
each succesive source symbol by a sequence of binary digits. For example, letters from the 27-
symbol English alphabet (including a space symbol) may be encoded into 5-bit blocks. Since
there are 32 distinct 5-bit blocks, each letter may be mapped into a distinct 5-bit block with
a few blocks left over for control or other symbols. Similarly, upper-case letters, lower-case
letters, and a great many special symbols may be converted into 8-bit blocks (“bytes”) using
the standard ASCII code.

Chapter 2 treats coding for discrete sources and generalizes the above techniques in many ways.
For example the input symbols might first be segmented into m-tuples, which are then mapped
into blocks of binary digits. More generally yet, the blocks of binary digits can be generalized
into variable-length sequences of binary digits. We shall find that any given discrete source,
characterized by its alphabet and probabilistic description, has a quantity called entropy asso-
ciated with it. Shannon showed that this source entropy is equal to the minimum number of
binary digits per source symbol required to map the source output into binary digits in such a
way that the source symbols may be retrieved from the encoded sequence.

Some discrete sources generate finite segments of symbols, such as email messages, that are
statistically unrelated to other finite segments that might be generated at other times. Other
discrete sources, such as the output from a digital sensor, generate a virtually unending sequence
of symbols with a given statistical characterization. The simpler models of Chapter 2 will
correspond to the latter type of source, but the discussion of universal source coding in Section
2.9 is sufficiently general to cover both types of sources, and virtually any other kind of source.
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The most straightforward approach to analog source coding is called analog to digital (A/D)
conversion. The source waveform is first sampled at a sufficiently high rate (called the “Nyquist
rate”). Each sample is then quantized sufficiently finely for adequate reproduction. For example,
in standard voice telephony, the voice waveform is sampled 8000 times per second; each sample
is then quantized into one of 256 levels and represented by an 8-bit byte. This yields a source
coding bit rate of 64 Kbps.

Beyond the basic objective of conversion to bits, the source encoder often has the further ob-
jective of doing this as efficiently as possible— i.e., transmitting as few bits as possible, subject
to the need to reconstruct the input adequately at the output. In this case source encoding is
often called data compression. For example, modern speech coders can encode telephone-quality
speech at bit rates of the order of 6-16 kb/s rather than 64 kb/s.

The problems of sampling and quantization are largely separable. Chapter 3 develops the basic
principles of quantization. As with discrete source coding, it is possible to quantize each sample
separately, but it is frequently preferable to segment the samples into n-tuples and then quantize
the resulting n-tuples. As shown later, it is also often preferable to view the quantizer output
as a discrete source output and then to use the principles of Chapter 2 to encode the quantized
symbols. This is another example of layering.

Sampling is one of the topics in Chapter 4. The purpose of sampling is to convert the analog
source into a sequence of real-valued numbers, i.e., into a discrete-time, analog-amplitude source.
There are many other ways, beyond sampling, of converting an analog source to a discrete-time
source. A general approach, which includes sampling as a special case, is to expand the source
waveform into an orthonormal expansion and use the coefficients of that expansion to represent
the source output. The theory of orthonormal expansions is a major topic of Chapter 4. It
forms the basis for the signal space approach to channel encoding/decoding. Thus Chapter 4
provides us with the basis for dealing with waveforms both for sources and channels.

1.3 Communication channels

We next discuss the channel and channel coding in a generic digital communication system.

In general, a channel is viewed as that part of the communication system between source and
destination that is given and not under the control of the designer. Thus, to a source-code
designer, the channel might be a digital channel with binary input and output; to a telephone-
line modem designer, it might be a 4 KHz voice channel; to a cable modem designer, it might
be a physical coaxial cable of up to a certain length, with certain bandwidth restrictions.

When the channel is taken to be the physical medium, the amplifiers, antennas, lasers, etc. that
couple the encoded waveform to the physical medium might be regarded as part of the channel
or as as part of the channel encoder. It is more common to view these coupling devices as part
of the channel, since their design is quite separable from that of the rest of the channel encoder.
This, of course, is another example of layering.

Channel encoding and decoding when the channel is the physical medium (either with or with-
out amplifiers, antennas, lasers, etc.) is usually called (digital) modulation and demodulation
respectively. The terminology comes from the days of analog communication where modulation
referred to the process of combining a lowpass signal waveform with a high frequency sinusoid,
thus placing the signal waveform in a frequency band appropriate for transmission and regu-
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latory requirements. The analog signal waveform could modulate the amplitude, frequency, or
phase, for example, of the sinusoid, but in any case, the original waveform (in the absence of
noise) could be retrieved by demodulation.

As digital communication has increasingly replaced analog communication, the modula-
tion/demodulation terminology has remained, but now refers to the entire process of digital
encoding and decoding. In most such cases, the binary sequence is first converted to a baseband
waveform and the resulting baseband waveform is converted to bandpass by the same type of
procedure used for analog modulation. As will be seen, the challenging part of this problem is
the conversion of binary data to baseband waveforms. Nonetheless, this entire process will be
referred to as modulation and demodulation, and the conversion of baseband to passband and
back will be referred to as frequency conversion.

As in the study of any type of system, a channel is usually viewed in terms of its possible inputs,
its possible outputs, and a description of how the input affects the output. This description is
usually probabilistic. If a channel were simply a linear time-invariant system (e.g., a filter), then
it could be completely characterized by its impulse response or frequency response. However,
the channels here (and channels in practice) always have an extra ingredient— noise.

Suppose that there were no noise and a single input voltage level could be communicated exactly.
Then, representing that voltage level by its infinite binary expansion, it would be possible in
principle to transmit an infinite number of binary digits by transmitting a single real number.
This is ridiculous in practice, of course, precisely because noise limits the number of bits that
can be reliably distinguished. Again, it was Shannon, in 1948, who realized that noise provides
the fundamental limitation to performance in communication systems.

The most common channel model involves a waveform input X(t), an added noise waveform Z(t),
and a waveform output Y (t) = X(t)+Z(t) that is the sum of the input and the noise, as shown
in Figure 1.4. Each of these waveforms are viewed as random processes. Random processes are
studied in Chapter 7, but for now they can be viewed intuitively as waveforms selected in some
probabilitistic way. The noise Z(t) is often modeled as white Gaussian noise (also to be studied
and explained later). The input is usually constrained in power and bandwidth.

X(t) � ��
Z(t)

� Y (t)
Input Output

Noise

Figure 1.4: An additive white Gaussian noise (AWGN) channel.

Observe that for any channel with input X(t) and output Y (t), the noise could be defined to
be Z(t) = Y (t)−X(t). Thus there must be something more to an additive-noise channel model
than what is expressed in Figure 1.4. The additional required ingredient for noise to be called
additive is that its probabilistic characterization does not depend on the input.

In a somewhat more general model, called a linear Gaussian channel, the input waveform X(t)
is first filtered in a linear filter with impulse response h(t), and then independent white Gaussian
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noise Z(t) is added, as shown in Figure 1.5, so that the channel output is

Y (t) = X(t) ∗ h(t) + Z(t),

where “∗” denotes convolution. Note that Y at time t is a function of X over a range of times,
i.e.,

Y (t) =
∫ ∞

−∞
X(t − τ)h(τ) dτ + Z(t)

X(t) � h(t) � ��
Z(t)

� Y (t)
Input Output

Noise

Figure 1.5: Linear Gaussian channel model.

The linear Gaussian channel is often a good model for wireline communication and for line-of-
sight wireless communication. When engineers, journals, or texts fail to describe the channel of
interest, this model is a good bet.

The linear Gaussian channel is a rather poor model for non-line-of-sight mobile communication.
Here, multiple paths usually exist from source to destination. Mobility of the source, destination,
or reflecting bodies can cause these paths to change in time in a way best modeled as random.
A better model for mobile communication is to replace the time-invariant filter h(t) in Figure
1.5 by a randomly-time-varying linear filter, H(t, τ), that represents the multiple paths as they
change in time. Here the output is given by Y (t) =

∫ ∞
−∞ X(t − u)H(u, t)du + Z(t). These

randomly varying channels will be studied in Chapter 9.

1.3.1 Channel encoding (modulation)

The channel encoder box in Figure 1.1 has the function of mapping the binary sequence at
the source/channel interface into a channel waveform. A particularly simple approach to this
is called binary pulse amplitude modulation (2-PAM). Let {u1, u2, . . . , } denote the incoming
binary sequence, and let each un = ±1 (rather than the traditional 0/1). Let p(t) be a given
elementary waveform such as a rectangular pulse or a sin(ωt)

ωt function. Assuming that the binary
digits enter at R bits per second (bps), the sequence u1, u2, . . . is mapped into the waveform∑

n unp(t − n
R).

Even with this trivially simple modulation scheme, there are a number of interesting questions,
such as how to choose the elementary waveform p(t) so as to satisfy frequency constraints
and reliably detect the binary digits from the received waveform in the presence of noise and
intersymbol interference.

Chapter 6 develops the principles of modulation and demodulation. The simple 2-PAM scheme
is generalized in many ways. For example, multi-level modulation first segments the incoming
bits into m-tuples. There are M = 2m distinct m-tuples, and in M -PAM, each m-tuple is
mapped into a different numerical value (such as ±1,±3,±5,±7 for M = 8). The sequence
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u1, u2, . . . of these values is then mapped into the waveform
∑

n unp(t− mn
R ). Note that the rate

at which pulses are sent is now m times smaller than before, but there are 2m different values
to be distinguished at the receiver for each elementary pulse.

The modulated waveform can also be a complex baseband waveform (which is then modulated
up to an appropriate passband as a real waveform). In a scheme called quadrature amplitude
modulation (QAM), the bit sequence is again segmented into m-tuples, but now there is a
mapping from binary m-tuples to a set of M = 2m complex numbers. The sequence u1, u2, . . . ,
of outputs from this mapping is then converted to the complex waveform

∑
n unp(t − mn

R ).

Finally, instead of using a fixed signal pulse p(t) multiplied by a selection from M real or complex
values, it is possible to choose M different signal pulses, p1(t), . . . , pM (t). This includes frequency
shift keying, pulse position modulation, phase modulation, and a host of other strategies.

It is easy to think of many ways to map a sequence of binary digits into a waveform. We shall
find that there is a simple geometric “signal-space” approach, based on the results of Chapter
4, for looking at these various combinations in an integrated way.

Because of the noise on the channel, the received waveform is different from the transmitted
waveform. A major function of the demodulator is that of detection. The detector attempts
to choose which possible input sequence is most likely to have given rise to the given received
waveform. Chapter 7 develops the background in random processes necessary to understand this
problem, and Chapter 8 uses the geometric signal-space approach to analyze and understand
the detection problem.

1.3.2 Error correction

Frequently the error probability incurred with simple modulation and demodulation techniques
is too high. One possible solution is to separate the channel encoder into two layers, first an
error-correcting code, and then a simple modulator.

As a very simple example, the bit rate into the channel encoder could be reduced by a factor
of 3, and then each binary input could be repeated 3 times before entering the modulator. If
at most one of the 3 binary digits coming out of the demodulator were incorrect, it could be
corrected by majority rule at the decoder, thus reducing the error probability of the system at
a considerable cost in data rate.

The scheme above (repetition encoding followed by majority-rule decoding) is a very simple
example of error-correction coding. Unfortunately, with this scheme, small error probabilities
are achieved only at the cost of very small transmission rates.

What Shannon showed was the very unintuitive fact that more sophisticated coding schemes can
achieve arbitrarily low error probability at any data rate above a value known as the channel
capacity. The channel capacity is a function of the probabilistic description of the output
conditional on each possible input. Conversely, it is not possible to achieve low error probability
at rates above the channel capacity. A brief proof of this channel coding theorem is given in
Chapter 8, but readers should refer to texts on Information Theory such as [4] or [3]) for detailed
coverage.

The channel capacity for a bandlimited additive white Gaussian noise channel is perhaps the
most famous result in information theory. If the input power is limited to P , the bandwidth
limited to W , and the noise power per unit bandwidth is N0, then the capacity (in bits per



1.4. DIGITAL INTERFACE 11

second) is

C = W log2

(
1 +

P

N0W

)
.

Only in the past few years have channel coding schemes been developed that can closely approach
this channel capacity.

Early uses of error-correcting codes were usually part of a two-layer system similar to that
above, where a digital error-correcting encoder is followed by a modulator. At the receiver,
the waveform is first demodulated into a noisy version of the encoded sequence, and then this
noisy version is decoded by the error-correcting decoder. Current practice frequently achieves
better performance by combining error correction coding and modulation together in coded
modulation schemes. Whether the error correction and traditional modulation are separate
layers or combined, the combination is generally referred to as a modulator and a device that
does this modulation on data in one direction and demodulation in the other direction is referred
to as a modem.

The subject of error correction has grown over the last 50 years to the point where complex and
lengthy textbooks are dedicated to this single topic (see, for example, [?] and [?].) This text
provides only an introduction to error-correcting codes.

The final topic of the text is channel encoding and decoding for wireless channels. Considerable
attention is paid here to modeling physical wireless media. Wireless channels are subject not
only to additive noise but also random fluctuations in the strength of multiple paths between
transmitter and receiver. The interaction of these paths causes fading, and we study how this
affects coding, signal selection, modulation, and detection. Wireless communication is also used
to discuss issues such as channel measurement, and how these measurements can be used at
input and output. Finally there is a brief case study of CDMA (code division multiple access),
which ties together many of the topics in the text.

1.4 Digital interface

The interface between the source coding layer and the channel coding layer is a sequence of bits.
However, this simple characterization does not tell the whole story. The major complicating
factors are as follows:

• Unequal rates: The rate at which bits leave the source encoder is often not perfectly matched
to the rate at which bits enter the channel encoder.

• Errors: Source decoders are usually designed to decode an exact replica of the encoded
sequence, but the channel decoder makes occasional errors.

• Networks: Encoded source outputs are often sent over networks, traveling serially over
several channels; each channel in the network typically also carries the output from a number
of different source encoders.

The first two factors above appear both in point-to-point communication systems and in net-
works. They are often treated in an ad hoc way in point-to-point systems, whereas they must
be treated in a standardized way in networks. The third factor, of course, must also be treated
in a standardized way in networks.
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The usual approach to these problems in networks is to convert the superficially simple binary
interface above into multiple layers as illustrated in Figure 1.6

source
input

� source
encoder

� TCP
input

� IP
input

� DLC
input

� channel
encoder

�

channel

�source
output

� source
decoder

� TCP
output

� IP
output

� DLC
output

� channel
decoder

Figure 1.6: The replacement of the binary interface in Figure 1.6 with 3 layers in an
oversimplified view of the internet: There is a TCP (transport control protocol) module
associated with each source/destination pair; this is responsible for end-to-end error
recovery and for slowing down the source when the network becomes congested. There
is an IP (internet protocol) module associated with each node in the network; these
modules work together to route data through the network and to reduce congestion.
Finally there is a DLC (data link control) module associated with each channel; this
accomplishes rate matching and error recovery on the channel. In network terminology,
the channel, with its encoder and decoder, is called the physical layer.

How the layers in Figure 1.6 operate and work together is a central topic in the study of networks
and is treated in detail in network texts such as [1]. These topics are not considered in detail
here, except for the very brief introduction to follow and a few comments as needed later.

1.4.1 Network aspects of the digital interface

The output of the source encoder is usually segmented into packets (and in many cases, such
as email and data files, is already segmented in this way). Each of the network layers then
adds some overhead to these packets, adding a header in the case of TCP (transmission control
protocol) and IP (internet protocol) and adding both a header and trailer in the case of DLC
(data link control). Thus what enters the channel encoder is a sequence of frames, where each
frame has the structure illustrated in Figure 1.7.

TCP
header

IP
header

DLC
header

DLC
trailer

Source encoded
packet

Figure 1.7: The structure of a data frame using the layers of Figure 1.6

.

These data frames, interspersed as needed by idle-fill, are strung together and the resulting bit
stream enters the channel encoder at its synchronous bit rate. The header and trailer supplied
by the DLC must contain the information needed for the receiving DLC to parse the received
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bit stream into frames and eliminate the idle-fill.

The DLC also provides protection against decoding errors made by the channel decoder. Typi-
cally this is done by using a set of 16 or 32 parity checks in the frame trailer. Each parity check
specifies whether a given subset of bits in the frame contains an even or odd number of 1’s. Thus
if errors occur in transmission, it is highly likely that at least one of these parity checks will fail
in the receiving DLC. This type of DLC is used on channels that permit transmission in both
directions. Thus when an erroneous frame is detected, it is rejected and a frame in the opposite
direction requests a retransmission of the erroneous frame. Thus the DLC header must contain
information about frames traveling in both directions. For details about such protocols, see, for
example, [1].

An obvious question at this point is why error correction is typically done both at the physical
layer and at the DLC layer. Also, why is feedback (i.e., error detection and retransmission) used
at the DLC layer and not at the physical layer? A partial answer is that using both schemes
together yields a smaller error probability than using either one separately. At the same time,
combining both procedures (with the same overall overhead) and using feedback at the physical
layer can result in much smaller error probabilities. The two layer approach is typically used in
practice because of standardization issues, but in very difficult communication situations, the
combined approach can be preferable. From a tutorial standpoint, however, it is preferable to
acquire a good understanding of channel encoding and decoding using transmission in only one
direction before considering the added complications of feedback.

When the receiving DLC accepts a frame, it strips off the DLC header and trailer and the
resulting packet enters the IP layer. In the IP layer, the address in the IP header is inspected
to determine whether the packet is at its destination or must be forwarded through another
channel. Thus the IP layer handles routing decisions, and also sometimes the decision to drop
a packet if the queues at that node are too long.

When the packet finally reaches its destination, the IP layer strips off the IP header and passes
the resulting packet with its TCP header to the TCP layer. The TCP module then goes through
another error recovery phase4 much like that in the DLC module and passes the accepted packets,
without the TCP header, on to the destination decoder. The TCP and IP layers are also jointly
responsible for congestion control, which ultimately requires the ability to either reduce the rate
from sources as required or to simply drop sources that cannot be handled (witness dropped
cell-phone calls).

In terms of sources and channels, these extra layers simply provide a sharper understanding of
the digital interface between source and channel. That is, source encoding still maps the source
output into a sequence of bits, and from the source viewpoint, all these layers can simply be
viewed as a channel to send that bit sequence reliably to the destination.

In a similar way, the input to a channel is a sequence of bits at the channel’s synchronous input
rate. The output is the same sequence, somewhat delayed and with occasional errors.

Thus both source and channel have digital interfaces, and the fact that these are slightly dif-
ferent because of the layering is in fact an advantage. The source encoding can focus solely on
minimizing the output bit rate (perhaps with distortion and delay constraints) but can ignore

4Even after all these layered attempts to prevent errors, occasional errors are inevitable. Some are caught by
human intervention, many don’t make any real difference, and a final few have consequences. C’est la vie. The
purpose of communication engineers and network engineers is not to eliminate all errors, which is not possible,
but rather to reduce their probability as much as practically possible.
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the physical channel or channels to be used in transmission. Similarly the channel encoding can
ignore the source and focus solely on maximizing the transmission bit rate (perhaps with delay
and error rate constraints).



Chapter 2

Coding for Discrete Sources

2.1 Introduction

A general block diagram of a point-to-point digital communication system was given in Figure
1.1. The source encoder converts the sequence of symbols from the source to a sequence of
binary digits, preferably using as few binary digits per symbol as possible. The source decoder
performs the inverse operation. Initially, in the spirit of source/channel separation, we ignore
the possibility that errors are made in the channel decoder and assume that the source decoder
operates on the source encoder output.

We first distinguish between three important classes of sources:

• Discrete sources

The output of a discrete source is a sequence of symbols from a given discrete alphabet X .
This alphabet could be the alphanumeric characters, the characters on a computer keyboard,
English letters, Chinese characters, the symbols in sheet music (arranged in some systematic
fashion), binary digits, etc.

The discrete alphabets in this chapter are assumed to contain a finite set of symbols.1

It is often convenient to view the sequence of symbols as occurring at some fixed rate in
time, but there is no need to bring time into the picture (for example, the source sequence
might reside in a computer file and the encoding can be done off-line).

This chapter focuses on source coding and decoding for discrete sources.” Supplementary
references for source coding are Chapter 3 of [4] and Chapter 5 of [3]. A more elementary
partial treatment is in Sections 4.1-4.3 of [14].

• Analog waveform sources

The output of an analog source, in the simplest case, is an analog real waveform, repre-
senting, for example, a speech waveform. The word analog is used to emphasize that the
waveform can be arbitrary and is not restricted to taking on amplitudes from some discrete
set of values.

1A set is usually defined to be discrete if it includes either a finite or countably infinite number of members.
The countably infinite case does not extend the basic theory of source coding in any important way, but it is
occasionally useful in looking at limiting cases, which will be discussed as they arise.

15
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It is also useful to consider analog waveform sources with outputs that are complex functions
of time; both real and complex waveform sources are discussed later.

More generally, the output of an analog source might be an image (represented as an inten-
sity function of horizontal/vertical location) or video (represented as an intensity function
of horizontal/vertical location and time). For simplicity, we restrict our attention to analog
waveforms, mapping a single real variable, time, into a real or complex-valued intensity.

• Discrete-time sources with analog values (analog sequence sources)

These sources are halfway between discrete and analog sources. The source output is a
sequence of real numbers (or perhaps complex numbers). Encoding such a source is of
interest in its own right, but is of interest primarily as a subproblem in encoding analog
sources. That is, analog waveform sources are almost invariably encoded by first either
sampling the analog waveform or representing it by the coefficients in a series expansion.
Either way, the result is a sequence of numbers, which is then encoded.

There are many differences between discrete sources and the latter two types of analog sources.
The most important is that a discrete source can be, and almost always is, encoded in such a
way that the source output can be uniquely retrieved from the encoded string of binary digits.
Such codes are called uniquely decodable2. On the other hand, for analog sources, there is
usually no way to map the source values to a bit sequence such that the source values are
uniquely decodable. For example, an infinite number of binary digits is required for the exact
specification of an arbitrary real number between 0 and 1. Thus, some sort of quantization is
necessary for these analog values, and this introduces distortion. Source encoding for analog
sources thus involves a trade-off between the bit rate and the amount of distortion.

Analog sequence sources are almost invariably encoded by first quantizing each element of the
sequence (or more generally each successive n-tuple of sequence elements) into one of a finite
set of symbols. This symbol sequence is a discrete sequence which can then be encoded into a
binary sequence.

Figure 2.1 summarizes this layered view of analog and discrete source coding. As illustrated,
discrete source coding is both an important subject in its own right for encoding text-like sources,
but is also the inner layer in the encoding of analog sequences and waveforms.

The remainder of this chapter discusses source coding for discrete sources. The following chapter
treats source coding for analog sequences and the fourth chapter treats waveform sources.

2.2 Fixed-length codes for discrete sources

The simplest approach to encoding a discrete source into binary digits is to create a code C that
maps each symbol x of the alphabet X into a distinct codeword C(x), where C(x) is a block of
binary digits. Each such block is restricted to have the same block length L, which is why the
code is called a fixed-length code.

2Uniquely-decodable codes are sometimes called noiseless codes in elementary treatments. Uniquely decodable
captures both the intuition and the precise meaning far better than noiseless. Unique decodability is defined
shortly.
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Figure 2.1: Discrete sources require only the inner layer above, whereas the inner two
layers are used for analog sequences and all three layers are used for waveforms sources.

For example, if the alphabet X consists of the 7 symbols {a, b, c, d, e, f, g}, then the following
fixed-length code of block length L = 3 could be used.

C(a) = 000
C(b) = 001
C(c) = 010
C(d) = 011
C(e) = 100
C(f) = 101
C(g) = 110.

The source output, x1, x2, . . . , would then be encoded into the encoded output C(x1)C(x2) . . .
and thus the encoded output contains L bits per source symbol. For the above example the
source sequence bad . . . would be encoded into 001000011 . . . . Note that the output bits are
simply run together (or, more technically, concatenated).

There are 2L different combinations of values for a block of L bits. Thus, if the number of
symbols in the source alphabet, M = |X |, satisfies M ≤ 2L, then a different binary L-tuple
may be assigned to each symbol. Assuming that the decoder knows where the beginning of the
encoded sequence is, the decoder can segment the sequence into L bit blocks and then decode
each block into the corresponding source symbol.

In summary, if the source alphabet has size M , then this coding method requires L = �log2 M�
bits to encode each source symbol, where �w� denotes the smallest integer greater than or equal
to the real number w. Thus log2 M ≤ L < log2 M + 1. The lower bound, log2 M , can be
achieved with equality if and only if M is a power of 2.

A technique to be used repeatedly is that of first segmenting the sequence of source symbols into
successive blocks of n source symbols at a time. Given an alphabet X of M symbols, there are
Mn possible n-tuples. These Mn n-tuples are regarded as the elements of a super-alphabet. Each
n-tuples can be encoded rather than encoding the original symbols. Using fixed-length source
coding on these n-tuples, each source n-tuple can be encoded into L = �log2 Mn� bits. The rate
L = L/n of encoded bits per original source symbol is then bounded by log2 M ≤ L < log2 M+ 1

n ,
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because:

L =
�log2 Mn�

n
≥ n log2 M

n
= log2 M ;

L =
�log2 Mn�

n
<

n(log2 M) + 1
n

= log2 M +
1
n

.

The conclusion is that by letting n become sufficiently large, the average number of coded bits
per source symbol can be made arbitrarily close to log2 M , regardless of whether M is a power
of 2.

Some remarks:

• This simple scheme to make L arbitrarily close to log2 M is of greater theoretical interest
than practical interest. As shown later, log2 M is the minimum possible binary rate for
uniquely-decodable source coding if the source symbols are independent and equiprobable.
Thus this scheme asymptotically approaches this minimum.

• This result begins to hint at why measures of information are logarithmic in the alphabet
size.3 The logarithm is usually taken to the base 2 in discussions of binary codes. Henceforth
log n means “log2 n.”

• This method is nonprobabilistic; it takes no account of whether some symbols occur more
frequently than others, and it works robustly regardless of the symbol frequencies. But if
it is known that some symbols occur more frequently than others, then the rate L of coded
bits per source symbol can be reduced by assigning shorter bit sequences to more common
symbols in a variable-length source code. This will be our next topic.

2.3 Variable-length codes for discrete sources

The motivation for using variable-length encoding on discrete sources is the intuition that data
compression can be achieved by mapping more probable symbols into shorter bit sequences,
and less likely symbols into longer bit sequences. This intuition was used in the Morse code of
old-time telegraphy in which letters were mapped into strings of dots and dashes, using shorter
strings for common letters and longer strings for less common letters.

A variable-length code C maps each source symbol aj in a source alphabet X = {a1, . . . , aM} to
a binary string C(aj), called a codeword. The number of bits in C(aj) is called the length l(aj) of
C(aj). For example, a variable-length code for the alphabet X = {a, b, c} and its lengths might
be given by

C(a) = 0 l(a) = 1
C(b) = 10 l(b) = 2
C(c) = 11 l(c) = 2

Successive codewords of a variable-length code are assumed to be transmitted as a continuing
sequence of bits, with no demarcations of codeword boundaries (i.e., no commas or spaces). The

3The notion that information can be viewed as a logarithm of a number of possibilities was first suggested by
Hartley [8] in 1927.
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source decoder, given an original starting point, must determine where the codeword boundaries
are; this is called parsing.

A potential system issue with variable-length coding is the requirement for buffering. If source
symbols arrive at a fixed rate and the encoded bit sequence must be transmitted at a fixed bit
rate, then a buffer must be provided between input and output. This requires some sort of
recognizable ‘fill’ to be transmitted when the buffer is empty and the possibility of lost data
when the buffer is full. There are many similar system issues, including occasional errors on
the channel, initial synchronization, terminal synchronization, etc. Many of these issues are
discussed later, but they are more easily understood after the more fundamental issues are
discussed.

2.3.1 Unique decodability

The major property that is usually required from any variable-length code is that of unique
decodability. This essentially means that for any sequence of source symbols, that sequence can
be reconstructed unambiguously from the encoded bit sequence. Here initial synchronization is
assumed: the source decoder knows which is the first bit in the coded bit sequence. Note that
without initial synchronization, not even a fixed-length code can be uniquely decoded.

Clearly, unique decodability requires that C(aj) �= C(ak) for each k �= j. More than that,
however, it requires that strings4 of encoded symbols be distinguishable. The following definition
says this precisely:

Definition 2.3.1. A code C for a discrete source is uniquely decodable if, for any string
of source symbols, say x1, x2, . . . , xn, the concatenation5 of the corresponding codewords,
C(x1)C(x2) · · · C(xn), differs from the concatenation of the codewords C(x′

1)C(x′
2) · · · C(x′

m) for
any other string x′

1, x
′
2, . . . , x′

m of source symbols.

In other words, C is uniquely decodable if all concatenations of codewords are distinct.

Remember that there are no commas or spaces between codewords; the source decoder has
to determine the codeword boundaries from the received sequence of bits. (If commas were
inserted, the code would be ternary rather than binary.)

For example, the above code C for the alphabet X = {a, b, c} is soon shown to be uniquely
decodable. However, the code C′ defined by

C′(a) = 0
C′(b) = 1
C′(c) = 01

is not uniquely decodable, even though the codewords are all different. If the source decoder
observes 01, it cannot determine whether the source emitted (a b) or (c).

Note that the property of unique decodability depends only on the set of codewords and not
on the mapping from symbols to codewords. Thus we can refer interchangeably to uniquely-
decodable codes and uniquely-decodable codeword sets.

4A string of symbols is an n-tuple of symbols for any finite n. A sequence of symbols is an n-tuple in the limit
n → ∞, although the word sequence is also used when the length might be either finite or infinite.

5The concatenation of two strings, say u1 · · ·ul and v1 · · · vl′ is the combined string u1 · · · ul v1 · · · vl′ .
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2.3.2 Prefix-free codes for discrete sources

Decoding the output from a uniquely-decodable code, and even determining whether it is
uniquely decodable, can be quite complicated. However, there is a simple class of uniquely-
decodable codes called prefix-free codes. As shown later, these have the following advantages
over other uniquely-decodable codes:6

• If a uniquely-decodable code exists with a certain set of codeword lengths, then a prefix-free
code can easily be constructed with the same set of lengths.

• The decoder can decode each codeword of a prefix-free code immediately on the arrival of
the last bit in that codeword.

• Given a probability distribution on the source symbols, it is easy to construct a prefix-free
code of minimum expected length.

Definition 2.3.2. A prefix of a string y1 · · · yl is any initial substring y1 · · · yl′ , l′ ≤ l of that
string. The prefix is proper if l′ < l. A code is prefix-free if no codeword is a prefix of any other
codeword.

For example, the code C with codewords 0, 10, and 11 is prefix-free, but the code C′ with
codewords 0, 1, and 01 is not. Every fixed-length code with distinct codewords is prefix-free.

We will now show that every prefix-free code is uniquely decodable. The proof is constructive,
and shows how the decoder can uniquely determine the codeword boundaries.

Given a prefix-free code C, a corresponding binary code tree can be constructed which grows
from a root on the left to leaves on the right representing codewords. Each branch is labelled
0 or 1 and each node represents the binary string corresponding to the branch labels from the
root to that node. The tree is extended just enough to include each codeword. That is, each
node in the tree is either a codeword or proper prefix of a codeword (see Figure 2.2).

����

����

����

��������1

0

1

0 1

a

c

b
a → 0
b → 11
c → 101

Figure 2.2: The binary code tree for a prefix-free code.

The prefix-free condition ensures that each codeword corresponds to a leaf node (i.e., a node
with no adjoining branches going to the right). Each intermediate node (i.e., nodes having one
or more adjoining branches going to the right) is a prefix of some codeword reached by traveling
right from the intermediate node.

6With all the advantages of prefix-free codes, it is difficult to understand why the more general class is even
discussed. This will become clearer much later.



2.3. VARIABLE-LENGTH CODES FOR DISCRETE SOURCES 21

The tree of Figure 2.2 has an intermediate node, 10, with only one right-going branch. This shows
that the codeword for c could be shortened to 10 without destroying the prefix-free property.
This is shown in Figure 2.3.
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a

c

b
a → 0
b → 11
c → 10

Figure 2.3: A more efficient code than that of Figure 2.2.

A prefix-free code will be called full if no new codeword can be added without destroying the
prefix-free property. As just seen, a prefix-free code is also full if no codeword can be shortened
without destroying the prefix-free property. Thus the code of Figure 2.2 is not full, but that of
Figure 2.3 is.

To see why the prefix-free condition guarantees unique decodability, consider the tree for the
concatenation of two codewords. This is illustrated in Figure 2.4 for the code of Figure 2.3.
This new tree has been formed simply by grafting a copy of the original tree onto each of the
leaves of the original tree. Each concatenation of two codewords thus lies on a different node
of the tree and also differs from each single codeword. One can imagine grafting further trees
onto the leaves of Figure 2.4 to obtain a tree representing still more codewords concatenated
together. Again all concatenations of code words lie on distinct nodes, and thus correspond to
distinct binary strings.
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aa → 00
ab → 011
ac → 010
ba → 110
bb → 1111
bc → 1110
ca → 100
cb → 1011
cc → 1010

Figure 2.4: Binary code tree for two codewords; upward branches represent 1’s.

An alternative way to see that prefix-free codes are uniquely decodable is to look at the codeword
parsing problem from the viewpoint of the source decoder. Given the encoded binary string for
any strong of source symbols, the source decoder can decode the first symbol simply by reading
the string from left to right and following the corresponding path in the code tree until it reaches
a leaf, which must correspond to the first codeword by the prefix-free property. After stripping
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off the first codeword, the remaining binary string is again a string of codewords, so the source
decoder can find the second codeword in the same way, and so on ad infinitum.

For example, suppose a source decoder for the code of Figure 2.3 decodes the sequence
1010011 · · · . Proceeding through the tree from the left, it finds that 1 is not a codeword,
but that 10 is the codeword for c. Thus c is decoded as the first symbol of the source output,
leaving the string 10011 · · · . Then c is decoded as the next symbol, leaving 011 · · · , which is
decoded into a and then b, and so forth.

This proof also shows that prefix-free codes can be decoded with no delay. As soon as the final bit
of a codeword is received at the decoder, the codeword can be recognized and decoded without
waiting for additional bits. For this reason, prefix-free codes are sometimes called instantaneous
codes.

It has been shown that all prefix-free codes are uniquely decodable. The converse is not true,
as shown by the following code:

C(a) = 0
C(b) = 01
C(c) = 011

An encoded sequence for this code can be uniquely parsed by recognizing 0 as the beginning of
each new code word. A different type of example is given in Exercise 2.6.

With variable-length codes, if there are errors in data transmission, then the source decoder
may lose codeword boundary synchronization and may make more than one symbol error. It is
therefore important to study the synchronization properties of variable-length codes. For exam-
ple, the prefix-free code {0, 10, 110, 1110, 11110} is instantaneously self-synchronizing, because
every 0 occurs at the end of a codeword. The shorter prefix-free code {0, 10, 110, 1110, 1111} is
probabilistically self-synchronizing; again, any observed 0 occurs at the end of a codeword, but
since there may be a sequence of 1111 codewords of unlimited length, the length of time before
resynchronization is a random variable. These questions are not pursued further here.

2.3.3 The Kraft inequality for prefix-free codes

The Kraft inequality [6] is a condition determining whether it is possible to construct a prefix-
free code for a given discrete source alphabet X = {a1, . . . , aM} with a given set of codeword
lengths {l(aj); 1 ≤ j ≤ M}.
Theorem 2.3.1 (Kraft inequality for prefix-free codes). Every prefix-free code for an al-
phabet X = {a1, . . . , aM} with codeword lengths {l(aj); 1 ≤ j ≤ M} satisfies

M∑
j=1

2−l(aj) ≤ 1. (2.1)

Conversely, if (2.1) is satisfied, then a prefix-free code with lengths {l(aj); 1 ≤ j ≤ M} exists.

Moreover, every full prefix-free code satisfies (2.1) with equality and every non-full prefix-free
code satisfies it with strict inequality.

For example, this theorem implies that there exists a full prefix-free code with codeword lengths
{1, 2, 2} (two such examples have already been given), but there exists no prefix-free code with
codeword lengths {1, 1, 2}.
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Before proving the theorem, we show how to represent codewords as base 2 expansions (the
base 2 analog of base 10 decimals) in the binary number system. After understanding this
representation, the theorem will be almost obvious. The base 2 expansion .y1y2 · · · yl represents
the rational number

∑l
j=1 yj2−j . For example, .011 represents 1/4 + 1/8.

Ordinary decimals with l digits are frequently used to indicate an approximation of a real number
to l places of accuracy. Here, in the same way, the base 2 expansion .y1y2 · · · yl is viewed as
‘covering’ the interval7 [

∑l
i=1 yi2−i,

∑l
i=1 yi2−i + 2−l). This interval has size 2−l and includes

all numbers whose base 2 expansions start with .y1 . . . yl.

In this way, any codeword C(aj) of length l is represented by a rational number in the interval
[0, 1) and covers an interval of size 2−l which includes all strings that contain C(aj) as a prefix
(see Figure 2.3). The proof of the theorem follows:
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00 −→ .00

01 −→ .01

1 −→ .1

1.0

Interval [0, 1/4)

Interval [1/4, 1/2)

Interval [1/2, 1)

Figure 2.5: Base 2 expansion numbers and intervals representing codewords. The
codewords represented above are (00, 01, and 1).

Proof: First, assume that C is a prefix-free code with codeword lengths {l(aj), 1 ≤ j ≤ M}.
For any distinct aj and ak in X , it was shown above that the base 2 expansion corresponding
to C(aj) cannot lie in the interval corresponding to C(ak) since C(ak) is not a prefix of C(aj).
Thus the lower end of the interval corresponding to any codeword C(aj) cannot lie in the interval
corresponding to any other codeword. Now, if two of these intervals intersect, then the lower
end of one of them must lie in the other, which is impossible. Thus the two intervals must be
disjoint and thus the set of all intervals associated with the codewords are disjoint. Since all
these intervals are contained in the interval [0, 1) and the size of the interval corresponding to
C(aj) is 2−l(aj), (2.1) is established.

Next note that if (2.1) is satisfied with strict inequality, then some interval exists in [0, 1) that
does not intersect any codeword interval; thus another codeword can be ‘placed’ in this interval
and the code is not full. If (2.1) is satisfied with equality, then the intervals fill up [0, 1). In this
case no additional code word can be added and the code is full.

Finally we show that a prefix-free code can be constructed from any desired set of codeword
lengths {l(aj), 1 ≤ j ≤ M} for which (2.1) is satisfied. Put the set of lengths in nondecreasing
order, l1 ≤ l2 ≤ · · · ≤ lM and let u1, . . . , uM be the real numbers corresponding to the codewords
in the construction to be described. The construction is quite simple: u1 = 0, and for all

7Brackets and parentheses, respectively, are used to indicate closed and open boundaries; thus the interval
[a, b) means the set of real numbers u such that a ≤ u < b.
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j, 1 < j ≤ M ,

uj =
j−1∑
i=1

2−li . (2.2)

Each term on the right is an integer multiple of 2−lj , so uj is also an integer multiple of 2−lj . From
(2.1), uj < 1, so uj can be represented by a base 2 expansion with lj places. The corresponding
codeword of length lj can be added to the code while preserving prefix-freedom (see Figure 2.6).
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C(1) = 00

C(2) = 01

C(3) = 10

C(4) = 110
C(5) = 111

Figure 2.6: Construction of codewords for the set of lengths {2, 2, 2, 3, 3}. C(i) is formed
from ui by representing ui to li places.

Some final remarks on the Kraft inequality:

• Just because a code has lengths that satisfy (2.1), it does not follow that the code is prefix-
free, or even uniquely decodable.

• Exercise 2.11 shows that Theorem 2.3.1 also holds for all uniquely-decodable codes— i.e.,
there exists a uniquely-decodable code with codeword lengths {l(aj), 1 ≤ j ≤ M} if and
only if (2.1) holds. This will imply that if a uniquely-decodable code exists with a certain
set of codeword lengths, then a prefix-free code exists with the same set of lengths. So why
use any code other than a prefix-free code?

2.4 Probability models for discrete sources

It was shown above that prefix-free codes exist for any set of codeword lengths satisfying the
Kraft inequality. When does it desirable to use one of these codes?– i.e., when is the expected
number of coded bits per source symbol less than log M and why is the expected number of
coded bits per source symbol the primary parameter of importance?

This question cannot be answered without a probabilistic model for the source. For example,
the M = 4 prefix-free set of codewords {0, 10, 110, 111} has an expected length of 2.25 >
2 = log M if the source symbols are equiprobable, but if the source symbol probabilities are
{1/2, 1/4, 1/8, 1/8}, then the expected length is 1.75 < 2.

The discrete sources that one meets in applications usually have very complex statistics. For
example, consider trying to compress email messages. In typical English text, some letters such
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as e and o occur far more frequently than q, x, and z. Moreover, the letters are not independent;
for example h is often preceded by t, and q is almost always followed by u. Next, some strings
of letters are words, while others are not; those that are not have probability near 0 (if in
fact the text is correct English). Over longer intervals, English has grammatical and semantic
constraints, and over still longer intervals, such as over multiple email messages, there are still
further constraints.

It should be clear therefore that trying to find an accurate probabilistic model of a real-world
discrete source is not going to be a productive use of our time. An alternative approach, which
has turned out to be very productive, is to start out by trying to understand the encoding of
“toy” sources with very simple probabilistic models. After studying such toy sources, it will
be shown how to generalize to source models with more and more general structure, until,
presto, real sources can be largely understood even without good stochastic models. This is a
good example of a problem where having the patience to look carefully at simple and perhaps
unrealistic models pays off handsomely in the end.

The type of toy source that will now be analyzed in some detail is called a discrete memoryless
source.

2.4.1 Discrete memoryless sources

A discrete memoryless source (DMS) is defined by the following properties:

• The source output is an unending sequence, X1, X2, X3, . . . , of randomly selected symbols
from a finite set X = {a1, a2, . . . , aM}, called the source alphabet.

• Each source output X1, X2, . . . is selected from X using the same probability mass function
(pmf) {pX(a1), . . . , pX(aM )}. Assume that pX(aj) > 0 for all j, 1 ≤ j ≤ M , since there is
no reason to assign a code word to a symbol of zero probability and no reason to model a
discrete source as containing impossible symbols.

• Each source output Xm is statistically independent of the previous outputs X1, . . . , Xm−1.

The randomly chosen symbols coming out of the source are called random symbols. They are
very much like random variables except that they may take on nonnumeric values. Thus, if
X denotes the result of a fair coin toss, then it can be modeled as a random symbol that
takes values in the set {Heads, Tails} with equal probability. Note that if X is a nonnumeric
random symbol, then it makes no sense to talk about its expected value. However, the notion
of statistical independence between random symbols is the same as that for random variables,
i.e., the event that Xi is any given element of X is independent of the events corresponding to
the values of the other random symbols.

The word memoryless in the definition refers to the statistical independence between different
random symbols, i.e., each variable is chosen with no memory of how the previous random
symbols were chosen. In other words, the source symbol sequence is independent and identically
distributed (iid).8

In summary, a DMS is a semi-infinite iid sequence of random symbols

X1, X2, X3, . . .

8Do not confuse this notion of memorylessness with any non-probabalistic notion in system theory.
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each drawn from the finite set X , each element of which has positive probability.

A sequence of independent tosses of a biased coin is one example of a DMS. The sequence of
symbols drawn (with replacement) in a ScrabbleTM game is another. The reason for studying
these sources is that they provide the tools for studying more realistic sources.

2.5 Minimum L for prefix-free codes

The Kraft inequality determines which sets of codeword lengths are possible for prefix-free codes.
Given a discrete memoryless source (DMS), we want to determine what set of codeword lengths
can be used to minimize the expected length of a prefix-free code for that DMS. That is, we
want to minimize the expected length subject to the Kraft inequality.

Suppose a set of lengths l(a1), . . . , l(aM ) (subject to the Kraft inequality) is chosen for encoding
each symbol into a prefix-free codeword. Define L(X) (or more briefly L) as a random variable
representing the codeword length for the randomly selected source symbol. The expected value
of L for the given code is then given by

L = E[L] =
M∑

j=1

l(aj)pX(aj).

We want to find Lmin, which is defined as the minimum value of L over all sets of codeword
lengths satisfying the Kraft inequality.

Before finding Lmin, we explain why this quantity is of interest. The number of bits resulting
from using the above code to encode a long block X = (X1, X2, . . . , Xn) of symbols is Sn =
L(X1) + L(X2) + · · · + L(Xn). This is a sum of n iid random variables (rv’s), and the law of
large numbers, which is discussed in Section 2.7.1, implies that Sn/n, the number of bits per
symbol in this long block, is very close to L with probability very close to 1. In other words, L
is essentially the rate (in bits per source symbol) at which bits come out of the source encoder.
This motivates the objective of finding Lmin and later of finding codes that achieve the minimum.

Before proceeding further, we simplify our notation. We have been carrying along a completely
arbitrary finite alphabet X = {a1, . . . , aM} of size M = |X |, but this problem (along with
most source coding problems) involves only the probabilities of the M symbols and not their
names. Thus define the source alphabet to be {1, 2, . . . , M}, denote the symbol probabilities by
p1, . . . , pM , and denote the corresponding codeword lengths by l1, . . . , lM . The expected length
of a code is then

L =
M∑

j=1

ljpj

Mathematically, the problem of finding Lmin is that of minimizing L over all sets of integer
lengths l1, . . . , lM subject to the Kraft inequality:

Lmin = min
l1,... ,lM :

∑
j 2−lj≤1


M∑

j=1

pjlj

 . (2.3)



2.5. MINIMUM L FOR PREFIX-FREE CODES 27

2.5.1 Lagrange multiplier solution for the minimum L

The minimization in (2.3) is over a function of M variables, l1, . . . , lM , subject to constraints
on those variables. Initially, consider a simpler problem where there are no integer constraint
on the lj . This simpler problem is then to minimize

∑
j pjlj over all real values of l1, . . . , lM

subject to
∑

j 2−lj ≤ 1. The resulting minimum is called Lmin(noninteger).

Since the allowed values for the lengths in this minimization include integer lengths, it is clear
that Lmin(noninteger) ≤ Lmin. This noninteger minimization will provide a number of important
insights about the problem, so its usefulness extends beyond just providing a lower bound on
Lmin.

Note first that the minimum of
∑

j ljpj subject to
∑

j 2−lj ≤ 1 must occur when the constraint
is satisfied with equality, for otherwise, one of the lj could be reduced, thus reducing

∑
j pjlj

without violating the constraint. Thus the problem is to minimize
∑

j pjlj subject to
∑

j 2−lj =
1.

Problems of this type are often solved by using a Lagrange multiplier. The idea is to replace the
minimization of one function, subject to a constraint on another function, by the minimization
of a linear combination of the two functions, in this case the minimization of∑

j

pjlj + λ
∑

j

2−lj . (2.4)

If the method works, the expression can be minimized for each choice of λ (called a Lagrange mul-
tiplier); λ can then be chosen so that the optimizing choice of l1, . . . , lM satisfies the constraint.
The minimizing value of (2.4) is then

∑
j pjlj + λ. This choice of l1, . . . , lM minimizes the orig-

inal constrained optimization, since for any l′1, . . . , l′M that satisfies the constraint
∑

j 2−l′j = 1,
the expression in (2.4) is

∑
j pjl

′
j + λ, which must be greater than or equal to

∑
j pjlj + λ.

We can attempt9 to minimize (2.4) simply by setting the derivitive with respect to each lj equal
to 0. This yields

pj − λ(ln 2)2−lj = 0; 1 ≤ j ≤ M. (2.5)

Thus 2−lj = pj/(λ ln 2). Since
∑

j pj = 1, λ must be equal to 1/ ln 2 in order to satisfy the
constraint

∑
j 2−lj = 1. Then 2−lj = pj , or equivalently lj = − log pj . It will be shown shortly

that this stationary point actually achieves a minimum. Substituting this solution into (2.3),

Lmin(noninteger) = −
M∑

j=1

pj log pj . (2.6)

The quantity on the right side of (2.6) is called the entropy10 of X, and denoted as H[X]. Thus

H[X] = −
∑

j

pj log pj .

9There are well-known rules for when the Lagrange multiplier method works and when it can be solved simply
by finding a stationary point. The present problem is so simple, however, that this machinery is unnecessary.

10Note that X is a random symbol and carries with it all of the accompanying baggage, including a pmf.
The entropy H[X] is a numerical function of the random symbol including that pmf; in the same way E[L] is a
numerical function of the rv L. Both H[X] and E[L] are expected values of particular rv’s. In distinction, L(X)
above is an rv in its own right; it is based on some function l(x) mapping X → R and takes the sample value l(x)
for all sample points such that X = x.
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In summary, the entropy H[X] is a lower bound to L for prefix-free codes and this lower bound is
achieved when lj = − log pj for each j. The bound was derived by ignoring the integer constraint,
and can be met only if − log pj is an integer for each j; i.e., if each pj is a power of 2.

2.5.2 Entropy bounds on L

We now return to the problem of minimizing L with an integer constraint on lengths. The
following theorem both establishes the correctness of the previous non-integer optimization and
provides an upper bound on Lmin.

Theorem 2.5.1 (Entropy bounds for prefix-free codes). Let X be a discrete random
symbol with symbol probabilities p1, . . . , pM . Let Lmin be the minimum expected codeword length
over all prefix-free codes for X. Then

H[X] ≤ Lmin < H[X] + 1 bit/symbol. (2.7)

Furthermore, Lmin = H[X] if and only if each probability pj is an integer power of 2.

Proof: It is first shown that H[X] ≤ L for all prefix-free codes. Let l1, . . . , lM be the codeword
lengths of an arbitrary prefix-free code. Then

H[X] − L =
M∑

j=1

pj log
1
pj

−
M∑

j=1

pjlj =
M∑

j=1

pj log
2−lj

pj
, (2.8)

where log 2−lj has been substituted for −lj .

We now use the very useful inequality lnu ≤ u− 1, or equivalently log u ≤ (log e)(u− 1), which
is illustrated in Figure 2.7. Note that equality holds only at the point u = 1.
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��
u−1

u1

lnu

Figure 2.7: The inequality lnu ≤ u − 1. The inequality is strict except at u = 1.

Substituting this inequality in (2.8),

H[X] − L ≤ (log e)
M∑

j=1

pj

(
2−lj

pj
− 1

)
= (log e)

 M∑
j=1

2−lj −
M∑

j=1

pj

 ≤ 0, (2.9)

where the Kraft inequality and
∑

j pj = 1 has been used. This establishes the left side of (2.7).
The inequality in (2.9) is strict unless 2−lj/pj = 1, or equivalently lj = − log pj , for all j. For
integer lj , this can be satisfied with equality if and only if pj is an integer power of 2 for all j. For
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arbitrary real values of lj , this proves that (2.5) minimizes (2.3) without the integer constraint,
thus verifying (2.6.)

To complete the proof, it will be shown that a prefix-free code exists with L < H[X]+1. Choose
the codeword lengths to be

lj = �− log pj� ,

where the ceiling notation �u� denotes the smallest integer less than or equal to u. With this
choice,

− log pj ≤ lj < − log pj + 1. (2.10)

Since the left side of (2.10) is equivalent to 2−lj ≤ pj , the Kraft inequality is satisfied:∑
j

2−lj ≤
∑

j

pj = 1.

Thus a prefix-free code exists with the above lengths. From the right side of (2.10), the expected
codeword length of this code is upperbounded by

L =
∑

j

pjlj <
∑

j

pj (− log pj + 1) = H[X] + 1.

Since Lmin ≤ L, Lmin < H[X] + 1, completing the proof.

Both the proof above and the noninteger minimization in (2.6) suggest that the optimal length
of a codeword for a source symbol of probability pj should be approximately − log pj . This is
not quite true, because, for example, if M = 2 and p1 = 2−20, p2 = 1−2−20, then − log p1 = 20,
but the optimal l1 is 1. However, the last part of the above proof shows that if each li is chosen
as an integer approximation to − log pi, then L is at worst within one bit of H[X].

For sources with a small number of symbols, the upper bound in the theorem appears to be too
loose to have any value. When these same arguments are applied later to long blocks of source
symbols, however, the theorem leads directly to the source coding theorem.

2.5.3 Huffman’s algorithm for optimal source codes

In the very early days of information theory, a number of heuristic algorithms were suggested
for choosing codeword lengths lj to approximate − log pj . Both Claude Shannon and Robert
Fano had suggested such heuristic algorithms by 1948. It was conjectured at that time that,
since this was an integer optimization problem, its optimal solution would be quite difficult.
It was quite a surprise therefore when David Huffman [9] came up with a very simple and
straightforward algorithm for constructing optimal (in the sense of minimal L) prefix-free codes.
Huffman developed the algorithm in 1950 as a term paper in Robert Fano’s information theory
class at MIT.

Huffman’s trick, in today’s jargon, was to “think outside the box.” He ignored the Kraft inequal-
ity, and looked at the binary code tree to establish properties that an optimal prefix-free code
should have. After discovering a few simple properties, he realized that they led to a simple
recursive procedure for constructing an optimal code.
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Figure 2.8: Some simple optimal codes.

The simple examples in Figure 2.8 illustrate some key properties of optimal codes. After stating
these properties precisely, the Huffman algorithm will be almost obvious.

The property of the length assignments in the three-word example above can be generalized as
follows: the longer the codeword, the less probable the corresponding symbol must be. More
precisely:

Lemma 2.5.1. Optimal codes have the property that if pi > pj, then li ≤ lj.

Proof: Assume to the contrary that a code has pi > pj and li > lj . The terms involving symbols
i and j in L are pili + pjlj . If the two code words are interchanged, thus interchanging li and lj ,
this sum decreases, i.e.,

(pili+pjlj) − (pilj+pjli) = (pi − pj)(li − lj) > 0.

Thus L decreases, so any code with pi > pj and li > lj is nonoptimal.

An even simpler property of an optimal code is as follows:

Lemma 2.5.2. Optimal prefix-free codes have the property that the associated code tree is full.

Proof: If the tree is not full, then a codeword length could be reduced (see Figures 2.2 and 2.3).

Define the sibling of a codeword as the binary string that differs from the codeword in only the
final digit. A sibling in a full code tree can be either a codeword or an intermediate node of the
tree.

Lemma 2.5.3. Optimal prefix-free codes have the property that, for each of the longest code-
words in the code, the sibling of that codeword is another longest codeword.

Proof: A sibling of a codeword of maximal length cannot be a prefix of a longer codeword. Since
it cannot be an intermediate node of the tree, it must be a codeword.
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For notational convenience, assume that the M = |X | symbols in the alphabet are ordered so
that p1 ≥ p2 ≥ · · · ≥ pM .

Lemma 2.5.4. Let X be a random symbol with a pmf satisfying p1 ≥ p2 ≥ · · · ≥ pM . There
is an optimal prefix-free code for X in which the codewords for M − 1 and M are siblings and
have maximal length within the code.

Proof: There are finitely many codes satisfying the Kraft inequality with equality,11 so consider
a particular one that is optimal. If pM < pj for each j < M , then, from Lemma 2.5.1, lM ≥ lj
for each and lM has maximal length. If pM = pj for one or more j < M , then lj must be
maximal for at least one such j. Then if lM is not maximal, C(j) and C(M) can be interchanged
with no loss of optimality, after which lM is maximal. Now if C(k) is the sibling of C(M) in this
optimal code, then lk also has maximal length. By the argument above, C(M − 1) can then be
exchanged with C(k) with no loss of optimality.

The Huffman algorithm chooses an optimal code tree by starting at the leaves for the least likely
symbols and working in. In particular, the codewords for the two least likely symbols are chosen
to be siblings (it makes no difference which sibling ends in 1 and which in 0). How is the rest of
the tree to be chosen?

If the above pair of siblings is removed, the rest of the tree will have M − 1 leaves, namely the
M − 2 leaves for the original first M − 2 symbols, and the parent node of the removed siblings.
The probability p′M−1 associated with this new leaf is taken as pM−1 + pM . This tree of M − 1
leaves is viewed as a code for a reduced random symbol X ′ with a reduced set of probabilities
given as p1, . . . , pM−2 for the original first M − 2 symbols and p′M−1 for the new symbol M − 1.

To complete the algorithm, an optimal code is constructed for X ′. It will be shown that an
optimal code for X can be generated by constructing an optimal code for X ′, and then grafting
siblings onto the leaf corresponding to M − 1. The proof is postponed until giving an example
of the algorithm.

The following example in Figures 2.10 to 2.12 starts with a random symbol X with probabilities
{0.4, 0.2, 0.15, 0.15, 0.1}. It first generates the reduced random symbol X ′ and then recursively
uses the same procedure on X ′.

pi
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0.2

0.15

0.15

0.1

symbol
1

2

3

4

5�����





(0.25) 1

0

The two least likely symbols, 4 and
5 have been combined as siblings.
The reduced set of probabilities
then becomes {0.4, 0.2, 0.15, 0.25}.

Figure 2.9: Step 1 of the Huffman algorithm; finding X ′ from X

.
11Exercise 2.10 proves this for those who enjoy such things.
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The two least likely symbols in the
reduced set, with probabilities
0.15 and 0.2, have been combined as
siblings. The reduced set of proba-
bilities then becomes {0.4, 0.35, 0.25}.

Figure 2.10: Finding X ′′ from X ′.
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Figure 2.11: The completed Huffman code.

Another completed example that leads to a different set of codeword lengths is given in Figure
2.12:

It is next shown that an optimal code for the reduced random symbol X ′ yields an optimal
code for X. First consider Figure 2.13, which shows the code tree for X ′ corresponding to X in
Figure 2.12.

Note that Figures 2.12 and 2.13 differ in that C(4) and C(5), each of length 3 in Figure 2.12,
have been replaced by a single codeword of length 2 in Figure 2.13. The probability of that
single symbol is the sum of the two probabilities in Figure 2.12. Thus the expected codeword
length for Figure 2.12 is that for Figure 2.13, increased by p4 + p5. This accounts for the unit
length increase for C(4) and C(5).

In general, comparing the expected length L′ of any code for X ′ and the corresponding L of the
code generated by extending C′(M − 1) in the code for X ′ into two siblings for M − 1 and M ,
it is seen that

L = L ′ + pM−1 + pM .

This relationship holds for all codes for X in which C(M − 1) and C(M) are siblings (which
includes at least one optimal code). This proves that L is minimized by minimizing L

′, and
also shows that Lmin = L ′

min + pM−1 + pM . This completes the proof of the optimality of the
Huffman algorithm.

It is curious that neither the Huffman algorithm nor its proof of optimality give any indication
of the entropy bounds, H[X] ≤ Lmin < H[X] + 1. Similarly, the entropy bounds do not suggest
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Figure 2.12: Completed Huffman code for a different set of probabilities.
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Figure 2.13: Completed reduced Huffman code for Figure 2.12.

the Huffman algorithm. One is useful in finding an optimal code; the other provides insightful
performance bounds.

As an example of the extent to which the optimal lengths approximate − log pi, the source
probabilities in Figure 2.11 are {0.40, 0.20, 0.15, 0.15, 0.10}, so − log pj takes the set of values
{1.32, 2.32, 2.74, 2.74, 3.32} bits; this approximates the lengths {1, 3, 3, 3, 3} of the optimal code
quite well. Similarly, the entropy is H[X] = 2.15 bits/symbol and Lmin = 2.2 bits/symbol, quite
close to H[X]. However, it would be difficult to guess these optimal lengths, even in such a
simple case, without the algorithm.

For the example of Figure 2.12, the source probabilities are {0.35, 0.20, 0.20, 0.15, 0.10}, the
values of − log pi are {1.51, 2.32, 2.32, 2.74, 3.32}, and the entropy is H[X] = 2.20. This is not
very different from Figure 2.11. However, the Huffman code now has lengths {2, 2, 2, 3, 3} and
average length L = 2.25 bits/symbol. (The code of Figure 2.11 has average length L = 2.30 for
these source probabilities.) It would be hard to predict these perturbations without carrying
out the algorithm.

2.6 Entropy and fixed-to-variable-length codes

Entropy is now studied in more detail, both to better understand the entropy bounds and to
understand the entropy of n-tuples of successive source letters.

The entropy H[X] is a fundamental measure of the randomness of a random symbol X. It has
many important properties. The property of greatest interest here is that it is the smallest



34 CHAPTER 2. CODING FOR DISCRETE SOURCES

expected number L of bits per source symbol required to map the sequence of source symbols
into a bit sequence in a uniquely decodable way. This will soon be demonstrated by generalizing
the variable-length codes of the last few sections to codes in which multiple source symbols are
encoded together. First, however, several other properties of entropy are derived.

Definition: The entropy of a discrete random symbol12 X with alphabet X is

H[X] =
∑
x∈X

pX(x) log
1

pX(x)
= −

∑
x∈X

pX(x) log pX(x). (2.11)

Using logarithms to the base 2, the units of H[X] are bits/symbol. If the base of the logarithm
is e, then the units of H[X] are called nats/symbol. Conversion is easy; just remember that
log y = (ln y)/(ln 2) or ln y = (log y)/(log e), both of which follow from y = eln y = 2log y by
taking logarithms. Thus using another base for the logarithm just changes the numerical units
of entropy by a scale factor.

Note that the entropy H[X] of a discrete random symbol X depends on the probabilities of the
different outcomes of X, but not on the names of the outcomes. Thus, for example, the entropy
of a random symbol taking the values green, blue, and red with probabilities 0.2, 0.3, 0.5,
respectively, is the same as the entropy of a random symbol taking on the values Sunday,
Monday, Friday with the same probabilities 0.2, 0.3, 0.5.

The entropy H[X] is also called the uncertainty of X, meaning that it is a measure of the
randomness of X. Note that entropy is the expected value of the rv log(1/pX(X)). This
random variable is called the log pmf rv.13 Thus the entropy is the expected value of the log
pmf rv.

Some properties of entropy:

• For any discrete random symbol X, H[X] ≥ 0. This follows because pX(x) ≤ 1, so
log(1/pX(x)) ≥ 0. The result follows from (2.11).

• H[X] = 0 if and only if X is deterministic. This follows since pX(x) log(1/pX(x)) = 0 if and
only if pX(x) equals 0 or 1.

• The entropy of an equiprobable random symbol X with an alphabet X of size M is H[X] =
log M . This follows because, if pX(x) = 1/M for all x ∈ X , then

H[X] =
∑
x∈X

1
M

log M = log M.

In this case, the rv − log pX(X) has the constant value log M .

• More generally, the entropy H[X] of a random symbol X defined on an alphabet X of size
M satisfies H[X] ≤ log M , with equality only in the equiprobable case. To see this, note

12If one wishes to consider discrete random symbols with one or more symbols of zero probability, one can still
use this formula by recognizing that limp→0 p log(1/p) = 0 and then defining 0 log 1/0 as 0 in (2.11). Exercise 2.18
illustrates the effect of zero probability symbols in a variable-length prefix code.

13This rv is often called self information or surprise, or uncertainty. It bears some resemblance to the ordinary
meaning of these terms, but historically this has caused much more confusion than enlightenment. Log pmf, on
the other hand, emphasizes what is useful here
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that

H[X] − log M =
∑
x∈X

pX(x)
[
log

1
pX(x)

− log M

]
=

∑
x∈X

pX(x)
[
log

1
MpX(x)

]
≤ (log e)

∑
x∈X

pX(x)
[

1
MpX(x)

− 1
]

= 0,

This uses the inequality log u ≤ (log e)(u−1) (after omitting any terms for which pX(x) = 0).
For equality, it is necessary that pX(x) = 1/M for all x ∈ X .

In summary, of all random symbols X defined on a given finite alphabet X , the highest entropy
occurs in the equiprobable case, namely H[X] = log M , and the lowest occurs in the deterministic
case, namely H[X] = 0. This supports the intuition that the entropy of a random symbol X is
a measure of its randomness.

For any pair of discrete random symbols X and Y , XY is another random symbol. The sample
values of XY are the set of all pairs xy, x ∈ X , y ∈ Y and the probability of each sample value
xy is pXY (x, y). An important property of entropy is that if X and Y are independent discrete
random symbols, then H[XY ] = H[X] + H[Y ]. This follows from:

H[XY ] = −
∑
X×Y

pXY (x, y) log pXY (x, y)

= −
∑
X×Y

pX(x)pY (y) (log pX(x) + log pY (y)) = H[X] + H[Y ]. (2.12)

Extending this to n random symbols, the entropy of a random symbol X n corresponding to a
block of n iid outputs from a discrete memoryless source is H[X n] = nH[X]; i.e., each symbol
increments the entropy of the block by H[X] bits.

2.6.1 Fixed-to-variable-length codes

Recall that in Section 2.2 the sequence of symbols from the source was segmented into successive
blocks of n symbols which were then encoded. Each such block was a discrete random symbol
in its own right, and thus could be encoded as in the single-symbol case. It was seen that by
making n large, fixed-length codes could be constructed in which the number L of encoded bits
per source symbol approached log M as closely as desired.

The same approach is now taken for cariable-length coding of discrete memoryless sources. A
block of n source symbols, X1, X2, . . . , Xn has entropy H(X n) = nH(X). Such a block is a
random symbol in its own right and can be encoded using a variable-length prefix-free code.
This provides a fixed-to-variable-length code, mapping n-tuples of source symbols to variable-
length binary sequences. It will be shown that the expected number L of encoded bits per source
symbol can be made as close to H[X] as desired.

Surprisingly, this result is very simple. Let E[L(X n)] be the expected length of a variable-length
prefix-free code for X n. Denote the minimum expected length of any prefix-free code for X n

by E[L(X n)]min. Theorem 2.5.1 then applies. Using (2.7),

H[X n] ≤ E[L(X n)]min < H[X n] + 1. (2.13)
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Define Lmin,n = E[L(Xn)]min

n ; i.e., Lmin,n is the minimum number of bits per source symbol over
all prefix-free codes for X n. From (2.13),

H[X] ≤ Lmin,n < H[X] +
1
n

. (2.14)

This simple result establishes the following important theorem:

Theorem 2.6.1 (Prefix-free source coding theorem). For any discrete memoryless source
with entropy H[X], and any integer n ≥ 1, there exists a prefix-free encoding of source n-tuples for
which the expected codeword length per source symbol L is at most H[X]+1/n. Furthermore, no
prefix-free encoding of fixed-length source blocks of any length n results in an expected codeword
length L less than H[X].

This theorem gives considerable significance to the entropy H[X] of a discrete memoryless source:
H[X] is the minimum expected number L of bits per source symbol that can be achieved by
fixed-to-variable-length prefix-free codes.

There are two potential questions about the significance of the theorem. First, is it possible
to find uniquely-decodable codes other than prefix-free codes for which L is less than H[X]?
Second, is it possible to further reduce L by using variable-to-variable-length codes?

For example, if a binary source has p1 = 10−6 and p0 = 1 − 10−6, fixed-to-variable-length
codes must use remarkably long n-tuples of source symbols to approach the entropy bound.
Run-length coding, which is an example of variable-to-variable-length coding, is a more sensible
approach in this case: the source is first encoded into a sequence representing the number of
source 0’s between each 1, and then this sequence of integers is encoded. This coding technique
is further developed in Exercise 2.23.

The next section strengthens Theorem 2.6.1, showing that H[X] is indeed a lower bound to L
over all uniquely-decodable encoding techniques.

2.7 The AEP and the source coding theorems

We first review the weak14 law of large numbers (WLLN) for sequences of iid rv’s. Applying
the WLLN to a particular iid sequence, we will establish a form of the remarkable asymptotic
equipartition property (AEP).

Crudely, the AEP says that, given a very long string of n iid discrete random symbols
X1, . . . , Xn, there exists a “typical set” of sample strings (x1, . . . , xn) whose aggregate probabil-
ity is almost 1. There are roughly 2nH[X] typical strings of length n, and each has a probability
roughly equal to 2−nH[X]. We will have to be careful about what the words “almost” and
“roughly” mean here.

The AEP will give us a fundamental understanding not only of source coding for discrete memo-
ryless sources, but also of the probabilistic structure of such sources and the meaning of entropy.
The AEP will show us why general types of source encoders, such as variable-to-variable-length
encoders, cannot have a strictly smaller expected length per source symbol than the best fixed-
to-variable-length prefix-free codes for discrete memoryless sources.

14The word weak is something of a misnomer, since this is one of the most useful results in probability theory.
There is also a strong law of large numbers; the difference lies in the limiting behavior of an infinite sequence of
rv’s, but this difference is not relevant here. The weak law applies in some cases where the strong law does not,
but this also is not relevant here.



2.7. THE AEP AND THE SOURCE CODING THEOREMS 37

2.7.1 The weak law of large numbers

Let Y1, Y2, . . . , be a sequence of iid rv’s. Let Y and σ2
Y be the mean and variance of each Yj .

Define the sample average An
Y of Y1, . . . , Yn as

An
Y =

Sn
Y

n
where Sn

Y = Y1 + · · · + Yn.

The sample average An
Y is itself an rv, whereas, of course, the mean Y is simply a real number.

Since the sum Sn
Y has mean nY and variance nσ2

Y , the sample average An
Y has mean E[An

Y ] = Y
and variance σ2

An
Y

= σ2
Sn

Y
/n2 = σ2

Y /n. It is important to understand that the variance of the sum
increases with n and the variance of the normalized sum (the sample average, An

Y ), decreases
with n.

The Chebyshev inequality states that if σ2
X < ∞ for an rv X, then, Pr{|X − X| ≥ ε} ≤ σ2

X/ε2

for any ε > 0 (see Exercise 2.3 or any text on probability such as [?]). Applying this inequality
to An

Y yields the simplest form of the WLLN: for any ε > 0,

Pr{|An
Y − Y | ≥ ε} ≤ σ2

Y

nε2
. (2.15)

This is illustrated in Figure 2.14.
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Figure 2.14: Sketch of the distribution function of the sample average for different n.
As n increases, the distribution function approaches a unit step at Y . The closeness to
a step within Y ± ε is upper bounded by (2.15).

Since the right side of (2.15) approaches 0 with increasing n for any fixed ε > 0,

lim
n→∞

Pr{|An
Y − Y | ≥ ε} = 0. (2.16)

For large n, (2.16) says that An
Y −Y is small with high probability. It does not say that An

Y = Y
with high probability (or even nonzero probability), and it does not say that Pr(|An

Y − Y | ≥
ε) = 0. As illustrated in Figure 2.14, both a nonzero ε and a nonzero probability are required
here, even though they can be made simultaneously as small as desired by increasing n.

In summary, the sample average An
Y is an rv whose mean Y is independent of n, but whose

standard deviation σY /
√

n approaches 0 as n → ∞. Therefore the distribution of the sample
average becomes concentrated near Y as n increases. The WLLN is simply this concentration
property, stated more precisely by either (2.15) or (2.16).
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The WLLN, in the form of (2.16), applies much more generally than the simple case of iid rv’s.
In fact, (2.16) provides the central link between probability models and the real phenomena
being modeled. One can observe the outcomes both for the model and reality, but probabilities
are assigned only for the model. The WLLN, applied to a sequence of rv’s in the model, and
the concentration property (if it exists), applied to the corresponding real phenomenon, provide
the basic check on whether the model corresponds reasonably to reality.

2.7.2 The asymptotic equipartition property

This section starts with a sequence of iid random symbols and defines a sequence of random
variables (rv’s) as functions of those symbols. The WLLN, applied to these rv’s, will permit
the classification of sample sequences of symbols as being ‘typical’ or not, and then leadto the
results alluded to earlier.

Let X1, X2, . . . be the sequence of iid discrete random symbols with a common pmf
pX(x)>0, x∈X . For each symbol x in the alphabet X , define w(x) = − log pX(x) as a real-
valued function of x ∈ X . For each m, define W (Xm) to be the rv that takes the value w(x) for
Xm = x. Then W (X1), W (X2), . . . is a sequence of iid discrete rv’s, each with mean

E[W (Xm)] = −
∑
x∈X

pX(x) log pX(x) = H[X], (2.17)

where H[X] is the entropy of the random symbol X.

The rv W (Xm) is called15 the log pmf of Xm and the entropy of Xm is the mean of W (Xm).

The most important property of the log pmf for iid random symbols comes from observing, for
example, that for the event X1 = x1, X2 = x2, the outcome for W (X1) + W (X2) is

w(x1) + w(x2) = − log pX(x1) − log pX(x2) = − log{pX1X2(x1x2)}. (2.18)

In other words, the joint pmf for independent random symbols is the product of the individual
pmf’s, and therefore the log of the joint pmf is the sum of the logs of the individual pmf’s.

We can generalize (2.18) to a string of n random symbols, X n = (X1, . . . , Xn). For an event
X n = xn where xn = (x1, . . . , xn), the outcome for the sum W (X1) + · · · + W (Xn) is∑n

m=1
w(xm) = −

∑n

m=1
log pX(xm) = − log pXn(xn). (2.19)

The WLLN can now be applied to the sample average of the log pmfs. Let

An
W =

W (X1) + · · · + W (Xn)
n

=
− log pXn(X n)

n
(2.20)

be the sample average of the log pmf.

From (2.15), it follows that

Pr
( ∣∣An

W − E[W (X)]
∣∣ ≥ ε

)
≤ σ2

W

nε2
. (2.21)

15It is also called self information and various other terms which often cause confusion.
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Substituting (2.17) and (2.20) into (2.21),

Pr
( ∣∣∣∣− log pXn(X n)

n
− H[X]

∣∣∣∣ ≥ ε

)
≤ σ2

W

nε2
. (2.22)

In order to interpret this result, define the typical set Tn
ε for any ε > 0 as

Tn
ε =

{
xn :

∣∣∣∣− log pXn(xn)
n

− H[X]
∣∣∣∣ < ε

}
. (2.23)

Thus Tn
ε is the set of source strings of length n for which the sample average of the log pmf is

within ε of its mean H[X]. Eq. (2.22) then states that the aggregrate probability of all strings
of length n not in Tn

ε is at most σ2
W /(nε2). Thus,

Pr(X n ∈ Tn
ε ) ≥ 1 − σ2

W

nε2
. (2.24)

As n increases, the aggregate probability of Tn
ε approaches 1 for any given ε > 0, so Tn

ε is
certainly a typical set of source strings. This is illustrated in Figure 2.15.
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Figure 2.15: Sketch of the distribution function of the sample average log pmf. As n
increases, the distribution function approaches a unit step at H. The typical set is the
set of sample strings of length n for which the sample average log pmf stays within ε
of H; as illustrated, its probability approaches 1 as n → ∞.

Rewrite (2.23) in the form

Tn
ε =

{
xn : n(H[X] − ε) < − log pXn(xn) < n(H[X] + ε)

}
.

Multiplying by −1 and exponentiating,

Tn
ε =

{
xn : 2−n(H[X]+ε) < pXn(xn) < 2−n(H[X]−ε)

}
. (2.25)

Eq. (2.25) has the intuitive connotation that the n-strings in Tn
ε are approximately equiprobable.

This is the same kind of approximation that one would use in saying that 10−1001 ≈ 10−1000;
these numbers differ by a factor of 10, but for such small numbers it makes sense to compare the
exponents rather than the numbers themselves. In the same way, the ratio of the upper to lower
bound in (2.25) is 22εn, which grows unboundedly with n for fixed ε. However, as seen in (2.23),
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− 1
n log pXn(xn) is approximately equal to H[X] for all xn ∈ Tn

ε . This is the important notion,
and it does no harm to think of the n-strings in Tn

ε as being approximately equiprobable.

The set of all n-strings of source symbols is thus separated into the typical set Tn
ε and the

complementary atypical set (Tn
ε )c. The atypical set has aggregate probability no greater than

σ2
W /(nε2), and the elements of the typical set are approximately equiprobable (in this peculiar

sense), each with probability about 2−nH[X].

The typical set Tn
ε depends on the choice of ε. As ε decreases, the equiprobable approximation

(2.25) becomes tighter, but the bound (2.24) on the probability of the typical set is further
from 1. As n increases, however, ε can be slowly decreased, thus bringing the probability of the
typical set closer to 1 and simultaneously tightening the bounds on equiprobable strings.

Let us now estimate the number of elements |Tn
ε | in the typical set. Since pXn(xn) > 2−n(H[X]+ε)

for each xn ∈ Tn
ε ,

1 ≥
∑

xn∈T n
ε

pXn(xn) > |Tn
ε | 2−n(H[X]+ε).

This implies that |Tn
ε | < 2n(H[X]+ε). In other words, since each xn ∈ Tn

ε contributes at least
2−n(H[X]+ε) to the probability of Tn

ε , the number of these contributions can be no greater than
2n(H[X]+ε).

Conversely, since Pr(Tn
ε ) ≥ 1 − σ2

W /(nε2), |Tn
ε | can be lower bounded by

1 − σ2
W

nε2
≤

∑
xn∈T n

ε

pXn(xn) < |Tn
ε |2−n(H[X]−ε),

which implies |Tn
ε | > [1 − σ2

W /(nε2)]2n(H[X]−ε). In summary,(
1 − σ2

W

nε2

)
2n(H[X]−ε) < |Tn

ε | < 2n(H[X]+ε). (2.26)

For large n, then, the typical set Tn
ε has aggregate probability approximately 1 and contains

approximately 2nH[X] elements, each of which has probability approximately 2−nH[X]. That is,
asymptotically for very large n, the random symbol X n resembles an equiprobable source with
alphabet size 2nH[X].

The quantity σ2
W /(nε2) in many of the equations above is simply a particular upper bound to

the probability of the atypical set. It becomes arbitrarily small as n increases for any fixed
ε > 0. Thus it is insightful to simply replace this quantity with a real number δ; for any such
δ > 0 and any ε > 0, σ2

W /(nε2) ≤ δ for large enough n.

This set of results, summarized in the following theorem, is known as the asymptotic equipartition
property (AEP).

Theorem 2.7.1 (Asymptotic equipartition property). Let Xn be a string of n iid discrete
random symbols {Xm; 1 ≤ m ≤ n} each with entropy H[X]. For all δ > 0 and all sufficiently
large n, Pr(Tn

ε ) ≥ 1 − δ and |Tn
ε | is bounded by

(1 − δ)2n(H[X]−ε) < |Tn
ε | < 2n(H[X]+ε). (2.27)

Finally, note that the total number of different strings of length n from a source with alphabet
size M is Mn. For non-equiprobable sources, namely sources with H[X] < log M , the ratio of
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the number of typical strings to total strings is approximately 2−n(log M−H[X]), which approaches
0 exponentially with n. Thus, for large n, the great majority of n-strings are atypical. It may
be somewhat surprising that this great majority counts for so little in probabilistic terms. As
shown in Exercise 2.26, the most probable of the individual sequences are also atypical. There
are too few of them, however, to have any significance.

We next consider source coding in the light of the AEP.

2.7.3 Source coding theorems

Motivated by the AEP, we can take the approach that an encoder operating on strings of n source
symbols need only provide a codeword for each string xn in the typical set Tn

ε . If a sequence
xn occurs that is not in Tn

ε , then a source coding failure is declared. Since the probability of
xn /∈ Tn

ε can be made arbitrarily small by choosing n large enough, this situation is tolerable.

In this approach, since there are less than 2n(H[X]+ε) strings of length n in Tn
ε , the number

of source codewords that need to be provided is fewer than 2n(H[X]+ε). Choosing fixed-length
codewords of length �n(H[X]+ε)� is more than sufficient and even allows for an extra codeword,
if desired, to indicate that a coding failure has occurred. In bits per source symbol, taking the
ceiling function into account, L ≤ H[X]+ε+1/n. Note that ε > 0 is arbitrary, and for any such
ε, Pr{failure} → 0 as n → ∞. This proves the following theorem:

Theorem 2.7.2 (Fixed-to-fixed-length source coding theorem). For any discrete mem-
oryless source with entropy H[X], any ε > 0, any δ > 0, and any sufficiently large n, there is a
fixed-to-fixed-length source code with Pr{failure} ≤ δ that maps blocks of n source symbols into
fixed-length codewords of length L ≤ H[X] + ε + 1/n bits per source symbol.

We saw in section 2.2 that the use of fixed-to-fixed-length source coding requires log M bits per
source symbol if unique decodability is required (i.e., no failures are allowed), and now we see
that this is reduced to arbitrarily little more than H[X] bits per source symbol if arbitrarily rare
failures are allowed. This is a good example of a situation where ‘arbitrarily small δ > 0’ and 0
behave very differently.

There is also a converse to this theorem following from the other side of the AEP theorem. This
says that the error probability approaches 1 for large n if strictly fewer than H[X] bits per source
symbol are provided.

Theorem 2.7.3 (Converse for fixed-to-fixed-length codes). Let Xn be a string of n iid
discrete random symbols {Xm; 1 ≤ m ≤ n}, with entropy H[X] each. For any ν > 0, let Xn be
encoded into fixed-length codewords of length �n(H[X] − ν)
 bits. For every δ > 0 and for all
sufficiently large n given δ,

Pr{failure} > 1 − δ − 2−νn/2. (2.28)

Proof: Apply the AEP, Theorem 2.7.1, with ε = ν/2. Codewords can be provided for at
most 2n(H[X]−ν) typical source n-sequences, and from (2.25) each of these has a probability at
most 2−n(H[X]−ν/2). Thus the aggregate probability of typical sequences for which codewords
are provided is at most 2−nν/2. From the AEP theorem, Pr{Tn

ε } ≥ 1 − δ is satisfied for large
enough n. Codewords16 can be provided for at most a subset of Tn

ε of probability 2−nν/2, and
16Note that the proof allows codewords to be provided for atypical sequences; it simply says that a large portion

of the typical set cannot be encoded.
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the remaining elements of Tn
ε must all lead to errors, thus yielding (2.28).

In going from fixed-length codes of slightly more than H[X] bits per source symbol to codes of
slightly less than H[X] bits per source symbol, the probability of failure goes from almost 0 to
almost 1, and as n increases, those limits are approached more and more closely.

2.7.4 The entropy bound for general classes of codes

We have seen that the expected number of encoded bits per source symbol is lower bounded
by H(X) for iid sources using either fixed-to-fixed-length or fixed-to-variable-length codes. The
details differ in the sense that very improbable sequences are simply dropped in fixed-length
schemes but have abnormally long encodings, leading to buffer overflows, in variable-length
schemes.

We now show that other types of codes, such as variable-to-fixed, variable-to-variable, and even
more general codes are also subject to the entropy limit. This will be done without describing
the highly varied possible nature of these source codes, but by just defining certain properties
that the associated decoders must have. By doing this, it is also shown that yet undiscovered
coding schemes must also be subject to the same limits. The fixed-to-fixed-length converse in
the last subsection is the key to this.

For any encoder, there must be a decoder that maps the encoded bit sequence back into the
source symbol sequence. For prefix-free codes on k-tuples of source symbols, the decoder waits
for each variable length codeword to arrive, maps it into the corresponding k-tuple of source
symbols, and then starts decoding for the next k-tuple. For fixed-to-fixed-length schemes, the
decoder waits for a block of code symbols and then decodes the corresponding block of source
symbols.

In general, the source produces a non-ending sequence X1, X2, . . . of source letters which are
encoded into a non-ending sequence of encoded binary digits. The decoder observes this encoded
sequence and decodes source symbol Xn when enough bits have arrived to make a decision on
it.

For any given coding and decoding scheme for a given iid source, define the rv Dn as the number
of received bits that permit a decision on X n = X1, . . . , Xn. This includes the possibility of
coders and decoders for which decoding is either incorrect or postponed indefinitely, and for
these failure instances, the sample value of Dn is taken to be infinite. It is assumed, however,
that all decisions are final in the sense that the decoder cannot decide on a particular xn after
observing an initial string of the encoded sequence and then change that decision after observing
more of the encoded sequence. What we would like is a scheme in which decoding is correct
with high probability and the sample value of the rate, Dn/n, is small with high probability.
What the following theorem shows is that for large n, the sample rate can be strictly below the
entropy only with vanishingly small probability. This then shows that the entropy lower bounds
the data rate in this strong sense.

Theorem 2.7.4 (Converse for general coders/decoders for iid sources). Let X∞ be a
sequence of discrete random symbols {Xm; 1 ≤ m ≤ ∞}. For each integer n ≥ 1, let Xn be the
first n of those symbols. For any given encoder and decoder, let Dn be the number of received
bits at which the decoder can correctly decode Xn. Then for any ν > 0 and δ > 0, and for any
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sufficiently large n given ν and δ,

Pr{Dn ≤ n[H(X) − ν]} < δ + 2−νn/2. (2.29)

Proof: For any sample value x∞ of the source sequence, let y∞ denote the encoded sequence.
For any given integer n ≥ 1, let m = �n[H(X)−ν]
. Suppose that xn is decoded upon observation
of y j for some j ≤ m. Since decisions are final, there is only one source n-string, namely xn,
that can be decoded by time ym is observed. This means that out of the 2m possible initial
m-strings from the encoder, there can be at most17 2m n-strings from the source that be decoded
from the observation of the first m encoded outputs. The aggregate probability of any set of 2m

source n-strings is bounded in Theorem 2.7.3, and (2.29) simply repeats that bound.

2.8 Markov sources

The basic coding results for discrete memoryless sources have now been derived. Many of the
results, in particular the Kraft inequality, the entropy bounds on expected length for uniquely-
decodable codes, and the Huffman algorithm, do not depend on the independence of successive
source symbols.

In this section, these results are extended to sources defined in terms of finite-state Markov
chains. The state of the Markov chain18 is used to represent the “memory” of the source.
Labels on the transitions between states are used to represent the next symbol out of the source.
Thus, for example, the state could be the previous symbol from the source, or could be the
previous 300 symbols. It is possible to model as much memory as desired while staying in the
regime of finite-state Markov chains.

Example: Consider a binary source with outputs X1, X2, . . . . Assume that the symbol
probabilities for Xn are conditioned on Xn−2 and Xn−1 but are independent of all previous
symbols given these past 2 symbols. This pair of previous symbols is modeled by a state Sn−1.
The alphabet of possible states is then the set of binary pairs, S = {[00], [01], [10], [11]}. In
Figure 2.16, the states are represented as the nodes of the graph representing the Markov chain,
and the source outputs are labels on the graph transitions. Note, for example, that from the
state Sn−1 = [01] (representing Xn−2=0, Xn−1=1), the output Xn=1 causes a transition to
Sn = [11] (representing Xn−1=1, Xn=1). The chain is assumed to start at time 0 in a state S0

given by some arbitrary pmf.

Note that this particular source is characterized by long strings of zeros and long strings of ones
interspersed with short transition regions. For example, starting in state 00, a representative
output would be

00000000101111111111111011111111010100000000 · · ·
17There are two reasons why the number of decoded n-strings of source symbols by time m can be less than 2m.

The first is that the first n source symbols might not be decodable until after the mth encoded bit is received.
The second is that multiple m-strings of encoded bits might lead to decoded strings with the same first n source
symbols.

18The basic results about finite-state Markov chains, including those used here, are established in many texts
such as [5] and [16] . These results are important in the further study of digital communcation, but are not
essential here.
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Figure 2.16: Markov source: Each transition s′ → s is labeled by the corresponding
source output and the transition probability Pr{Sn = s|Sn−1 = s′}.

Note that if sn = [xn−1xn] then the next state must be either sn+1 = [xn0] or sn+1 = [xn1]; i.e.,
each state has only two transitions coming out of it.

The above example is now generalized to an arbitrary discrete Markov source.

Definition: A finite-state Markov chain is a sequence S0, S1, . . . of discrete random symbols
from a finite alphabet, S. There is a pmf q0(s), s ∈ S on S0, and for all n ≥ 1 and all s ∈ S, s′ ∈ S,

Pr(Sn=s|Sn−1=s′) = Pr(Sn=s|Sn−1=s′, . . . , S0=s0) = Q(s| s′). (2.30)

There is said to be a transition from s′ to s, denoted s′ → s, if Q(s| s′) > 0.

Note that (2.30) says, first, that the conditional probability of a state, given the past, depends
only on the previous state, and second, that these transition probabilities Q(s|s′) do not change
with time.

Definition: A Markov source is a sequence of discrete random symbols X1,X2, . . . with a
common alphabet X which is based on a finite-state Markov chain S0, S1, . . . . Each transition
(s′ → s) in the Markov chain is labeled with a symbol from X ; each symbol from X can appear
on at most one outgoing transition from each state.

Note that the state alphabet S and the source alphabet X are in general different. Since
each source symbol appears on at most one transition from each state, the initial state S0=s0,
combined with the source output, X1=x1, X2=x2, . . . , uniquely identifies the state sequence,
and, of course, the state sequence uniquely specifies the source output sequence. If x ∈ X labels
the transition s′ → s, then the conditional probability of that x is given by P (x| s′) = Q(s| s′).
Thus, for example, in the transition [00] → [0]1 in Figure 2.16, Q([01]| [00]) = P (1| [00]).

The reason for distinguishing the Markov chain alphabet from the source output alphabet is to
allow the state to represent an arbitrary combination of past events rather than just the previous
source output. It is this feature that permits Markov source models to reasonably model both
simple and complex forms of memory.

A state s is accessible from state s′ in a Markov chain if there is a path in the corresponding
graph from s′ → s, i.e., if Pr(Sn=s|S0=s′) > 0 for some n > 0. The period of a state s is
the greatest common divisor of the set of integers n ≥ 1 for which Pr(Sn=s|S0=s) > 0. A
finite-state Markov chain is ergodic if all states are accessible from all other states and if all
states are aperiodic, i.e., have period 1.

We will consider only Markov sources for which the Markov chain is ergodic. An important fact
about ergodic Markov chains is that the chain has steady-state probabilities q(s) for all s ∈ S,
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given by the unique solution to the linear equations

q(s) =
∑
s′∈S

q(s′)Q(s| s′); s ∈ S (2.31)∑
s∈S

q(s) = 1.

These steady-state probabilities are approached asymptotically from any starting state, i.e.,

lim
n→∞

Pr(Sn=s|S0=s′) = q(s) for all s, s′ ∈ S. (2.32)

2.8.1 Coding for Markov sources

The simplest approach to coding for Markov sources is that of using a separate prefix-free code
for each state in the underlying Markov chain. That is, for each s ∈ S, select a prefix-free
code whose lengths l(x, s) are appropriate for the conditional pmf P (x| s) > 0. The codeword
lengths for the code used in state s must of course satisfy the Kraft inequality

∑
x 2−l(x,s) ≤ 1.

The minimum expected length, Lmin(s) for each such code can be generated by the Huffman
algorithm and satisfies

H[X| s] ≤ Lmin(s) < H[X| s] + 1. (2.33)

where, for each s ∈ S, H[X| s] =
∑

x −P (x| s) log P (x| s).
If the initial state S0 is chosen according to the steady-state pmf {q(s); s ∈ S}, then, from (2.31),
the Markov chain remains in steady state and the overall expected codeword length is given by

H[X|S] ≤ Lmin < H[X|S] + 1, (2.34)

where

Lmin =
∑
s∈S

q(s)Lmin(s) and (2.35)

H[X|S] =
∑
s∈S

q(s)H[X| s]. (2.36)

Assume that the encoder transmits the initial state s0 at time 0. If M ′ is the number of elements
in the state space, then this can be done with �log M ′� bits, but this can be ignored since it is
done only at the beginning of transmission and does not affect the long term expected number
of bits per source symbol. The encoder then successively encodes each source symbol xn using
the code for the state at time n− 1. The decoder, after decoding the initial state s0, can decode
x1 using the code based on state s0. The decoder can then determine the state s1, and from
that can decode x2 using the code based on s1. The decoder can continue decoding each source
symbol, and thus the overall code is uniquely decodable. We next must understand the meaning
of the conditional entropy in (2.36).

2.8.2 Conditional entropy

It turns out that the conditional entropy H[X|S] plays the same role in coding for Markov
sources as the ordinary entropy H[X] plays for the memoryless case. Rewriting (2.35),

H[X|S] =
∑
s∈S

∑
x∈X

q(s)P (x| s) log
1

P (x| s) .
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This is the expected value of the rv log[1/P (X|S)].

An important entropy relation, for any discrete rv’s, is

H[XS] = H[S] + H[X|S]. (2.37)

To see this,

H[XS] =
∑
s,x

q(s)P (x| s) log
1

q(s)P (x| s)

=
∑
s,x

q(s)P (x| s) log
1

q(s)
+

∑
s,x

q(s)P (x| s) log
1

P (x| s)
= H[S] + H[X|S].

Exercise 2.19 demonstrates that
H[XS] ≤ H[S] + H[X]

Comparing this and (2.37), it follows that

H[X|S] ≤ H[X]. (2.38)

This is an important inequality in information theory. If the entropy H[X] as a measure of mean
uncertainty, then the conditional entropy H[X|S] should be viewed as a measure of mean uncer-
tainty after the observation of the outcome of S. If X and S are not statistically independent,
then intuition suggests that the observation of S should reduce the mean uncertainty in X; this
equation indeed verifies this.

Example: Consider Figure 2.16 again. It is clear from symmetry that, in steady state, pX(0) =
pX(1) = 1/2. Thus H[X] = 1 bit. Conditional on S=00, X is binary with pmf {0.1, 0.9},
so H[X| [00]] = −0.1 log 0.1 − 0.9 log 0.9 = 0.47 bits. Similarly, H[X| [11]] = 0.47 bits, and
H[X| [01]] = H[X| [10]] = 1 bit. The solution to the steady-state equations in (2.31) is q([00]) =
q([11]) = 5/12 and q([01]) = q([10]) = 1/12. Thus, the conditional entropy, averaged over the
states, is H[X|S] = 0.558 bits.

For this example, it is particularly silly to use a different prefix-free code for the source output
for each prior state. The problem is that the source is binary, and thus the prefix-free code will
have length 1 for each symbol no matter what the state. As with the memoryless case, however,
the use of fixed-to-variable-length codes is a solution to these problems of small alphabet sizes
and integer constraints on codeword lengths.

Let E[L(X n)]min,s be the minimum expected length of a prefix-free code for X n conditional on
starting in state s. Then, applying (2.13) to the situation here,

H[X n | s] ≤ E[L(X n)]min,s < H[X n | s] + 1.

Assume as before that the Markov chain starts in steady state S0. Thus it remains in steady
state at each future time. Furthermore assume that the initial sample state is known at the
decoder. Then the sample state continues to be known at each future time. Using a minimum
expected length code for each initial sample state,

H[X n | S0] ≤ E[L(X n)]min,S0 < H[X n | S0] + 1. (2.39)
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Since the Markov source remains in steady state, the average entropy of each source symbol
given the state is H(X | S0), so intuition suggests (and Exercise 2.32 verifies) that

H[X n | S0] = nH[X|S0]. (2.40)

Defining Lmin,n = E[L(X n)]min,S0/n as the minimum expected codeword length per input symbol
when starting in steady state,

H[X|S0] ≤ Lmin,n < H[X|S0] + 1/n. (2.41)

The asymptotic equipartition property (AEP) also holds for Markov sources. Here, however,
there are19 approximately 2nH[X|S] typical strings of length n, each with probability approxi-
mately equal to 2−nH[X|S]. It follows as in the memoryless case that H[X|S] is the minimum
possible rate at which source symbols can be encoded subject either to unique decodability or to
fixed-to-fixed-length encoding with small probability of failure. The arguments are essentially
the same as in the memoryless case.

The analysis of Markov sources will not be carried further here, since the additional required
ideas are minor modifications of the memoryless case. Curiously, most of our insights and
understanding about souce coding come from memoryless sources. At the same time, however,
most sources of practical importance can be insightfully modeled as Markov and hardly any
can be reasonably modeled as memoryless. In dealing with practical sources, we combine the
insights from the memoryless case with modifications suggested by Markov memory.

The AEP can be generalized to a still more general class of discrete sources called ergodic
sources. These are essentially sources for which sample time averages converge in some proba-
bilistic sense to ensemble averages. We do not have the machinery to define ergodicity, and the
additional insight that would arise from studying the AEP for this class would consist primarily
of mathematical refinements.

2.9 Lempel-Ziv universal data compression

The Lempel-Ziv data compression algorithms differ from the source coding algorithms studied
in previous sections in the following ways:

• They use variable-to-variable-length codes in which both the number of source symbols
encoded and the number of encoded bits per codeword are variable. Moreover, the codes
are time-varying.

• They do not require prior knowledge of the source statistics, yet over time they adapt so
that the average codeword length L per source symbol is minimized in some sense to be
discussed later. Such algorithms are called universal.

• They have been widely used in practice; they provide a simple approach to understanding
universal data compression even though newer schemes now exist.

The Lempel-Ziv compression algorithms were developed in 1977-78. The first, LZ77 [23], uses
string-matching on a sliding window; the second, LZ78 [24], uses an adaptive dictionary. LZ78

19There are additional details here about whether the typical sequences include the initial state or not, but
these differences become unimportant as n becomes large.
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was implemented many years ago in the UNIX compress algorithm, and in many other places.
Implementations of LZ77 appeared somewhat later (Stac Stacker, Microsoft Windows) and is
still widely used.

In this section, the LZ77 algorithm is described. accompanied by a high-level description of why
it works. Finally, an approximate analysis of its performance on Markov sources is given, showing
that it is effectively optimal.20 In other words, although this algorithm operates in ignorance of
the source statistics, it compresses substantially as well as the best algorithm designed to work
with those statistics.

2.9.1 The LZ77 algorithm

The LZ77 algorithm compresses a sequence x = x1, x2, . . . from some given discrete alphabet X
of size M = |X |. At this point, no probabilistic model is assumed for the source, so x is simply
a sequence of symbols, not a sequence of random symbols. A subsequence (xm, xm+1, . . . , xn)
of x is representedby xn

m.

The algorithm keeps the w most recently encoded source symbols in memory. This is called a
sliding window of size w. The number w is large, and can be thought of as being in the range of
210 to 220, say. The parameter w is chosen to be a power of 2. Both complexity and, typically,
performance increase with w.

Briefly, the algorithm operates as follows. Suppose that at some time the source symbols xP
1

have been encoded. The encoder looks for the longest match, say of length n, between the
not-yet-encoded n-string xP+n

P+1 and a stored string xP+n−u
P+1−u starting in the window of length w.

The clever algorithmic idea in LZ77 is to encode this string of n symbols simply by encoding
the integers n and u; i.e., by pointing to the previous occurrence of this string in the sliding
window. If the decoder maintains an identical window, then it can look up the string xP+n−u

P+1−u ,
decode it, and keep up with the encoder.

More precisely, the LZ77 algorithm operates as follows:

(1) Encode the first w symbols in a fixed-length code without compression, using �log M� bits
per symbol. (Since w�log M� will be a vanishing fraction of the total number of encoded
bits, the efficiency of encoding this preamble is unimportant, at least in theory.)

(2) Set the pointer P = w. (This indicates that all symbols up to and including xP have been
encoded.)

(3) Find the largest n ≥ 2 such that xP+n
P+1 = xP+n−u

P+1−u for some u in the range 1 ≤ u ≤ w. (Find
the longest match between the not-yet-encoded symbols starting at P + 1 and a string of
symbols starting in the window; let n be the length of that longest match and u the distance
back into the window to the start of that match.) The string xP+n

P+1 is encoded by encoding
the integers n and u.)

Here are two examples of finding this longest match. In the first, the length of the match
is n = 3 and the match starts u = 7 symbols before the pointer. In the second, the length
of the match is 4 and it starts u = 2 symbols before the pointer. Tis illustrates that that
the string and its match can overlap.

20A proof of this optimality for discrete ergodic sources has been given by Wyner and Ziv [22].
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If no match exists for n ≥ 2, then, independently of whether a match exists for n = 1, set
n = 1 and directly encode the single source symbol xP+1 without compression.

(4) Encode the integer n into a codeword from the unary-binary code. In the unary-binary
code, a positive integer n is encoded into the binary representation of n, preceded by a
prefix of �log2 n
 zeroes; i.e.,

n prefix base 2 exp. codeword
1 1 1
2 0 10 010
3 0 11 011
4 00 100 00100
5 00 101 00101
6 00 110 00110
7 00 111 00111
8 000 1000 0001000

Thus the codewords starting with 0k1 correspond to the set of 2k integers in the range
2k ≤ n ≤ 2k+1 − 1. This code is prefix-free (picture the corresponding binary tree). It can
be seen that the codeword for integer n has length 2�log n
 + 1; it is seen later that this is
negligible compared with the length of the encoding for u.

(5) If n > 1, encode the positive integer u ≤ w using a fixed-length code of length log w bits.
(At this point the decoder knows n, and can simply count back by u in the previously
decoded string to find the appropriate n-tuple, even if there is overlap as above.)

(6) Set the pointer P to P + n and go to step (3). (Iterate forever.)

2.9.2 Why LZ77 works

The motivation behind LZ77 is information-theoretic. The underlying idea is that if the unknown
source happens to be, say, a Markov source of entropy H(X|S), then the AEP says that, for
any large n, there are roughly 2nH[X|S] typical source strings of length n. On the other hand,
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a window of size w contains w source strings of length n, counting duplications. This means
that if w � 2nH[X|S], then most typical sequences of length n cannot be found in the window,
suggesting that matches of length n are unlikely. Similarly, if w � 2nH[X|S], then it is reasonable
to suspect that most typical sequences will be in the window, suggesting that matches of length
n or more are likely.

The above argument, approximate and vague as it is, suggests that when n is large and w is
truly humongous, the typical size of match nt satisfies w ≈ 2ntH(X|S), which really means

nt ≈
log w

H(X|S)
; typical match size. (2.42)

The encoding for a match requires log w bits for the match location and 2�log nt
 + 1 for the
match size nt. Since nt is proportional to log w, log nt is negligible compared to log w for very
large w. Thus, for the typical case, about log w bits are used to encode about nt source symbols.
Thus, from (2.42), the required rate, in bits per source symbol, is about L ≈ H(X|S).

The above argument is very imprecise, but the conclusion is that, for very large window size,
L is reduced to the value required when the source is known and an optimal fixed-to-variable
prefix-free code is used.

The imprecision above involves more than simply ignoring the approximation factors in the
AEP. A more conceptual issue is that the strings of source symbols that must be encoded are
somewhat special since they start at the end of previous matches. The other conceptual difficulty
comes from ignoring the duplications of typical sequences within the window.

This argument has been made precise Wyner and Ziv [22].

2.9.3 Discussion

Let us recapitulate the basic ideas behind the LZ77 algorithm:

(1) Let Nx be the number of occurrences of symbol x in a window of size w. The WLLN
asserts that the relative frequency Nx/w of appearances of x in the window will satisfy
Nx/w ≈ pX(x) with high probability. Similarly, let Nxn be the number of occurrences of
xn which start in the window. The relative frequency Nxn/w will then satisfy Nxn/w ≈
pXn(xn) with high probability for very large w. This association of relative frequencies with
probabilities is what makes LZ77 a universal algorithm which needs no prior knowledge of
source statistics.21

(2) Next, as explained in the previous section, the probability of a typical source string xn

for a Markov source is approximately 2−nH[X|S]. If w >> 2nH[X|S], then, according to
the previous item, Nxn ≈ wpXn(xn) should be large and xn should occur in the window
with high probability. Alternatively, if w << 2nH[X|S], then xn will probably not occur.
Consequently the match will usually occur for n ≈ (log w)/H[X|S] as w becomes very large.

(3) Finally, it takes about log w bits to point to the best match in the window. The unary-
binary code uses 2�log n
 + 1 bits to encode the length n of the match. For typical n, this
is on the order of 2 log(log w/H[X|S]) which is negigible for large enough w compared to
log w.

21As Yogi Berra said, “You can observe a whole lot just by watchin’.”



2.10. SUMMARY OF DISCRETE SOURCE CODING 51

Consequently, LZ77 requires about log w encoded bits for each group of about (log w)/H[X|S]
source symbols, so it nearly achieves the optimal efficiency of L = H[X|S] bits/symbol, as w
becomes very large.

Discrete sources, as they appear in practice, often can be viewed over different time scales. Over
very long time scales, or over the sequences presented to different physical encoders running
the same algorithm, there is often very little common structure, sometimes varying from one
language to another, or varying from text in a language to data from something else.

Over shorter time frames, corresponding to a single file or a single application type, there is
often more structure, such as that in similar types of documents from the same language. Here
it is more reasonable to view the source output as a finite length segment of, say, the output of
an ergodic Markov source.

What this means is that universal data compression algorithms must be tested in practice. The
fact that they behave optimally for unknown sources that can be modeled to satisfy the AEP is
an important guide, but not the whole story.

The above view of different time scales also indicates that a larger window need not always
improve the performance of the LZ77 algorithm. It suggests that long matches will be more
likely in recent portions of the window, so that fixed length encoding of the window position is
not the best approach. If shorter codewords are used for more recent matches, then it requires
a shorter time for efficient coding to start to occur when the source statistics abruptly change.
It also then makes sense to start coding from some arbitrary window known to both encoder
and decoder rather than filling the entire window with data before starting to use the LZ77
alogorithm.

2.10 Summary of discrete source coding

Discrete source coding is important both for discrete sources such as text and computer files and
also as an inner layer for discrete-time analog sequences and fully analog sources. It is essential
to focus on the range of possible outputs from the source rather than any one particular output.
It is also important to focus on probabilistic models so as to achieve the best compression for the
most common outputs with less care for very rare outputs. Even universal coding techniques,
such as LZ77, which are designed to work well in the absence of a probability model, require
probability models to understand and evaluate how they work.

Variable-length source coding is the simplest way to provide good compression for common
source outputs at the expense of rare outputs. The necessity to concatenate successive variable-
length codewords leads to the non-probabilistic concept of unique decodability. Prefix-free codes
provide a simple class of uniquely-decodable codes. Both prefix-free codes and the more general
class of uniquely-decodable codes satisfy the Kraft inequality on the number of possible code
words of each length. Moreover, for any set of lengths satisfying the Kraft inequality, there is
a simple procedure for constructing a prefix-free code with those lengths. Since the expected
length, and other important properties of codes, depend only on the codewords lengths (and
how they are assigned to source symbols), there is usually little reason to use variable-length
codes that are not also prefix free.

For a DMC with given probabilities on the symbols of a source code, the entropy is a lower
bound on the expected length of uniquely decodable codes. The Huffman algorithm provides a
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simple procedure for finding an optimal (in the sense of minimum expected codeword length)
variable-length prefix-free code. The Huffman algorithm is also useful for deriving properties
about optimal variable length source codes (see Exercises 2.12 to 2.18).

All the properties of variable-length codes extend immediately to fixed-to-variable-length codes
in which the source output sequence is segmented into blocks of n symbols which are then
encoded as a single symbol from the alphabet of source n-tuples. For a DMC the minimum
expected codeword length per source symbol then lies between H(U) and H(U) + 1/n. Thus
prefix-free fixed-to-variable-length codes can approach the entropy bound as closely as desired.

One of the disadvantages of fixed-to-variable-length codes is that bits leave the encoder at a
variable rate relative to incoming symbols. Thus if the incoming symbols have a fixed rate and
the bits must be fed into a channel at a fixed rate (perhaps with some idle periods), then the
encoded bits must be queued and there is a positive probability that any finite length queue will
overflow.

An alternative point of view is to consider fixed-length to fixed-length codes. Here, for a DMC,
the set of possible n-tuples of symbols from the source can be partitioned into a typical set and
an atypical set. For large n, the AEP says that there are essentially 2nH(U) typical n-tuples with
an aggregate probability approaching 1 with increasing n. Encoding just the typical n-tuples
requires about H(U) bits per symbol, thus approaching the entropy bound without the above
queueing problem, but, of course, with occasional errors.

As detailed in the text, the AEP can be used to look at the long-term behavior of arbitrary
source coding algorithms to show that the entropy bound cannot be exceeded without a failure
rate that approaches 1.

The above results for discrete memoryless sources extend easily to ergodic Markov sources.
The text does not carry out this analysis in detail since readers are not assumed to have the
requisite knowledge about Markov chains (see [4] for the detailed analysis). The important thing
here is to see that Markov sources can model n-gram statistics for any desired n and thus can
model fairly general sources (at the cost of very complex models). From a practical standpoint,
universal source codes, such as LZ77 are usually a more reasonable approach to complex and
partly unknown sources.

2A Appendix: Review of probability

The reader is assumed to have a basic familiarity with probability theory at the undergraduate
level. Many students, however, become adept at solving well-posed probability problems without
thinking much about the relation of probabilistic models to reality. This appendix provides a
very rudimentary review of this relationship and also indicates some of the terminology used
here; Students who are rusty (or who have difficulty with Exercises 2.2 to 2.5 should do some
further review of undergraduate probability. Suggested texts are [2] or [15].

A probability model, or probability space, consists of a sample space and a probability measure
on that space. The sample space is an arbitrary set of elements called sample points or sample
outcomes. Subsets of the sample space are called22 events.

The intuitive notion is that an ‘experiment’ is performed. Prior to performing the experiment,
22Mathematically, only measurable subsets of the sample space are called events. This is an important mathe-

matical issue, but it can be safely ignore here.
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any sample outcome could occur, and after the experiment, one and only one of these sample
outcomes occurs. This sample outcome specifies everything about the result of the experiment.
The occurrence of an event specifies that some sample outcome within that event occurred. For
example, for discrete sources, the sample point is the actual sequence of symbols that come out
of the source. An example of an event is that the first symbol in the output sequence is the
letter a. This event can then be thought of as the set of output sequences (sample points) that
start with a. Note that the technical meanings of sample outcome and event are not quite the
same as their ordinary usage in English. A sample outcome completely determines the result
of the experiment, whereas an event partially determines the result, specifying only that the
sample outcome lies in a given subset of the sample space.

A probability measure is a rule for assigning probabilities to each of the events. These probabil-
ities lie between 0 and 1 and the probability of the sample space itself is 1. The probability of
a union of disjoint events is the sum of the probabilities of those events; this is called the union
rule. For example, consider a probability model where the sample points are strings of length
n from a discrete source. The probability measure can be viewed as assigning a probability to
each such sample point, which, through the union rule, determines a probability for each event.

For the example of an unending sequence of outputs from a discrete source, the situation is
more complicated. Each sample point (each sequence of particular source outputs) will typically
have probability 0, so probabilities must be assigned directly to more complex events (such
as the event that the first output symbol in the sequence is the letter a). The description of
discrete memoryless sources in Section 2.4.1 is an example of how a probability measure can be
formulated for this sample space.

For a discrete source, the output at any given time n is denoted by Xn. This source output can
be any symbol aj in the alphabet X = {a1, . . . , aM}, and for each aj ∈ X , there is an event
Xn = aj which is the set of all output sequences for which the nth output is the particular
symbol aj . For each x ∈ X , this event has a probability denoted by Pr(Xn = x) which is
abbreviated pXn(x). Clearly

∑
x∈X pXn(x) = 1. Xn is called a random symbol. In general, a

random symbol23 is a mapping from the sample space to the elements of some set X , and the
elements of X are called the possible outcomes for Xn.

One might ask why all this machinery is required to talk about a random symbol, when it might
appear that all we need is the probability mass function (pmf) pXn(x) defined for all possible
outcomes x ∈ X . The reason is that one is often interested not only in which event Xn = x
occurs for a given random symbol Xn, but also in the joint probabilities between different random
symbols. The definition here implicitly defines all possible joint probabilities.

A random variable (rv) W is a random symbol in which the mapping is from the sample space
to a set W of real numbers, i.e., W ⊆ R. All rv’s have a distribution function, Pr(W ≤ w)
which gives a complete probabilistic characterization of the rv in isolation from other rv’s. That
is, Pr(W ≤ w) does not specify how W relates statistically to other rv’s, but in principle it
determines all the probabilistic properties of W itself.

If W contains a finite (or countably infinite) number of possible values, then W is said to be
a discrete rv and the probability assignment on the possible outcomes of W can be given by a
probability mass function (pmf) pW (w) = Pr(W=w) for all w ∈ W. In this case, the distribution
function is a staircase function with a jump pW (w) at each possible outcome w.

23As defined in this generality, random variables, random vectors, etc. can all be viewed as special cases of
random symbols. Random symbols as used in the text are usually discrete however.
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If, on the other hand, the distribution function of W is continuous and differentiable, then W is
said to be analog.24 The distribution of W is then specified by the probability density function
(pdf) fW (w) = d Pr(W ≤ w)/dw. Some rv’s are neither discrete nor analog according to these
definitions, but such rv’s rarely appear in sensible models of communcation.

In this text, random symbols are always denoted by capital letters and the outcomes for those
variables by lower-case letters. The most common source of errors in working with probability
arises from confusing random symbols or rv’s with their outcomes.

A random symbol X is deterministic or nonrandom if pX(x) = 1 for some x ∈ X , which
necessarily implies that pX(x) = 0 for all other x ∈ X . A discrete random symbol X is
equiprobable or uniform if pX(x) = 1/M for all x ∈ X , where M = |X |. Intuitively, these are
respectively the least random and most random discrete random symbols taking values in X .

The expectation or mean or average value of a discrete or analog rv W is defined as

E[W ] =
∑
w∈W

pW (w)w (discrete) E[W ] =
∫

w
fW (w)w dw (analog)

Expectations are often denoted with an overbar, i.e., E[W ] = W . Often an rv W is defined
in terms of a discrete random symbol X (i.e., the outcome w for W is uniquely determined as
a function w(x) of the outcome for X). Such an rv is often denoted as W (X). Thus, if X is
discrete, this leads to E[W (X)] =

∑
x∈X pX(x)w(x).

Expectations are additive: E[W1 + W2] = E[W1] + E[W2].

The Cartesian product X × Y = {(x, y) | x ∈ X , y ∈ Y} of two discrete alphabets X and Y is
another discrete alphabet. If, in some probability space, X and Y are random symbols taking
values in X and Y respectively, then XY is another random symbol whose pmf pXY (x, y) is
defined for all x ∈ X and y ∈ Y. Such a pmf is called a joint pmf. The pmf of X is related to
that for XY by

pX(x) =
∑
y∈Y

pXY (x, y).

For each x ∈ X with pX(x) > 0, the conditional pmf of Y is defined by

pY |X(y | x) =
pXY (x, y)

pX(x)
.

For each x ∈ X , this is a ‘valid’ pmf on Y in the sense that its elements are nonnegative and
sum to 1. The true pmf on Y is often called the marginal pmf to avoid confusion with these
conditional pmf’s.

Analog rv’s can be treated the same way. The joint density is given in terms of the joint
distribution function as fXY (x, y) = ∂

∂(x,y) Pr(X ≤ x, Y ≤ y). The marginal density for X is
then given by fX(x) =

∫
y fXY (x, y). Similarly, the conditional density is given by fX|Y (x|y) =

fX|Y (xy)

fY (y) . There are many mathematical subtleties that can arise with conditional densities, but
we will treat these matters with common sense rather than developing the (quite extensive)
needed mathematical structure.

Two discrete random symbols X and Y are independent if their joint pmf factors into the
product of the marginals: pXY (x, y) = pX(x)pY (y) for each x ∈ X , y ∈ Y. Equivalently, the

24Analog rv’s are often called continuous rv’s; this notation is avoided here since it sounds precise, but is not,
since it is the differentiability of the distribution function that is important.
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conditional pmf for Y (resp. X) is not a function of x (resp. y): pY |X(y | x) = pY (y) (resp.
pX|Y (x | y) = pX(x)) for each x ∈ X , y ∈ Y. Similarly, two analog rv’s are independent if
fXY (x, y) = fX(x)fY (y) for each x ∈ X , y ∈ Y.

An important property of expectations is that the expectation of the product of two independent
rv’s is the product of their expectations:

E[W1W2] = E[W1] · E[W2].

The nth moment of an rv W is defined as E[Wn]. Note that Wn is an rv in its own right, since,
for each sample point, the outcome w for W specifies the outcome wn for Wn.

The first moment of W is its mean W = E[W ]. The fluctuation of W is the zero-mean rv
W − W . The variance of W is the second moment of its fluctuation:

σ2
W = E[(W − W )2] = E[W 2] − W

2
.

Evidently the variance of W is nonnegative, and is equal to 0 if and only if W is deterministic
i.e., its fluctuation is equal to 0 with probability 1.
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2.E Exercises

2.1. Chapter 1 pointed out that voice waveforms could be converted to binary data by sampling
at 8000 times per second and quantizing to 8 bits per sample, yielding 64kb/s. It then
said that modern speech coders can yield telephone-quality speech at 6-16 kb/s. If your
objective were simply to reproduce the words in speech recognizably without concern for
speaker recognition, intonation, etc., make an estimate of how many kb/s would be required.
Explain your reasoning. (Note: There is clearly no “correct answer” here; the question is
too vague for that. The point of the question is to get used to questioning objectives and
approaches.)

2.2. Let V and W be discrete rv’s defined on some probability space with a joint pmf pV W (v, w).

(a) Prove that E[V + W ] = E[V ] + E[W ]. Do not assume independence.

(b) Prove that if V and W are independent rv’s, then E[V · W ] = E[V ] · E[W ].

c) Assume that V and W are not independent. Find an example where E[V ·W ] �= E[V ]·E[W ]
and another example where E[V · W ] = E[V ] · E[W ].

d) Assume that V and W are independent and let σ2
V and σ2

W be the variances of V and
W respectively. Show that the variance of V + W is given by σ2

V +W = σ2
V + σ2

W .

2.3. (a) For a nonnegative integer-valued rv N , show that E[N ] =
∑

n>0 Pr(N ≥ n).

(b) Show, with whatever mathematical care you feel comfortable with, that for an arbitrary
nonnegative rv X that E(X) =

∫ ∞
0 Pr(X ≥ a)da.

(c) Derive the Markov inequality, which says that for any nonnegative rv, Pr(X ≥ a) ≤ E[X]
a .

Hint: Sketch Pr(X > a) as a function of a and compare the area of the a by Pr(X ≥ a)
rectangle in your sketch with the area corresponding to E[X].

(d) Derive the Chebyshev inequality, which says that Pr(|Y − E[Y ]| ≥ b) ≤ σ2
Y

b2
for any rv

Y with finite mean E[Y ] and finite variance σ2
Y . Hint: Use part (c) with (Y − E[Y ])2 = X.

2.4. Let X1, X2, . . . , Xn, . . . be a sequence of independent identically distributed (iid) analog
rv’s with the common probability density function fX(x). Note that Pr{Xn=α} = 0 for all
α and that Pr{Xn=Xm} = 0 for m �= n.

(a) Find Pr{X1 ≤ X2}. [Give a numerical answer, not an expression; no computation is
required and a one or two line explanation should be adequate.]

(b) Find Pr{X1 ≤ X2; X1 ≤ X3} (in other words, find the probability that X1 is the smallest
of {X1, X2, X3}). [Again, think— don’t compute.]

(c) Let the rv N be the index of the first rv in the sequence to be less than X1; that is,
Pr{N=n} = Pr{X1 ≤ X2; X1 ≤ X3; · · · ; X1 ≤ Xn−1; X1 > Xn}. Find Pr{N ≥ n} as a
function of n. Hint: generalize part (b).

(d) Show that E[N ] = ∞. Hint: use part (a) of Exercise 2.3.

(e) Now assume that X1, X2 . . . is a sequence of iid rv’s each drawn from a finite set of
values. Explain why you can’t find Pr{X1 ≤ X2} without knowing the pmf. Explain why
E[N ] = ∞.
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2.5. Let X1, X2, . . . , Xn be a sequence of n binary iid rv’s. Assume that Pr{Xm=1} =
Pr{Xm=0} = 1

2 . Let Z be a parity check on X1, . . . , Xn; that is, Z = X1 ⊕ X2 ⊕ · · · ⊕ Xn

(where 0 ⊕ 0 = 1 ⊕ 1 = 0 and 0 ⊕ 1 = 1 ⊕ 0 = 1).

(a) Is Z independent of X1? (Assume n > 1.)

(b) Are Z, X1, . . . , Xn−1 independent?

(c) Are Z, X1, . . . , Xn independent?

(d) Is Z independent of X1 if Pr{Xi=1} �= 1
2? You may take n = 2 here.

2.6. Define a suffix-free code as a code in which no codeword is a suffix of any other codeword.

(a) Show that suffix-free codes are uniquely decodable. Use the definition of unique decod-
ability in Section 2.3.1, rather than the intuitive but vague idea of decodability with initial
synchronization.

(b) Find an example of a suffix-free code with codeword lengths (1, 2, 2) that is not a
prefix-free code. Can a codeword be decoded as soon as its last bit arrives at the decoder?
Show that a decoder might have to wait for an arbitrarily long time before decoding (this
is why a careful definition of unique decodability is required).

(c) Is there a code wih codeword lengths (1, 2, 2) that is both prefix-free and suffix-free?
Explain.

2.7. The algorithm given in essence by (2.2) for constructing prefix-free codes from a set of
codeword lengths uses the assumption the lengths have been ordered first. Give an example
in which the algorithm fails if the lengths are not ordered first.

2.8. Suppose that, for some reason, you wish to encode a source into symbols from a D-ary
alphabet (where D is some integer greater than 2) rather than into a binary alphabet. The
development of Section 2.3 can be easily extended to the D-ary case, using D-ary trees
rather than binary trees to represent prefix-free codes. Generalize the Kraft inequality,
(2.1), to the D-ary case and outline why it is still valid.

2.9. Suppose a prefix-free code has symbol probabilities p1, p2, . . . , pM and lengths l1, . . . , lM .
Suppose also that the expected length L satisfies L = H(X).

(a) Explain why pi = 2−li for each i.

(b) Explain why the sequence of encoded binary digits is a sequence of iid equiprobable
binary digits. Hint: Use figure 2.4 to illustrate this phenomenon and explain in words why
the result is true in general. Do not attempt a general proof.

2.10. (a) Show that in a code of M codewords satisfying the Kraft inequality with equality, the
maximum length is at most M − 1. Explain why this ensures that the number of distinct
such codes is finite.

(b) Consider the number S(M) of distinct full code trees with M terminal nodes. Count
two trees as being different if the corresponding set of codewords is different. That is, ignore
the set of source symbols and the mapping between source symbols and codewords. Show
that S(2) = 1 and show that for M > 2, S(M) =

∑M−1
j=1 S(j)S(M − j) where S(1) = 1 by

convention.
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2.11. (Proof of the Kraft inequality for uniquely decodable codes) (a) Assume a uniquely de-
codable code has lengths l1, . . . , lM . In order to show that

∑
j 2−lj ≤ 1, demonstrate the

following identity for each integer n ≥ 1: M∑
j=1

2−lj

n

=
M∑

j1=1

M∑
j2=1

· · ·
M∑

jn=1

2−(lj1+lj2+···+ljn )

(b) Show that there is one term on the right for each concatenation of n codewords (i.e.,
for the encoding of one n-tuple xn) where lj1 + lj2 + · · ·+ ljn is the aggregate length of that
concatenation.

(c) Let Ai be the number of concatenations which have overall length i and show that M∑
j=1

2−lj

n

=
nlmax∑
i=1

Ai 2−i

(d) Using the unique decodability, upper bound each Ai and show that M∑
j=1

2−lj

n

≤ nlmax

(e) By taking the nth root and letting n → ∞, demonstrate the Kraft inequality.

2.12. A source with an alphabet size of M = |X | = 4 has symbol probabilities {1/3, 1/3, 2/9, 1/9}.
(a) Use the Huffman algorithm to find an optimal prefix-free code for this source.

(b) Use the Huffman algorithm to find another optimal prefix-free code with a different set
of lengths.

(c) Find another prefix-free code that is optimal but cannot result from using the Huffman
algorithm.

2.13. An alphabet of M = 4 symbols has probabilities p1 ≥ p2 ≥ p3 ≥ p4 > 0.

(a) Show that if p1 = p3 +p4, then a Huffman code exists with all lengths equal and another
exists with a codeword of length 1, one of length 2, and two of length 3.

(b) Find the largest value of p1, say pmax, for which p1 = p3 + p4 is possible.

(c) Find the smallest value of p1, say pmin, for which p1 = p3 + p4 is possible.

(d) Show that if p1 > pmax, then every Huffman code has a length 1 codeword.

(e) Show that if p1 > pmax, then every optimal prefix-free code has a length 1 codeword.

(f) Show that if p1 < pmin, then all codewords have length 2 in every Huffman code.

(g) Suppose M > 4. Find the smallest value of p′max such that p1 > p′max guarantees that a
Huffman code will have a length 1 codeword.

2.14. Consider a source with M equiprobable symbols.

(a) Let k = �log M�. Show that, for a Huffman code, the only possible codeword lengths
are k and k − 1.
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(b) As a function of M , find how many codewords have length k = �log M�. What is the
expected codeword length L in bits per source symbol?

(c) Define y = M/2k. Express L − log M as a function of y. Find the maximum value of
this function over 1/2 < y ≤ 1. This illustrates that the entropy bound, L < H[X] + 1 is
rather loose in this equiprobable case.

2.15. Let a discrete memoryless source have M symbols with alphabet {1, 2, . . . , M} and ordered
probabilities p1 > p2 > · · · > pM > 0. Assume also that p1 < pM−1 + pM . Let l1, l2, . . . , lM
be the lengths of a prefix-free code of minimum expected length for such a source.

(a) Show that l1 ≤ l2 ≤ · · · ≤ lM .

(b) Show that if the Huffman algorithm is used to generate the above code, then lM ≤ l1+1.
Hint: Look only at the first step of the algorithm.

(c) Show that lM ≤ l1 + 1 whether or not the Huffman algorithm is used to generate a
minimum expected length prefix-free code.

(d) Suppose M = 2k for integer k. Determine l1, . . . , lM .

(e) Suppose 2k < M < 2k+1 for integer k. Determine l1, . . . , lM .

2.16. (a) Consider extending the Huffman procedure to codes with ternary symbols {0, 1, 2}.
Think in terms of codewords as leaves of ternary trees. Assume an alphabet with M = 4
symbols. Note that you cannot draw a full ternary tree with 4 leaves. By starting with a
tree of 3 leaves and extending the tree by converting leaves into intermediate nodes, show
for what values of M it is possible to have a complete ternary tree.

(b) Explain how to generalize the Huffman procedure to ternary symbols bearing in mind
your result in part (a).

(c) Use your algorithm for the set of probabilities {0.3, 0.2, 0.2, 0.1, 0.1, 0.1}.

2.17. Let X have M symbols, {1, 2, . . . , M} with ordered probabilities p1 ≥ p2 ≥ · · · ≥ pM > 0.
Let X ′ be the reduced source after the first step of the Huffman algorithm.

(a) Express the entropy H(X) for the original source in terms of the entropy H(X ′) of the
reduced source as

H(X) = H(X ′) + (pM + pM−1)H(γ), (2.43)

where H(γ) is the binary entropy function, H(γ) = −γ log γ − (1−γ) log(1−γ). Find the
required value of γ to satisfy (2.43).

(b) In the code tree generated by the Huffman algorithm, let v1 denote the intermediate node
that is the parent of the leaf nodes for symbols M and M−1. Let q1 = pM + pM−1 be the
probability of reaching v1 in the code tree. Similarly, let v2, v3, . . . , denote the subsequent
intermediate nodes generated by the Huffman algorithm. How many intermediate nodes
are there, including the root node of the entire tree?

(c) Let q1, q2, . . . , be the probabilities of reaching the intermediate nodes v1, v2, . . . , (note
that the probability of reaching the root node is 1). Show that L =

∑
i qi. Hint: Note that

L = L
′ + q1.

(d) Express H(X) as a sum over the intermediate nodes. The ith term in the sum should
involve qi and the binary entropy H(γi) for some γi to be determined. You may find it helpful
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to define αi as the probability of moving upward from intermediate node vi, conditional on
reaching vi. (Hint: look at part a).

(e) Find the conditions (in terms of the probabilities and binary entropies above) under
which L = H(X).

(f) Are the formulas for L and H(X) above specific to Huffman codes alone, or do they
apply (with the modified intermediate node probabilities and entropies) to arbitrary full
prefix-free codes?

2.18. Consider a discrete random symbol X with M+1 symbols for which p1 ≥ p2 ≥ · · · ≥ pM > 0
and pM+1 = 0. Suppose that a prefix-free code is generated for X and that for some reason,
this code contains a codeword for M+1 (suppose for example that pM+1 is actaully positive
but so small that it is approximated as 0.

(a) Find L for the Huffman code including symbol M+1 in terms of L for the Huffman code
omitting a codeword for symbol M+1.

(b) Suppose now that instead of one symbol of zero probability, there are n such symbols.
Repeat part (a) for this case.

2.19. In (2.12), it is shown that if X and Y are independent discrete random symbols, then the
entropy for the random symbol XY satisfies H[XY ] = H[X] + H[Y ]. Here we want to show
that, without the assumption of independence, we have H[XY ] ≤ H[X] + H[Y ].

(a) Show that

H[XY ] − H[X] − H[Y ] =
∑

x∈X ,y∈Y
pXY (x, y) log

pX(x)pY (y)
pX,Y (x, y)

.

(b) Show that H[XY ] − H[X] − H[Y ] ≤ 0, i.e., that H[XY ] ≤ H[X] + H[Y ].

(c) Let X1, X2, . . . , Xn be discrete random symbols, not necessarily independent. Use (b)
to show that

H(X1X2 · · ·Xn) ≤
n∑

j=1

H(Xj).

2.20. Consider a random symbol X with the symbol alphabet {1, 2, . . . , M} and a pmf
{p1, p2, . . . , pM}. This exercise concerns the relationship between the entropy H(X) and
the probability p1 of the first symbol. Let Y be a random symbol that is 1 if X = 1 and 0
otherwise. For parts (a) through (d), consider M and p1 to be fixed.

(a) Express H(Y ) in terms of the binary entropy function, Hb(α) = −α log(α)−(1−α) log(1−
α).

(b) What is the conditional entropy H(X|Y = 1)?

(c) Give a good upper bound to H(X|Y = 0) and show how this bound can be met with
equality by appropriate choice of p2, . . . , pM . Use this to upper bound H(X|Y ).

(d) Give a good upper bound for H(X) and show that how this bound can be met with
equality by appropriate choice of p2, . . . , pM .

(e) For the same value of M as before, let p1, . . . , pM be arbitrary and let pmax be
max{p1, . . . , pM}. Is your upper bound in (d) still valid if you replace p1 by pmax? Explain.
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2.21. A discrete memoryless source emits iid random symbols X1, X2, . . . . Each random symbol
X has the symbols {a, b, c} with probabilities {0.5, 0.4, 0.1}, respectively.

(a) Find the expected length Lmin of the best variable-length prefix-free code for X.

(b) Find the expected length Lmin,2, normalized to bits per symbol, of the best variable-
length prefix-free code for X2.

(c) Is it true that for any DMS, Lmin ≥ Lmin,2? Explain.

2.22. For a DMS X with alphabet X = {1, 2, . . . , M}, let Lmin,1, Lmin,2, and Lmin,3 be the
normalized average length in bits per source symbol for a Huffman code over X , X 2 and
X 3 respectively. Show that Lmin,3 ≤ 2

3Lmin,2 + 1
3Lmin,1.

2.23. (Run-Length Coding) Suppose X1, X2, . . . , is a sequence of binary random symbols with
pX(a) = 0.9 and pX(b) = 0.1. We encode this source by a variable-to-variable-length
encoding technique known as run-length coding. The source output is first mapped into
intermediate digits by counting the number of a’s between each b. Thus an intermediate
output occurs on each occurence of the symbol b. Since we don’t want the intermediate
digits to get too large, however, the intermediate digit 8 corresponds to 8 a’s in a row;
the counting restarts at this point. Thus, outputs appear on each b and on each 8 a’s. For
example, the first two lines below illustrate a string of source outputs and the corresponding
intermediate outputs.

b a a a b a a a a a a a a a a b b a a a a b

0 3 8 2 0 4
0000 0011 1 0010 0000 0100

The final stage of encoding assigns the codeword 1 to the intermediate integer 8, and assigns
a 4 bit codeword consisting of 0 followed by the three bit binary representation for each
integer 0 to 7. This is illustrated in the third line above.

(a) Show why the overall code is uniquely decodable.

(b) Find the expected total number of output bits corresponding to each occurrence of the
letter b. This total number includes the four bit encoding of the letter b and the one bit
encodings for each string of 8 letter a’s preceding that letter b.

(c) By considering a string of 1020 binary symbols into the encoder, show that the number
of b’s to occur per input symbol is, with very high probability, very close to 0.1.

(d) Combine parts (b) and (c) to find the L, the expected number of output bits per input
symbol.

2.24. (a) Suppose a DMS emits h and t with probability 1/2 each. For ε = 0.01, what is T 5
ε ?

(b) Find T 1
ε for Pr(h) = 0.1, Pr(t) = 0.9, and ε = 0.001.

2.25. Consider a DMS with a two symbol alphabet, {a, b} where pX(a) = 2/3 and pX(b) = 1/3.
Let X n = X1, . . . , Xn be a string of random symbols from the source with n = 100, 000.

(a) Let W (Xj) be the log pmf rv for the jth source output, i.e., W (Xj) = − log 2/3 for
Xj = a and − log 1/3 for Xj = b. Find the variance of W (Xj).

(b) For ε = 0.01, evaluate the bound on the probability of the typical set in (2.24).
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(c) Let Na be the number of a’s in the string X n = X1, . . . , Xn. The rv Na is the sum of
n iid rv’s. Show what these rv’s are.

(d) Express the rv W (X n) as a function of the rv Na. Note how this depends on n.

(e) Express the typical set in terms of bounds on Na (i.e., Tn
ε = {xn : α < Na < β} and

calculate α and β).

(f) Find the mean and variance of Na. Approximate Pr{Tn
ε } by the central limit theorem

approximation. The central limit theorem approximation is to evaluate Pr{Tn
ε } assuming

that Na is Gaussian with the mean and variance of the actual Na.

One point of this exercise is to illustrate that the Chebyshev inequality used in finding Pr(Tε)
in the notes is very weak (although it is a strict bound, whereas the Gaussian approximation
here is relatively accurate but not a bound). Another point is to show that n must be very
large for the typical set to look typical.

2.26. For the rv’s in the previous exercise, find Pr{Na = i} for i = 0, 1, 2. Find the probability
of each individual string xn for those values of i. Find the particular string xn that has
maximum probability over all sample values of X n. What are the next most probable
n-strings? Give a brief discussion of why the most probable n-strings are not regarded as
typical strings.

2.27. Let X1, X2, . . . , be a sequence of iid symbols from a finite alphabet. For any block length
n and any small number ε > 0, define the good set of n-tuples xn as the set

Gn
ε =

{
xn : pXn(xn) > 2−n[H[X]+ε]

}
.

(a) Explain how Gn
ε differs from the typical set Tn

ε .

(b) Show that Pr(Gn
ε ) ≥ 1 − σ2

W
nε2 where W is the log pmf rv for X. Nothing elaborate is

expected here.

(c) Derive an upper bound on the number of elements in Gn
ε of the form |Gn

ε | < 2n(H[X]+α)

and determine the value of α. (You are expected to find the smallest such α that you can,
but not to prove that no smaller value can be used in an upper bound).

(d) Let Gn
ε − Tn

ε be the set of n-tuples xn that lie in Gn
ε but not in Tn

ε . Find an upper
bound to |Gn

ε − Tn
ε | of the form |Gn

ε − Tn
ε | ≤ 2n(H[X]+β). Again find the smallest β that you

can.

(e) Find the limit of |Gn
ε − Tn

ε |/|Tn
ε | as n → ∞.

2.28. The typical set Tn
ε defined in the text is often called a weakly typical set, in contrast to

another kind of typical set called a strongly typical set. Assume a discrete memoryless
source and let Nj(xn) be the number of symbols in an n string xn taking on the value j.
Then the strongly typical set Sn

εs
is defined as

Sn
εs

=
{
xn : pj(1 − εs) <

Nj(xn)
n

< pj(1 + εs); for all j ∈ X
}

.

(a) Show that pXn(xn) =
∏

j p
Nj(x

n)
j .
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(b) Show that every xn in Sn
εs

has the property that

H(X)(1 − εs) <
− log pXn(xn)

n
< H(X)(1 + εs)

(c) Show that if xn ∈ Sn
εs

, then xn ∈ Tn
ε with ε = H(X)εs, i.e., that Sn

εs
⊆ Tn

ε .

(d) Show that for any δ > 0 and all sufficiently large n,

Pr
(
X n /∈ Sn

εs

)
≤ δ

Hint:Taking each letter j separately, 1 ≤ j ≤ M , show that for all sufficiently large n,
Pr

(∣∣∣Nj

n − pj

∣∣∣ ≥ εs

)
≤ δ

M .

(e) Show that for all δ > 0 and all suffiently large n,

(1 − δ)2n(H(X)−εs) < Tn
εs

< 2n(H(X)+εs). (2.44)

Note that parts (d) and (e) constitute the same theorem for the strongly typical set as
Theorem 2.7.1 establishes for the weakly typical set. Typically the n required for (2.44)
to hold (with the above correspondence between ε and εs) is considerably larger than than
that for (2.27) to hold. We will use strong typicality later in proving the noisy channel
coding theorem.

2.29. (a) The random variable Dn in Subsection 2.7.4 was defined as the initial string length of
encoded bits required to decode the first n symbols of the source input. For the run-length
coding example in Exercise 2.23, list the input strings and corresponding encoded output
strings that must be inspected to decode the first source letter and from this find the pmf
function of D1. Hint: As many as 8 source letters must be encoded before X1 can be
decoded.

(b)Find the pmf of D2. One point of this exercise is to convince you that Dn is a useful
rv for proving theorems, but not a rv that is useful for detailed computation. It also shows
clearly that Dn can depend on more than the first n source letters.

2.30. The Markov chain S0, S1, . . . below starts in steady state at time 0 and has 4 states, S =
{1, 2, 3, 4}. The corresponding Markov source X1, X2, . . . has a source alphabet X = {a, b, c}
of size 3.

���	
1

��� ���	
2

���	
4 ���	

3

�
�

�
�


 a; 1/2

b; 1/2

c; 1/2

c; 1

a; 1/2

a; 1

(a) Find the steady-state probabilities {q(s)} of the Markov chain.

(b) Find H[X1].

(c) Find H[X1|S0].
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(d) Describe a uniquely-decodable encoder for which L = H[X1|S0). Assume that the initial
state is known to the decoder. Explain why the decoder can track the state after time 0.

(e) Suppose you observe the source output without knowing the state. What is the maximum
number of source symbols you must observe before knowing the state?

2.31. Let X1, X2, . . . , Xn be discrete random symbols. Derive the following chain rule:

H(X1, . . . , Xn) = H(X1) +
n∑

j=2

H(Xj |X1, . . . , Xj−1)

Hint: Use the chain rule for n = 2 in (2.37) and ask yourself whether a k tuple of random
symbols is itself a random symbol.

2.32. Consider a discrete ergodic Markov chain S0, S1, . . . with an arbitrary initial state distribu-
tion.

(a) Show that H[S2|S1S0] = H[S2|S1] (use the basic definition of conditional entropy).

(b) Show with the help of Exercise 2.31 that for any n ≥ 2,

H[S1S2 · · ·Sn|S0] =
n∑

k=1

H[Sk|Sk−1].

(c) Simplify this for the case where S0 is in steady state.

(d) For a Markov source with outputs X1X2 · · · , explain why H[X1 · · ·Xn|S0] =
H[S1 · · ·Sn|S0]. You may restrict this to n = 2 if you desire.

(e) Verify (2.40).

2.33. (Not for the faint of heart) In this exercise, the strong typicality discussed in Exercise
2.28 is used to show that source coding designed using only the lower order statistics of a
source performs as well as a Markov source defined by those lower order statistics. In other
words, what a designer doesn’t know doesn’t hurt, although encorporating the higher order
statistics could help. Suppose a stationary source is described by kth order statistics for
all k ≥ 1 with p(x k) denoting the steady state probability of x k. Let Nxk(xn

−k(+)2) be the
number of appearances of x k in xn

−k+1. Assume that the source is ergodic in the sense that
for all δ > 0, ε > 0, x k, and for all large enough n,

Pr
(∣∣∣∣Nxk(X n

−k+2)
n

− p(x k)
∣∣∣∣ ≤ εp(x k)

)
≥ 1 − δ

For any given k, define the kth order Markov model for this source as a model where
the state space is the set of all k-tuples x k and the transition probabilities are given by
p(j |s = x k) = p(xk∗j))

p(xk)
where x k ∗ j is the (k+1) tuple formed by concatenating x k with

the source symbol j.

(a) Show that for this kth order Markov source model, the probability of a string xn
1

conditional on the state s0 = x 0
−k+1 is given by

qk(xn
1 |s0) =

∏
xk,j

p(j |s = x k)N
xk∗j

(xn
−k+1)



2.E. EXERCISES 65

(b) The strongly typical set Sn
e,k is defined as

Sn
ε,k =

{
xn
−k+1 : p(x k+1)(1−ε) <

Nxk+1(X n
−k+2)

n
< p(x k+1)(1+ε) for allx k+1

}
.

Show that for any ε > 0 and any k ≥ 1, the probability (in the original probability space)
of Sn

ε,k approaches 1 with increasing n.

2.34. Perform an LZ77 parsing of the string 000111010010101100. Assume a window of length
W = 8; the initial window is underlined above. You should parse the rest of the string using
the Lempel-Ziv algorithm.

2.35. Suppose that the LZ77 algorithm is used on the binary string x10,000
1 = 050001400001000.

This notation means 5000 repetitions of 0 followed by 4000 repetitions of 1 followed by 1000
repetitions of 0. Assume a window size w = 1024.

(a) Describe how the above string would be encoded. Give the encoded string and describe
its substrings.

(b) How long is the encoded string?

(c) Suppose that the window size is reduced to w = 8. How long would the encoded string
be in this case? (Note that such a small window size would only work well for really simple
examples like this one.)

(d) Create a Markov source model with 2 states that is a reasonably good model for this
source output. You are not expected to do anything very elaborate here; just use common
sense.

(e) Find the entropy in bits per source symbol for your source model.

2.36. (a) Show that if an optimum (in the sense of minimum expected length) prefix-free code is
chosen for any given pmf (subject to the condition pi > pj for i < j), the code word lengths
satisfy li ≤ lj for all i < j. Use this to show that for all j ≥ 1

lj ≥ �log j
 + 1

(c) The asymptotic efficiency of a prefix-free code for the positive integers is defined to be
limj→∞

lj
log j . What is the asymptotic efficiency of the unary-binary code?

(d) Explain how to construct a prefix-free code for the positive integers where the asymptotic
efficiency is 1. Hint: Replace the unary code for the integers n = �log j
 + 1 in the unary-
binary code with a code whose length grows more slowly with increasing n.
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Chapter 3

Quantization

3.1 Introduction to quantization

The previous chapter discussed coding and decoding for discrete sources. Discrete sources are a
subject of interest in their own right (for text, computer files, etc.) and also serve as the inner
layer for encoding analog source sequences and waveform sources (see Figure 3.1). This chapter
treats coding and decoding for a sequence of analog values. Source coding for analog values is
usually called quantization. Note that this is also the middle layer for waveform source/decoding.

waveform
input � sampler � quantizer � discrete

encoder
�

reliable
binary
channel

table
lookup

� discrete
decoderwaveform

output� analog
filter

� �

symbol
sequence

analog
sequence

Figure 3.1: Encoding and decoding of discrete sources, analog sequence sources, and
waveform sources. Quantization, the topic of this chapter, is the middle layer and
should be understood before trying to understand the outer layer, which deals with
waveform sources.

The input to the quantizer will be modeled as a sequence U1, U2, · · · , of analog random variables
(rv’s). The motivation for this is much the same as that for modeling the input to a discrete
source encoder as a sequence of random symbols. That is, the design of a quantizer should be
responsive to the set of possible inputs rather than being designed for only a single sequence of
numerical inputs. Also, it is desirable to treat very rare inputs differently from very common

67
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inputs, and a probability density is an ideal approach for this. Initially, U1, U2, . . . will be taken
as independent identically distributed (iid) analog rv’s with some given probability density
function (pdf) fU (u).

A quantizer, by definition, maps the incoming sequence U1, U2, · · · , into a sequence of discrete
rv’s V1, V2, · · · , where the objective is that Vm, for each m in the sequence, should represent Um

with as little distortion as possible. Assuming that the discrete encoder/decoder at the inner
layer of Figure 3.1 is uniquely decodable, the sequence V1, V2, · · · will appear at the output of
the discrete encoder and will be passed through the middle layer (denoted ‘table lookup’) to
represent the input U1, U2, · · · . The output side of the quantizer layer is called a ‘table lookup’
because the alphabet for each discrete random variables Vm is a finite set of real numbers, and
these are usually mapped into another set of symbols such as the integers 1 to M for an M
symbol alphabet. Thus on the output side a look-up function is required to convert back to the
numerical value Vm.

As discussed in Section 2.1, the quantizer output Vm, if restricted to an alphabet of M possible
values, cannot represent the analog input Um perfectly. Increasing M , i.e., quantizing more
finely, typically reduces the distortion, but cannot eliminate it.

When an analog rv U is quantized into a discrete rv V , the mean-squared distortion is de-
fined to be E[(U−V )2]. Mean-squared distortion (often called mean-sqared error) is almost
invariably used in this text to measure distortion. When studying the conversion of waveforms
into sequences in the next chapter, it will be seen that mean-squared distortion is particularly
convenient for converting the distortion for the sequence into mean-squared distortion for the
waveform.

There are some disadvantages to measuring distortion only in a mean-squared sense. For ex-
ample, efficient speech coders are based on models of human speech. They make use of the fact
that human listeners are more sensitive to some kinds of reconstruction error than others, so as,
for example, to permit larger errors when the signal is loud than when it is soft. Speech coding
is a specialized topic which we do not have time to explore (see, for example, [7]. Understanding
compression relative to a mean-squared distortion measure, however, will develop many of the
underlying principles needed in such more specialized studies.

In what follows, scalar quantization is considered first. Here each analog rv in the sequence is
quantized independently of the other rv’s. Next vector quantization is considered. Here the
analog sequence is first segmented into blocks of n rv’s each; then each n-tuple is quantized as
a unit.

Our initial approach to both scalar and vector quantization will be to minimize mean-squared
distortion subject to a constraint on the size of the quantization alphabet. Later, we consider
minimizing mean-squared distortion subject to a constraint on the entropy of the quantized
output. This is the relevant approach to quantization if the quantized output sequence is to be
source-encoded in an efficient manner, i.e., to reduce the number of encoded bits per quantized
symbol to little more than the corresponding entropy.

3.2 Scalar quantization

A scalar quantizer partitions the set R of real numbers into M subsets R1, . . . ,RM , called
quantization regions. Assume that each quantization region is an interval; it will soon be seen
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why this assumption makes sense. Each region Rj is then represented by a representation point
aj ∈ R. When the source produces a number u ∈ Rj , that number is quantized into the point
aj . A scalar quantizer can be viewed as a function {v(u) : R → R} that maps analog real values
u into discrete real values v(u) where v(u) = aj for u ∈ Rj .

An analog sequence u1, u2, . . . of real-valued symbols is mapped by such a quantizer into the
discrete sequence v(u1), v(u2) . . . . Taking u1, u2 . . . , as sample values of a random sequence
U1, U2, . . . , the map v(u) generates an rv Vk for each Uk; Vk takes the value aj if Uk ∈ Rj . Thus
each quantized output Vk is a discrete rv with the alphabet {a1, . . . , aM}. The discrete random
sequence V1, V2, . . . , is encoded into binary digits, transmitted, and then decoded back into the
same discrete sequence. For now, assume that transmission is error-free.

We first investigate how to choose the quantization regions R1, . . . ,RM , and how to choose
the corresponding representation points. Initially assume that the regions are intervals, ordered
as in Figure 3.2, with R1 = (−∞, b1],R2 = (b1, b2], . . . ,RM = (bM−1,∞). Thus an M -level
quantizer is specified by M − 1 interval endpoints, b1, . . . , bM−1, and M representation points,
a1, . . . , aM .

��
b1 b2 b3 b4 b5

R1 R2 R3 R4 R5 R6� � � � � �� � � � ��

a1 a2 a3 a4 a5 a6

Figure 3.2: Quantization regions and representation points.

For a given value of M , how can the regions and representation points be chosen to minimize
mean-squared error? This question is explored in two ways:

• Given a set of representation points {aj}, how should the intervals {Rj} be chosen?

• Given a set of intervals {Rj}, how should the representation points {aj} be chosen?

3.2.1 Choice of intervals for given representation points

The choice of intervals for given representation points, {aj ; 1≤j≤M} is easy: given any u ∈ R,
the squared error to aj is (u − aj)2. This is minimized (over the fixed set of representation
points {aj}) by representing u by the closest representation point aj . This means, for example,
that if u is between aj and aj+1, then u is mapped into the closer of the two. Thus the
boundary bj between Rj and Rj+1 must lie halfway between the representation points aj and
aj+1, 1 ≤ j ≤ M − 1. That is, bj = aj+aj+1

2 . This specifies each quantization region, and also
shows why each region should be an interval. Note that this minimization of mean-squared
distortion does not depend on the probabilistic model for U1, U2, . . . .

3.2.2 Choice of representation points for given intervals

For the second question, the probabilistic model for U1, U2, . . . is important. For example, if
it is known that each Uk is discrete and has only one sample value in each interval, then the
representation points would be chosen as those sample value. Suppose now that the rv’s {Uk}
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are iid analog rv’s with the pdf fU (u). For a given set of points {aj}, V (U) maps each sample
value u ∈ Rj into aj . The mean-squared distortion (or mean-squared error MSE) is then

MSE = E[(U − V (U))2] =
∫ ∞

−∞
fU (u)(u − v(u))2 du =

M∑
j=1

∫
Rj

fU (u) (u − aj)
2 du. (3.1)

In order to minimize (3.1) over the set of aj , it is simply necessary to choose each aj to minimize
the corresponding integral (remember that the regions are considered fixed here). Let fj(u)
denote the conditional pdf of U given that {u ∈ Rj}; i.e.,

fj(u) =

{
fU (u)

Qj
, if u ∈ Rj ;

0, otherwise,
(3.2)

where Qj = Pr{U ∈ Rj}. Then, for the interval Rj ,∫
Rj

fU (u) (u − aj)
2 du = Qj

∫
Rj

fj(u) (u − aj)
2 du. (3.3)

Now (3.3) is minimized by choosing aj to be the mean of a random variable with the pdf fj(u).
To see this, note that for any rv Y and real number a,

(Y − a)2 = Y 2 − 2aY + a2,

which is minimized over a when a = Y .

This provides a set of conditions that the endpoints {bj} and the points {aj} must satisfy to
achieve the MSE — namely, each bj must be the midpoint between aj and aj+1 and each aj

must be the mean of an rv Uj with pdf fj(u). In other words, aj must be the conditional mean
of U conditional on U ∈ Rj .

These conditions are necessary to minimize the MSE for a given number M of representation
points. They are not sufficient, as shown by an example at the end of this section. Nonetheless,
these necessary conditions provide some insight into the minimization of the MSE.

3.2.3 The Lloyd-Max algorithm

The Lloyd-Max algorithm1 is an algorithm for finding the endpoints {bj} and the representation
points {aj} to meet the above necessary conditions. The algorithm is almost obvious given the
necessary conditions; the contribution of Lloyd and Max was to define the problem and develop
the necessary conditions. The algorithm simply alternates between the optimizations of the
previous subsections, namely optimizing the endpoints {bj} for a given set of {aj}, and then
optimizing the points {aj} for the new endpoints.

The Lloyd-Max algorithm is as follows. Assume that the number M of quantizer levels and the
pdf fU (u) are given.

1. Choose an arbitrary initial set of M representation points a1 < a2 < · · · < aM .
1This algorithm was developed independently by S. P. Lloyd in 1957 and J. Max in 1960. Lloyd’s work was

done in the Bell Laboratories research department and became widely circulated, although unpublished until 1982
[10]. Max’s work [11] was published in 1960.
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2. For each j; 1 ≤ j ≤ M−1, set bj = 1
2(aj+1 + aj).

3. For each j; 1 ≤ j ≤ M , set aj equal to the conditional mean of U given U ∈ (bj−1, bj ] (where
b0 and bM are taken to be −∞ and +∞ respectively).

4. Repeat steps (2) and (3) until further improvement in MSE is negligible; then stop.

The MSE decreases (or remains the same) for each execution of step (2) and step (3). Since the
MSE is nonnegative, it approaches some limit. Thus if the algorithm terminates when the MSE
improvement is less than some given ε > 0, then the algorithm must terminate after a finite
number of iterations.

Example:. This example shows that the algorithm might reach a local minimum of MSE instead
of the global minimum. Consider a quantizer with M = 2 representation points, and an rv U
whose pdf fU (u) has three peaks, as shown in Figure 3.3.

��
b1

R1 R2

a1 a2

� ���

fU (u)

Figure 3.3: Example of regions and representaion points that satisfy Lloyd-Max condi-
tions without minimizing mean-squared distortion.

It can be seen that one region must cover two of the peaks, yielding quite a bit of distortion,
while the other will represent the remaining peak, yielding little distortion. In the figure, the
two rightmost peaks are both covered by R2, with the point a2 between them. Both the points
and the regions satisfy the necessary conditions and cannot be locally improved. However, it
can be seen in the figure that the rightmost peak is more probable than the other peaks. It
follows that the MSE would be lower if R1 covered the two leftmost peaks.

The Lloyd-Max algorithm is a type of hill-climbing algorithm; starting with an arbitrary set of
values, these values are modified until reaching the top of a hill where no more local improvements
are possible.2 A reasonable approach in this sort of situation is to try many randomly chosen
starting points, perform the Lloyd-Max algorithm on each and then take the best solution. This
is somewhat unsatisfying since there is no general technique for determining when the optimal
solution has been found.

2It would be better to call this a valley-descending algorithm, both because a minimum is desired and also
because binoculars can not be used at the bottom of a valley to find a distant lower valley.
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3.3 Vector quantization

As with source coding of discrete sources, we next consider quantizing n source variables at a
time. This is called vector quantization, since an n-tuple of rv’s may be regarded as a vector
rv in an n-dimensional vector space. We will concentrate on the case n = 2 so that illustrative
pictures can be drawn.

One possible approach is to quantize each dimension independently with a scalar (one-
dimensional) quantizer. This results in a rectangular grid of quantization regions as shown
below. The MSE per dimension is the same as for the scalar quantizer using the same number
of bits per dimension. Thus the best 2D vector quantizer has an MSE per dimension at least as
small as that of the best scalar quantizer.



 

 





























Figure 3.4: 2D rectangular quantizer.

To search for the minimum-MSE 2D vector quantizer with a given number M of representation
points, the same approach is used as with scalar quantization.

Let (U, U ′) be the two rv’s being jointly quantized. Suppose a set of M 2D representation points
{(aj , a

′
j)}, 1 ≤ j ≤ M is chosen. For example, in the figure above, there are 16 representation

points, represented by small dots. Given a sample pair (u, u′) and given the M representation
points, which representation point should be chosen for the given (u, u′)? Again, the answer is
easy. Since mapping (u, u′) into (aj , a

′
j) generates a squared error equal to (u−aj)2 +(u′−a′j)

2,
the point (aj , a

′
j) which is closest to (u, u′) in Euclidean distance should be chosen.

Consequently, the region Rj must be the set of points (u, u′) that are closer to (aj , a
′
j) than

to any other representation point. Thus the regions {Rj} are minimum-distance regions; these
regions are called the Voronoi regions for the given representation points. The boundaries of
the Voronoi regions are perpendicular bisectors between neighboring representation points. The
minimum-distance regions are thus in general convex polygonal regions, as illustrated in the
figure below.

As in the scalar case, the MSE can be minimized for a given set of regions by choosing the
representation points to be the conditional means within those regions. Then, given this new
set of representation points, the MSE can be further reduced by using the Voronoi regions for
the new points. This gives us a 2D version of the Lloyd-Max algorithm, which must converge
to a local minimum of the MSE. This can be generalized straightforwardly to any dimension n.

As already seen, the Lloyd-Max algorithm only finds local minima to the MSE for scalar quan-
tizers. For vector quantizers, the problem of local minima becomes even worse. For example,
when U1, U2, · · · are iid, it is easy to see that the rectangular quantizer in Figure 3.4 satisfies
the Lloyd-Max conditions if the corresponding scalar quantizer does (see Exercise 3.9). It will
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Figure 3.5: Voronoi regions for given set of representation points.

soon be seen, however, that this is not necessarily the minimum MSE.

Vector quantization was a popular research topic for many years. The problem is that quantizing
complexity goes up exponentially with n, and the reduction in MSE with increasing n is quite
modest, unless the samples are statistically highly dependent.

3.4 Entropy-coded quantization

We must now ask if minimizing the MSE for a given number M of representation points is the
right problem. The minimum expected number of bits per symbol, Lmin, required to encode the
quantizer output was shown in Chapter 2 to be governed by the entropy H[V ] of the quantizer
output, not by the size M of the quantization alphabet. Therefore, anticipating efficient source
coding of the quantized outputs, we should really try to minimize the MSE for a given entropy
H[V ] rather than a given number of representation points.

This approach is called entropy-coded quantization and is almost implicit in the layered approach
to source coding represented in Figure 3.1. Discrete source coding close to the entropy bound
is similarly often called entropy coding. Thus entropy-coded quantization refers to quantization
techniques that are designed to be followed by entropy coding.

The entropy H[V ] of the quantizer output is determined only by the probabilities of the quantiza-
tion regions. Therefore, given a set of regions, choosing the representation points as conditional
means minimizes their distortion without changing the entropy. However, given a set of rep-
resentation points, the optimal regions are not necessarily Voronoi regions (e.g., in a scalar
quantizer, the point separating two adjacent regions is not necessarily equidistant from the two
represention points.)

For example, for a scalar quantizer with a constraint H[V ] ≤ 1
2 and a Gaussian pdf for U , a

reasonable choice is three regions, the center one having high probability 1 − 2p and the outer
ones having small, equal probability p, such that H[V ] = 1

2 .

Even for scalar quantizers, minimizing MSE subject to an entropy constraint is a rather messy
problem. Considerable insight into the problem can be obtained by looking at the case where
the target entropy is large— i.e., when a large number of points can be used to achieve small
MSE. Fortunately this is the case of greatest practical interest.

Example:. For the following simple example, consider the minimum-MSE quantizer using a
constraint on the number of representation points M compared to that using a constraint on
the entropy H[V ].
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L1
� �

L2
� �

fU (u)f1
f2

∆1��a1 a9 a10 a16

∆2��

Figure 3.6: Comparison of constraint on M to constraint on H(U).

The example shows a piecewise constant pdf fU (u) that takes on only two positive values, say
fU (u) = f1 over an interval of size L1, and fU (u) = f2 over a second interval of size L2. Assume
that fU (u) = 0 elsewhere. Because of the wide separation between the two intervals, they can
be quantized separately without providing any representation point in the region between the
intervals. Let M1 and M2 be the number of representation points in each interval. In the figure,
M1 = 9 and M2 = 7. Let ∆1 = L1/M1 and ∆2 = L2/M2 be the lengths of the quantization
regions in the two ranges (by symmetry, each quantization region in a given interval should have
the same length). The representation points are at the center of each quantization interval.
The MSE, conditional on being in a quantization region of length ∆i, is the MSE of a uniform
distribution over an interval of length ∆i, which is easily computed to be ∆2

i /12. The probability
of being in a given quantization region of size ∆i is fi∆i, so the overall MSE is given by

MSE = M1
∆2

1

12
f1∆1 + M2

∆2
2

12
f2∆2 =

1
12

∆2
1f1L1 +

1
12

∆2
2f2L2. (3.4)

This can be minimized over ∆1 and ∆2 subject to the constraint that M = M1 + M2 =
L1/∆1 + L2/∆2. Ignoring the constraint that M1 and M2 are integers (which makes sense
for M large), Exercise 3.4 shows that the minimum MSE occurs when ∆i is chosen inversely
proportional to the cube root of fi. In other words,

∆1

∆2
=

(
f2

f1

)1/3

. (3.5)

This says that the size of a quantization region decreases with increasing probability density.
This is reasonable, putting the greatest effort where there is the most probability. What is
perhaps surprising is that this effect is so small, proportional only to a cube root.

Perhaps even more surprisingly, if the MSE is minimized subject to a constraint on entropy for
this example, then Exercise 3.4 shows that the quantization intervals all have the same length! A
scalar quantizer in which all intervals have the same length is called a uniform scalar quantizer.
The following sections will show that uniform scalar quantizers have remarkable properties for
high-rate quantization.

3.5 High-rate entropy-coded quantization

This section focuses on high-rate quantizers where the quantization regions can be made suffi-
ciently small so that the probability density is approximately constant within each region. It will
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be shown that under these conditions the combination of a uniform scalar quantizer followed by
discrete entropy coding is nearly optimum (in terms of mean-squared distortion) within the class
of scalar quantizers. This means that a uniform quantizer can be used as a universal quantizer
with very little loss of optimality. The probability distribution of the rv’s to be quantized can
be explointed at the level of discrete source coding. Note however that this essential optimality
of uniform quantizers relies heavily on the assumption that mean-squared distortion is an ap-
propriate distortion measure. With voice coding, for example, a given distortion at low signal
levels is for more harmful than the same distortion at high signal levels.

In the following sections, it is assumed that the source output is a sequence U1, U2, . . . , of iid
real analog-valued rv’s, each with a probability density fU (u). It is further assumed that the
probability density function (pdf) fU (u) is smooth enough and the quantization fine enough
that fU (u) is almost constant over each quantization region.

The analogue of the entropy H[X] of a discrete rv is the differential entropy h[U ] of an analog
rv. After defining h[U ],the properties of H[U ] and h[U ] will be compared.

The performance of a uniform scalar quantizer followed by entropy coding will then be analyzed.
It will be seen that there is a tradeoff between the rate of the quantizer and the mean-squared
error (MSE) between source and quantized output. It is also shown that the uniform quantizer
is essentially optimum among scalar quantizers at high rate.

The performance of uniform vector quantizers followed by entropy coding will then be analyzed
and similar tradeoffs will be found. A major result is that vector quantizers can achieve a gain
over scalar quantizers (i.e., a reduction of MSE for given quantizer rate), but that the reduction
in MSE is at most a factor of πe/6 = 1.42.

As in the discrete case, generalizations to analog sources with memory are possible, but not
discussed here.

3.6 Differential entropy

The differential entropy h[U ] of an analog random variable (rv) U is analogous to the entropy
H[X] of a discrete random symbol X. It has many similarities, but also some important differ-
ences.

Definition The differential entropy of an analog real rv U with pdf fU (u) is

h[U ] =
∫ ∞

−∞
−fU (u) log fU (u) du.

The integral may be restricted to the region where fU (u) > 0, since 0 log 0 is interpreted as 0.
Assume that fU (u) is smooth and that the integral exists with a finite value. Exercise 3.7 gives
an example where h(U) is infinite.

As before, the logarithms are base 2 and the units of h[U ] are bits per source symbol.

Like H[X], the differential entropy h[U ] is the expected value of the rv − log fU (U). The log of
the joint density of several independent rv’s is the sum of the logs of the individual pdf’s, and
this can be used to derive an AEP similar to the discrete case ([?]).

Unlike H[X], the differential entropy h[U ] can be negative and depends on the scaling of the
outcomes. This can be seen from the following two examples.
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Example: (Uniform distributions). Let fU (u) be a uniform distribution over an interval [a, a+
∆] of length ∆; i.e., fU (u) = 1/∆ for u ∈ [a, a+∆], and fU (u) = 0 elsewhere. Then − log fU (u) =
log ∆ where fU (u) > 0 and

h[U ] = E[− log fU (U)] = log ∆.

Example: (Gaussian distribution). Let fU (u) be a Gaussian distribution with mean m and
variance σ2; i.e.,

fU (u) =

√
1

2πσ2
exp

{
−(u − m)2

2σ2

}
.

Then − log fU (u) = 1
2 log 2πσ2 + (log e)(u − m)2/(2σ2). Since E[(U − m)2] = σ2,

h[U ] = E[− log fU (U)] =
1
2

log(2πσ2) +
1
2

log e =
1
2

log(2πeσ2).

It can be seen from these expressions that by making ∆ or σ2 arbitrarily small, the differen-
tial entropy can be made arbitrarily negative, while by making ∆ or σ2 arbitrarily large, the
differential entropy can be made arbitrarily positive.

If the rv U is rescaled to αU for some scale factor α > 0, then the differential entropy is increased
by log α, both in these examples and in general. In other words, h[U ] is not invariant to scaling.
Note, however, that differential entropy is invariant to translation of the pdf, i.e., an rv and its
fluctuation around the mean have the same differential entropy.

One of the important properties of entropy is that it does not depend on the labeling of the
elements of the alphabet, i.e., it is invariant to invertible transformations. Differential entropy
is very different in this respect, and, as just illustrated, it is modified by even such a trivial
transformation as a change of scale. The reason for this is that the probability density is a
probability per unit length, and therefore depends on the measure of length. In fact, as seen
more clearly later, this fits in very well with the fact that source coding for analog sources also
depends on an error term per unit length.

Definition The differential entropy of an n-tuple of rv’s U n = (U1, · · · , Un) with joint pdf
fU n(un) is

h[U n] = E[− log fU n(U n)].

Like entropy, differential entropy has the property that if U and V are independent rv’s, then
the entropy of the joint variable UV with pdf fUV (u, v) = fU (u)fV (v) is h[UV ] = h[U ] + h[V ].
Again, this follows from the fact that the log of the joint probability density of independent rv’s
is additive, i.e., − log fUV (u, v) = − log fU (u) − log fV (v).

Thus the differential entropy of a vector rv U n, corresponding to a string of n iid rv’s
U1, U2, . . . , Un, each with the density fU (u), is h[U n] = nh[U ].

3.7 Performance of uniform high-rate scalar quantizers

This section analyzes the performance of uniform scalar quantizers in the limit of high rate.
Appendix A continues the analysis for the nonuniform case and shows that uniform quantizers
are effectively optimal in the high-rate limit.
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Figure 3.7: Uniform scalar quantizer.

For a uniform scalar quantizer, every quantization interval Rj has the same length |Rj | = ∆.
In other words, R (or the portion of R over which fU (u) > 0), is partitioned into equal intervals,
each of length ∆.

Assume there are enough quantization regions to cover the region where fU (u) > 0. For the
Gaussian distribution, for example, this requires an infinite number of representation points,
−∞ < j < ∞. Thus, in this example the quantized discrete rv V has a countably infinite
alphabet. Obviously, practical quantizers limit the number of points to a finite region R such
that

∫
R fU (u) du ≈ 1.

Assume that ∆ is small enough that the pdf fU (u) is approximately constant over any one
quantization interval. More precisely, define f(u) (see Figure 3.8) as the average value of fU (u)
over the quantization interval containing u,

f(u) =

∫
Rj

fU (u)du

∆
for u ∈ Rj . (3.6)

From (3.6) it is seen that ∆f(u) = Pr(Rj) for all integer j and all u ∈ Rj .

fU (u)f(u)

Figure 3.8: Average density over each Rj .

The high-rate assumption is that fU (u) ≈ f(u) for all u ∈ R. This means that fU (u) ≈ Pr(Rj)/∆
for u ∈ Rj . It also means that the conditional pdf fU |Rj

(u) of U conditional on u ∈ Rj is
approximated by

fU |Rj
(u) ≈

{
1/∆, u ∈ Rj ;
0, u /∈ Rj .

Consequently the conditional mean aj is approximately in the center of the interval Rj , and the
mean-squared error is approximately given by

MSE ≈
∫ ∆/2

−∆/2

1
∆

u2du =
∆2

12
(3.7)

for each quantization interval Rj . Consequently this is also the overall MSE.
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Next consider the entropy of the quantizer output V . The probability pj that V = aj is given
by both

pj =
∫
Rj

fU (u) du and, for all u ∈ Rj , pj = f(u)∆. (3.8)

Therefore the entropy of the discrete rv V is

H[V ] =
∑

j

−pj log pj =
∑

j

∫
Rj

−fU (u) log[f(u)∆] du

=
∫ ∞

−∞
−fU (u) log[f(u)∆] du (3.9)

=
∫ ∞

−∞
−fU (u) log[f(u)] du − log ∆, (3.10)

where the sum of disjoint integrals were combined into a single integral.

Finally, using the high-rate approximation3 fU (u) ≈ f(u), this becomes

H[V ] ≈
∫ ∞

−∞
−fU (u) log[fU (u)∆] du

= h[U ] − log ∆. (3.11)

Since the sequence U1, U2, . . . of inputs to the quantizer is memoryless (iid), the quantizer output
sequence V1, V2, . . . is an iid sequence of discrete random symbols representing quantization
points— i.e., a discrete memoryless source. A uniquely-decodable source code can therefore
be used to encode this output sequence into a bit sequence at an average rate of L ≈ H[V ] ≈
h[U ]− log ∆ bits/symbol. At the receiver, the mean-squared quantization error in reconstructing
the original sequence is approximately MSE ≈ ∆2/12.

The important conclusions from this analysis are illustrated in Figure 3.9 and are summarized
as follows:

• Under the high-rate assumption, the rate L for a uniform quantizer followed by discrete
entropy coding depends only on the differential entropy h[U ] of the source and the spacing
∆ of the quantizer. It does not depend on any other feature of the source pdf fU (u), nor on
any other feature of the quantizer, such as the number M of points, so long as the quantizer
intervals cover fU (u) sufficiently completely and finely.

• The rate L ≈ H[V ] and the MSE are parametrically related by ∆, i.e.,

L ≈ h(U) − log ∆; MSE ≈ ∆2

12
. (3.12)

Note that each reduction in ∆ by a factor of 2 will reduce the MSE by a factor of 4
and increase the required transmission rate L ≈ H[V ] by 1 bit/symbol. Communication
engineers express this by saying that each additional bit per symbol decreases the mean-
squared distortion4 by 6 dB. Figure 3.9 sketches MSE as a function of L.

3Exercise 3.6 provides some insight into the nature of the approximation here. In particular, the difference
between h[U ] − log ∆ and H[V ] is

∫
fU (u) log[f(u)/fU (u)] du. This quantity is always nonpositive and goes to

zero with ∆ as ∆2. Similarly, the approximation error on MSE goes to 0 as ∆4.
4A quantity x expressed in dB is given by 10 log10 x. This very useful and common logarithmic measure is

discussed in detail in Chapter 6.
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L ≈ H[V ]

MSE

MSE≈ 22h[U ]−2L

12

Figure 3.9: MSE as a function of L for a scalar quantizer with the high-rate approxi-
mation. Note that changing the source entropy h(U) simply shifts the figure right or
left. Note also that log MSE is linear, with a slope of -2, as a function of L.

Conventional b-bit analog-to-digital (A/D) converters are uniform scalar 2b-level quantizers that
cover a certain range R with a quantizer spacing ∆ = 2−b|R|. The input samples must be scaled
so that the probability that u /∈ R (the “overflow probability”) is small. For a fixed scaling of
the input, the tradeoff is again that increasing b by 1 bit reduces the MSE by a factor of 4.

Conventional A/D converters are not usually directly followed by entropy coding. The more
conventional approach is to use A/D conversion to produce a very high rate digital signal that
can be further processed by digital signal processing (DSP). This digital signal is then later
compressed using algorithms specialized to the particular application (voice, images, etc.). In
other words, the clean layers of Figure 3.1 oversimplify what is done in practice. On the other
hand, it is often best to view compression in terms of the Figure 3.1 layers, and then use DSP
as a way of implementing the resulting algorithms.

The relation H[V ] ≈ h[u] − log ∆ provides an elegant interpretation of differential entropy.
It is obvious that there must be some kind of tradeoff between MSE and the entropy of the
representation, and the differential entropy specifies this tradeoff in a very simple way for high
rate uniform scalar quantizers. H[V ] is the entropy of a finely quantized version of U , and the
additional term log ∆ relates to the “uncertainty” within an individual quantized interval. It
shows explicitly how the scale used to measure U affects h[U ].

Appendix A considers nonuniform scalar quantizers under the high rate assumption and shows
that nothing is gained in the high-rate limit by the use of nonuniformity.

3.8 High-rate two-dimensional quantizers

The performance of uniform two-dimensional (2D) quantizers are now analyzed in the limit of
high rate. Appendix B considers the nonuniform case and shows that uniform quantizers are
again effectively optimal in the high-rate limit.

A 2D quantizer operates on 2 source samples u = (u1, u2) at a time; i.e., the source alphabet is
U 2 = R2. Assuming iid source symbols, the joint pdf is then fU 2(u2) = fU (u1)fU (u2), and the
joint differential entropy is h[U 2] = 2h[U ].

Like a uniform scalar quantizer, a uniform 2D quantizer is based on a fundamental quantization
region R (“quantization cell”) whose translates tile5 the 2D plane. In the one-dimensional case,

5A region of the 2D plane is said to tile the plane if the region, plus translates and rotations of the region,
fill the plane without overlap. For example the square and the hexagon tile the plane. Also, rectangles tile the
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there is really only one sensible choice for R, namely an interval of length ∆, but in higher
dimensions there are many possible choices. For two dimensions, the most important choices
are squares and hexagons, but in higher dimensions, many more choices are available.

Notice that if a region R tiles R2, then any scaled version αR of R will also tile R2, and so will
any rotation or translation of R.

Consider the performance of a uniform 2D quantizer with a basic cell R which is centered at the
origin 0 . The set of cells, which are assumed to tile the region, are denoted by6 {Rj ; j ∈ Z+}
where Rj = a j + R and a j is the center of the cell Rj . Let A(R) =

∫
R du be the area of the

basic cell. The average pdf in a cell Rj is given by Pr(Rj)/A(Rj). As before, define f(u) to be
the average pdf over the region Rj containing u . The high-rate assumption is again made, i.e.,
assume that the region R is small enough that fU (u) ≈ f(u) for all u .

The assumption fU (u) ≈ f(u) implies that the conditional pdf, conditional on u ∈ Rj is
approximated by

fU |Rj
(u) ≈

{
1/A(R), u ∈ Rj ;
0, u /∈ Rj .

(3.13)

The conditional mean is approximately equal to the center a j of the region Rj . The mean-
squared error per dimension for the basic quantization cell R centered on 0 is then approximately
equal to

MSE ≈ 1
2

∫
R
‖u‖2 1

A(R)
du . (3.14)

The right side of (3.14) is the MSE for the quantization area R using a pdf equal to a constant; it
will be denoted MSEc. The quantity ‖u‖ is the length of the vector u1, u2, so that ‖u‖2 = u2

1+u2
2.

Thus MSEc can be rewritten as

MSE ≈ MSEc =
1
2

∫
R

(u2
1 + u2

2)
1

A(R)
du1du2. (3.15)

MSEc is measured in units of squared length, just like A(R). Thus the ratio G(R) = MSEc/A(R)
is a dimensionless quantity called the normalized second moment. With a little effort, it can
be seen that G(R) is invariant to scaling, translation and rotation. G(R) does depend on the
shape of the region R, and, as seen below, it is G(R) that determines how well a given shape
performs as a quantization region. By expressing

MSEc = G(R)A(R),

it is seen that the MSE is the product of a shape term and an area term, and these can be
chosen independently.

As examples, G(R) is given below for some common shapes.

• Square: For a square ∆ on a side, A(R) = ∆2. Breaking (3.15) into two terms, we see that
each is identical to the scalar case and MSEc = ∆2/12. Thus G(Square) = 1/12.

plane, and equilateral triangles with rotations tile the plane.
6Z+ denotes the set of positive integers, so {Rj ; j ∈ Z+} denotes the set of regions in the tiling, numbered in

some arbitrary way of no particular interest here.
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• Hexagon: View the hexagon as the union of 6 equilateral triangles ∆ on a side. Then
A(R) = 3

√
3∆2/2 and MSEc = 5∆2/24. Thus G(hexagon) = 5/(36

√
3).

• Circle: For a circle of radius r, A(R) = πr2 and MSEc = r2/4 so G(circle) = 1/(4π).

The circle is not an allowable quantization region, since it does not tile the plane. On the other
hand, for a given area, this is the shape that minimizes MSEc. To see this, note that for any
other shape, differential areas further from the origin can be moved closer to the origin with a
reduction in MSEc. That is, the circle is the 2D shape that minimizes G(R). This also suggests
why G(Hexagon) < G(Square), since the hexagon is more concentrated around the origin than
the square.

Using the high rate approximation for any given tiling, each quantization cell Rj has the same
shape and area and has a conditional pdf which is approximately uniform. Thus MSEc approx-
imates the MSE for each quantization region and thus approximates the overall MSE.

Next consider the entropy of the quantizer output. The probability that U falls in the region
Rj is

pj =
∫
Rj

fU (u) du and, for all u ∈ Rj , pj = f(u)A(R).

The output of the quantizer is the discrete random symbol V with the pmf pj for each symbol
j. As before, the entropy of V is given by

H[V ] = −
∑

j

pj log pj

= −
∑

j

∫
Rj

fU (u) log[f(u)A(R)] du

= −
∫

fU (u) [log f(u) + log A(R)] du

≈ −
∫

fU (u) [log fU (u)] du + log A(R)]

= 2h[U ] − log A(R),

where the high rate approximation fU (u) ≈ f̄(u) was used. Note that, since U = U1U2 for iid
variables U1 and U2, the differential entropy of U is 2h[U ].

Again, an efficient uniquely-decodable source code can be used to encode the quantizer output
sequence into a bit sequence at an average rate per source symbol of

L ≈ H[V ]
2

≈ h[U ] − 1
2

log A(R) bits/symbol. (3.16)

At the receiver, the mean-squared quantization error in reconstructing the original sequence will
be approximately equal to the MSE given in (3.14).

We have the following important conclusions for a uniform 2D quantizer under the high-rate
approximation:

• Under the high-rate assumption, the rate L depends only on the differential entropy h[U ] of
the source and the area A(R) of the basic quantization cell R. It does not depend on any
other feature of the source pdf fU (u), and does not depend on the shape of the quantizer
region, i.e., it does not depend on the normalized second moment G(R).
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• There is a tradeoff between the rate L and MSE that is governed by the area A(R). From
(3.16), an increase of 1 bit/symbol in rate corresponds to a decrease in A(R) by a factor of
4. From (3.14), this decreases the MSE by a factor of 4, i.e., by 6 dB.

• The ratio G(Square)/G(Hexagon) is equal to 3
√

3/5 = 1.0392. This is called the quantizing
gain of the hexagon over the square. For a given A(R) (and thus a given L), the MSE for a
hexagonal quantizer is smaller than that for a square quantizer (and thus also for a scalar
quantizer) by a factor of 1.0392 (0.17 db). This is a disappointingly small gain given the
added complexity of 2D and hexagonal regions and suggests that uniform scalar quantizers
are good choices at high rates.

3.9 Summary of quantization

Quantization is important both for digitizing a sequence of analog signals and as the middle
layer in digitizing analog waveform sources. Uniform scalar quantization is the simplest and
often most practical approach to quantization. Before reaching this conclusion, two approaches
to optimal scalar quantizers were taken. The first attempted to minimize the expected distortion
subject to a fixed number M of quantization regions, and the second attempted to minimize
the expected distortion subject to a fixed entropy of the quantized output. Each approach was
followed by the extension to vector quantization.

In both approaches, and for both scalar and vector quantization, the emphasis was on minimizing
mean square distortion or error (MSE), as opposed to some other distortion measure. As will
be seen later, MSE is the natural distortion measure in going from waveforms to sequences of
analog values. For specific sources, such as speech, however, MSE is not appropriate. For an
introduction to quantization, however, focusing on MSE seems appropriate in building intuition;
again, our approach is building understanding through the use of simple models.

The first approach, minimizing MSE with a fixed number of regions, leads to the Lloyd-Max
algorithm, which finds a local minimum of MSE. Unfortunately, the local minimum is not
necessarily a global minimum, as seen by several examples. For vector quantization, the problem
of local (but not global) minima arising from the Lloyd-Max algorithm appears to be the typical
case.

The second approach, minimizing MSE with a constraint on the output entropy is also a diffi-
cult problem analytically. This is the appropriate approach in a two layer solution where the
quantizer is followed by discrete encoding. On the other hand, the first approach is more appro-
priate when vector quantization is to be used but cannot be followed by fixed-to-variable-length
discrete source coding.

High-rate scalar quantization, where the quantization regions can be made sufficiently small so
that the probability density in almost constant over each region, leads to a much simpler result
when followed by entropy coding. In the limit of high rate, a uniform scalar quantizer minimizes
MSE for a given entropy constraint. Moreover, the tradeoff between Minimum MSE and output
entropy is the simple univeral curve of Figure 3.9. The source is completely characterized by its
differential entropy in this tradeoff. The approximations in this result are analyzed in Exercise
3.6.

Two-dimensional vector quantizatioon under the high-rate approximation with entropy coding
leads to a similar result. Using a square quantization region to tile the plane, the tradeoff
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between MSE per symbol and entropy per symbol is the same as with scalar quantization.
Using a hexagonal quantization region to tile the plane reduces the MSE by a factor of 1.0392,
which seems hardly worth the trouble. Using non-uniform quantization regions at high rate
leads to a lower bound on MSE which is lower than that for the scalar uniform quantizer by a
factor of 1.0472, which, even if achievable, is scarcely worth the trouble.

3A Appendix A: Nonuniform scalar quantizers

This appendix shows that the approximate MSE for uniform high-rate scalar quantizers in Sec-
tion 3.7 provides an approximate lower bound on the MSE for any nonuniform scalar quantizer,
again using the high-rate approximation that the pdf of U is constant within each quantiza-
tion region. This shows that in the high-rate region, there is little reason to further consider
nonuniform scalar quantizers.

Consider an arbitrary scalar quantizer for an rv U with a pdf fU (u). Let ∆j be the width of the
jth quantization interval, i.e., ∆j = |Rj |. As before, let f(u) be the average pdf within each
quantization interval, i.e.,

f(u) =

∫
Rj

fU (u) du

∆j
for u ∈ Rj .

The high-rate approximation is that fU (u) is approximately constant over each quantization
region. Equivalently, fU (u) ≈ f(u) for all u. Thus, if region Rj has width ∆j , the conditional
mean aj of U over Rj is approximately the midpoint of the region, and the conditional mean-
squared error, MSEj , given U∈Rj , is approximately ∆2

j/12.

Let V be the quantizer output, i.e., the discrete rv such that V = aj whenever U ∈ Rj . The
probability pj that V =aj is pj =

∫
Rj

fU (u) du

The unconditional mean-squared error, i.e.. E[(U − V )2] is then given by

MSE ≈
∑

j

pj

∆2
j

12
=

∑
j

∫
Rj

fU (u)
∆2

j

12
du. (3.17)

This can be simplified by defining ∆(u) = ∆j for u ∈ Rj . Since each u is in Rj for some j, this
defines ∆(u) for all u ∈ R. Substituting this in (3.17),

MSE ≈
∑

j

∫
Rj

fU (u)
∆(u)2

12
du (3.18)

=
∫ ∞

−∞
fU (u)

∆(u)2

12
du . (3.19)

Next consider the entropy of V . As in (3.8), the following relations are used for pj

pj =
∫
Rj

fU (u) du and, for all u ∈ Rj , pj = f(u)∆(u).
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H[V ] =
∑

j

−pj log pj

=
∑

j

∫
Rj

−fU (u) log[ f(u)∆(u)] du (3.20)

=
∫ ∞

−∞
−fU (u) log[f(u)∆(u)] du, (3.21)

where the multiple integrals over disjoint regions have been combined into a single integral. The
high-rate approximation fU (u) ≈ f(u) is next substituted into (3.21).

H[V ] ≈
∫ ∞

−∞
−fU (u) log[fU (u)∆(u)] du

= h[U ] −
∫ ∞

−∞
fU (u) log ∆(u) du. (3.22)

Note the similarity of this to (3.11).

The next step is to minimize the mean-squared error subject to a constraint on the entropy
H[V ]. This is done approximately by minimizing the approximation to MSE in (3.22) subject
to the approximation to H[V ] in (3.19). Exercise 3.6 provides some insight into the accuracy of
these approximations and their effect on this minimization.

Consider using a Lagrange multiplier to perform the minimization. Since MSE decreases as
H[V ] increases, consider minimizing MSE + λH[V ]. As λ increases, MSE will increase and H[V ]
decrease in the minimizing solution.

In principle, the minimization should be constrained by the fact that ∆(u) is constrained to
represent the interval sizes for a realizable set of quantization regions. The minimum of MSE +
λH[V ] will be lower bounded by ignoring this constraint. The very nice thing that happens is that
this unconstrained lower bound occurs where ∆(u) is constant. This corresponds to a uniform
quantizer, which is clearly realizable. In other words, subject to the high-rate approximation,
the lower bound on MSE over all scalar quantizers is equal to the MSE for the uniform scalar
quantizer. To see this, use (3.19) and (3.22),

MSE + λH[V ] ≈
∫ ∞

−∞
fU (u)

∆(u)2

12
du + λh[U ] − λ

∫ ∞

−∞
fU (u) log ∆(u) du

= λh[U ] +
∫ ∞

−∞
fU (u)

{
∆(u)2

12
− λ log ∆(u)

}
du. (3.23)

This is minimized over all choices of ∆(u) > 0 by simply minimizing the expression inside the
braces for each real value of u. That is, for each u, differentiate the quantity inside the braces
with respect to ∆(u), getting ∆(u)/6 − λ(log e)/∆(u). Setting the derivative equal to 0, it
is seen that ∆(u) =

√
λ(log e)/6. By taking the second derivative, it can be seen that this

solution actually minimizes the integrand for each u. The only important thing here is that the
minimizing ∆(u) is independent of u. This means that the approximation of MSE is minimized,
subject to a constraint on the approximation of H[V ], by the use of a uniform quantizer.

The next question is the meaning of minimizing an approximation to something subject to
a constraint which itself is an approximation. From Exercise 3.6, it is seen that both the
approximation to MSE and that to H[V ] are good approximations for small ∆, i.e., for high-
rate. For any given high-rate nonuniform quantizer then, consider plotting MSE and H[V ] on
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Figure 3.9. The corresponding approximate values of MSE and H[V ] are then close to the plotted
value (with some small difference both in the ordinate and abscissa). These approximate values,
however, lie above the approximate values plotted in Figure 3.9 for the scalar quantizer. Thus,
in this sense, the performance curve of MSE versus H[V ] for the approximation to the scalar
quantizer either lies below or close to the points for any nonuniform quantizer.

In summary, it has been shown that for large H[V ] (i.e., high-rate quantization), a uniform
scalar quantizer approximately minimizes MSE subject to the entropy constraint. There is
little reason to use nonuniform scalar quantizers (except perhaps at low rate). Furthermore the
MSE performance at high-rate can be easily approximated and depends only on h[U ] and the
constraint on H[V ].

3B Appendix B: Nonuniform 2D quantizers

For completeness, the performance of nonuniform 2D quantizers is now analyzed; the analysis
is very similar to that of nonuniform scalar quantizers. Consider an arbitrary set of quantiza-
tion intervals {Rj}. Let A(Rj) and MSEj be the area and mean-squared error per dimension
respectively of Rj , i.e.,

A(Rj) =
∫
Rj

du ; MSEj =
1
2

∫
Rj

‖u − a j‖2

A(Rj)
du ,

where a j is the mean of Rj . For each region Rj and each u ∈ Rj , let f(u) = Pr(Rj)/A(Rj) be
the average pdf in Rj . Then

pj =
∫
Rj

fU (u) du = f(u)A(Rj).

The unconditioned mean-squared error is then

MSE =
∑

j

pj MSEj .

Let A(u) = A(Rj) and MSE(u) = MSEj for u ∈ Aj . Then,

MSE =
∫

fU (u) MSE(u) du . (3.24)

Similarly,

H[V ] =
∑

j

−pj log pj

=
∫

−fU (u) log[f(u)A(u)] du

≈
∫

−fU (u) log[fU (u)A(u)] du (3.25)

= 2h[U ] −
∫

fU (u) log[A(u)] du . (3.26)
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A Lagrange multiplier can again be used to solve for the optimum quantization regions under
the high-rate approximation. In particular, from (3.24) and (3.26),

MSE + λH[V ] ≈ λ2h[U ] +
∫

R2

fU (u) {MSE(u) − λ log A(u)} du. (3.27)

Since each quantization area can be different, the quantization regions need not have geometric
shapes whose translates tile the plane. As pointed out earlier, however, the shape that minimizes
MSEc for a given quantization area is a circle. Therefore the MSE can be lower bounded in the
Lagrange multiplier by using this shape. Replacing MSE(u) by A(u)/(4π) in (3.27),

MSE + λH[V ] ≈ 2λh[U ] +
∫

R2

fU (u)
{

A(u)
4π

− λ log A(u)
}

du. (3.28)

Optimizing for each u separately, A(u) = 4πλ log e. The optimum is achieved where the same
size circle is used for each point u (independent of the probability density). This is unrealizable,
but still provides a lower bound on the MSE for any given H[V ] in the high-rate region. The
reduction in MSE over the square region is π/3 = 1.0472 (0.2 db). It appears that the uniform
quantizer with hexagonal shape is optimal, but this figure of π/3 provides a simple bound to
the possible gain with 2D quantizers. Either way, the improvement by going to two dimensions
is small.

The same sort of analysis can be carried out for n dimensional quantizers. In place of using a
circle as a lower bound, one now uses an n dimensional sphere. As n increases, the resulting
lower bound to MSE approaches a gain of πe/6 = 1.4233 (1.53 db) over the scalar quantizer.
It is known from a fundamental result in information theory that this gain can be approached
arbitrarily closely as n → ∞.
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3.E Exercises

3.1. Let U be an analog rv (rv) uniformly distributed between −1 and 1.

(a) Find the three-bit (M = 8) quantizer that minimizes the mean-squared error.

(b) Argue that your quantizer satisfies the necessary conditions for optimality.

(c) Show that the quantizer is unique in the sense that no other 3-bit quantizer satisfies the
necessary conditions for optimality.

3.2. Consider a discrete-time, analog source with memory, i.e., U1, U2, . . . are dependent rv’s.
Assume that each Um is uniformly distributed between 0 and 1 but that U2n = U2n−1 for
each n ≥ 1. Assume that {U2n}∞n=1 are independent.

(a) Find the one-bit (M = 2) scalar quantizer that minimizes the mean-squared error.

(b) Find the mean-squared error for the quantizer that you have found in (a).

(c) Find the one-bit-per-symbol (M = 4) two-dimensional vector quantizer that minimizes
the MSE.

(d) Plot the two-dimensional regions and representation points for both your scalar quantizer
in part (a) and your vector quantizer in part (c).

3.3. Consider a binary scalar quantizer that partitions the reals R into two subsets, (−∞, b] and
(b,∞) and then represents (−∞, b] by a1 ∈ R and (b,∞) by a2 ∈ R. This quantizer is used
on each letter Un of a sequence · · · , U−1, U0, U1, · · · of iid random variables, each having
the probability density f(u). Assume throughout this exercise that f(u) is symmetric, i.e.,
that f(u) = f(−u) for all u ≥ 0.

(a) Given the representation levels a1 and a2 > a1, how should b be chosen to minimize the
mean square distortion in the quantization? Assume that f(u) > 0 for a1 ≤ u ≤ a2 and
explain why this assumption is relevant.

(b) Given b ≥ 0, find the values of a1 and a2 that minimize the mean square distortion. Give
both answers in terms of the two functions Q(x) =

∫ ∞
x f(u) du and y(x) =

∫ ∞
x uf(u) du.

(c) Show that for b = 0, the minimizing values of a1 and a2 satisfy a1 = −a2.

(d) Show that the choice of b, a1, and a2 in part (c) satisfies the Lloyd-Max conditions for
minimum mean square distortion.

(e) Consider the particular symmetric density below

-1 0 1

�� �ε �� ε �� ε

1
3ε

1
3ε

1
3ε

f(u)

Find all sets of triples, {b, a1, a2} that satisfy the Lloyd-Max conditions and evaluate the
MSE for each. You are welcome in your calculation to replace each region of non-zero
probability density above with an impulse i.e., f(u) = 1

3 [δ(−1) + δ(0) + δ(1)], but you
should use the figure above to resolve the ambiguity about regions that occurs when b is -1,
0, or +1.
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(e) Give the MSE for each of your solutions above (in the limit of ε → 0). Which of your
solutions minimizes the MSE?

3.4. In Section 3.4, we partly analyzed a minimum-MSE quantizer for a pdf in which fU (u) = f1

over an interval of size L1, fU (u) = f2 over an interval of size L2 and fU (u) = 0 elsewhere.
Let M be the total number of representation points to be used, with M1 in the first interval
and M2 = M −M1 in the second. Assume (from symmetry) that the quantization intervals
are of equal size ∆1 = L1/M1 in interval 1 and of equal size ∆2 = L2/M2 in interval 2.
Assume that M is very large, so that we can approximately minimize the MSE over M1, M2

without an integer constraint on M1, M2 (that is, assume that M1, M2 can be arbitrary real
numbers).

(a) Show that the MSE is minimized if ∆1f
1/3
1 = ∆2f

1/3
2 , i.e., the quantization interval

sizes are inversely proportional to the cube root of the density. [Hint: Use a Lagrange
multiplier to perform the minimization. That is, to minimize a function MSE(∆1, ∆2)
subject to a constraint M = f(∆1, ∆2), first minimize MSE(∆1, ∆2) + λf(∆1, ∆2) without
the constraint, and, second, choose λ so that the solution meets the constraint.]

(b) Show that the minimum MSE under the above assumption is given by

MSE =

(
L1f

1/3
1 + L2f

1/3
2

)3

12M2
.

(c) Assume that the Lloyd-Max algorithm is started with 0 < M1 < M representation
points in the first interval and M2 = M − M1 points in the second interval. Explain where
the Lloyd-Max algorithm converges for this starting point. Assume from here on that the
distance between the two intervals is very large.

(d) Redo part (c) under the assumption that the Lloyd-Max algorithm is started with
0 < M1 ≤ M − 2 representation points in the first interval, one point between the two
intervals, and the remaining points in the second interval.

(e) Express the exact minimum MSE as a minimum over M − 1 possibilities, with one term
for each choice of 0 < M1 < M (assume there are no representation points between the two
intervals).

(f) Now consider an arbitrary choice of ∆1 and ∆2 (with no constraint on M). Show that
the entropy of the set of quantization points is

H(V ) = −f1L1 log(f1∆1) − f2L2 log(f2∆2).

(g) Show that if we minimize the MSE subject to a constraint on this entropy (ignoring the
integer constraint on quantization levels), then ∆1 = ∆2.

3.5. Assume that a continuous valued rv Z has a probability density that is 0 except over the
interval [−A, +A]. Show that the differential entropy h(Z) is upper bounded by 1+ log2 A.

(b) Show that h(Z) = 1 + log2 A if and only if Z is uniformly distributed between −A and
+A.

3.6. Let fU (u) = 1/2 + u for 0 < u ≤ 1 and fU (u) = 0 elsewhere.

(a) For ∆ < 1, consider a quantization region R = (x, x + ∆] for 0 < x ≤ 1 − ∆. Find the
conditional mean of U conditional on U ∈ R.
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(b) Find the conditional mean-squared error (MSE) of U conditional on U ∈ R. Show that,
as ∆ goes to 0, the difference between the MSE and the approximation ∆2/12 goes to 0 as
∆4.

(c) For any given ∆ such that 1/∆ = M , M a positive integer, let {Rj = ((j−1)∆, j∆]} be
the set of regions for a uniform scalar quantizer with M quantization intervals. Show that
the difference between h[U ] − log ∆ and H[V ] as given (3.10) is

h[U ] − log ∆ − H[V ] =
∫ 1

0
fU (u) log[f(u)/fU (u)] du.

(d) Show that the difference in (3.6) is nonnegative. Hint: use the inequality lnx ≤ x − 1.
Note that your argument does not depend on the particular choice of fU (u).

(e) Show that the difference h[U ] − log ∆ − H[V ] goes to 0 as ∆2 as ∆ → 0. Hint: Use the
approximation lnx ≈ (x−1)− (x−1)2/2, which is the second-order Taylor series expansion
of lnx around x = 1.

The major error in the high-rate approximation for small ∆ and smooth fU (u) is due to
the slope of fU (u). Your results here show that this linear term is insignificant for both
the approximation of MSE and for the approximation of H[V ]. More work is required to
validate the approximation in regions where fU (u) goes to 0.

3.7. (Example where h(U) is infinite. Let fU (u) be given by

fU (u) =

{
1

u(ln u)2
for u ≥ e

0 for u < e,

(a) Show that fU (u) is non-negative and integrates to 1.

(b) Show that h(U) is infinite.

(c) Show that a uniform scalar quantizer for this source with any separation ∆ (0 < ∆ < ∞)
has infinite entropy. Hint: Use the approach in Exercise 3.6, parts (c, d.)

3.8. Consider a discrete source U with a finite alphabet of N real numbers, r1 < r2 < · · · < rN

with the pmf p1 > 0, . . . , pN > 0. The set {r1, . . . , rN} is to be quantized into a smaller set
of M < N representation points a1 < a2 < · · · < aM .

(a) Let R1,R2, . . . ,RM be a given set of quantization intervals with R1 = (−∞, b1],R2 =
(b1, b2], . . . ,RM = (bM−1,∞). Assume that at least one source value ri is in Rj for each
j, 1 ≤ j ≤ M and give a necessary condition on the representation points {aj} to achieve
minimum MSE.

(b) For a given set of representation points a1, . . . , aM assume that no symbol ri lies exactly
halfway between two neighboring ai, i.e., that ri �= aj+aj+1

2 for all i, j. For each ri, find
the interval Rj (and more specifically the representation point aj) that ri must be mapped
into to minimize MSE. Note that it is not necessary to place the boundary bj between Rj

and Rj+1 at bj = [aj + aj+1]/2 since there is no probability in the immediate vicinity of
[aj + aj+1]/2.

(c) For the given representation points, a1, . . . , aM , now assume that ri = aj+aj+1

2 for some
source symbol ri and some j. Show that the MSE is the same whether ri is mapped into
aj or into aj+1.
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(d) For the assumption in part c), show that the set {aj} cannot possibly achieve minimum
MSE. Hint: Look at the optimal choice of aj and aj+1 for each of the two cases of part c).

3.9. Assume an iid discrete-time analog source U1, U2, · · · and consider a scalar quantizer that
satisfies the Lloyd-Max conditions. Show that the rectangular 2-dimensional quantizer based
on this scalar quantizer also satisfies the Lloyd-Max conditions.

3.10. (a) Consider a square two dimensional quantization region R defined by −∆
2 ≤ u1 ≤ ∆

2 and
−∆

2 ≤ u2 ≤ ∆
2 . Find MSEc as defined in (3.15) and show that it’s proportional to ∆2.

(b) Repeat part (a) with ∆ replaced by a∆. Show that MSEc/A(R) (where A(R) is now
the area of the scaled region) is unchanged.

(c) Explain why this invariance to scaling of MSEc/A(R) is valid for any two dimensional
region.
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