ECE 461: Digital Communications

Lecture 14: Transmitter-Centric ISI Harnessing: Orthogonal
Frequency Division Modulation (OFDM)

Introduction

In the previous lecture, we took a first order transmitter-centric approach to dealing with
ISI: the focus was on eliminating the effects of ISI. In this lecture we take a more balanced
view: harnessing the benefits of ISI instead of just treating it as interference, continuing our
transmitter-centric approach. Our goal is to get the full benefit of the fact that multiple
delayed copies of the transmit symbols appear at the receiver while still employing a receiver
no more complicated than the one used over an AWGN channel. While this seems to be
a tall order, we will see a remarkable scheme that achieves exactly this. In a sense, it is a
natural culmination of the various ISI mitigation techniques we have seen in the course of
the past several lectures. The scheme that converts the frequency selective ISI channel into
a plain AWGN channel is known as orthogonal frequency division modulation (OFDM) and
is the main focus of this lecture.

An Ideal Situation

Consider the frequency selective model that we have been working with as a good approxi-
mation of the wireline channel:

y[m] = ihﬂ:[m — Ll +wm], m>1. (1)

Since we know how to communicate reliably over an AWGN channel (cf. Lecture 7), it
would be ideal (not to mention, easy) if the channel with ISI can somehow (by appropriate
transmitter and reciever operations) be converted into an AWGN one: say,

A~

y[m] = ha[m] +w[m], m > 1. (2)

In such a case, we could simply and readily use the transmitter and receiver techniques
developed already for the AWGN channel (available “off-the-shelf”, so to say).

While this is asking for a bit too much, we will see that we can get somewhat close:
indeed, we will convert the ISI channel in Equation (1) into a collection of AWGN channels,
each of different noise energy level:

JINk +n] = hp2[Nk +n] + 0[Nk +n], k>0, n=0...N,—1. (3)



The idea is that the time index m is replaced by N.k + n. The inputs are voltages . The
additive noise w|[-] is white Gaussian (zero mean and variance ¢2). We observe that there
are N, different AWGN channels, one for each n =0,..., N, — 1. We can make two further
observations:

e cach of the N. AWGN channels has a different operating SNR: the n'™® channel has an
SNR equal to h2SNR where SNR is, as usual, the ratio of the transmit energy to the
noise energy;

e cach of the N, AWGN channels is available for use only a fraction NLC of the time.

Such a collection of non-interfering AWGN channels is called a parallel AWGN chan-
nel. The individual AWGN channels within the collection are known as sub-channels. Our
understanding of efficient reliable communication over the AWGN channel suggests a nat-
ural strategy to communicate over the parallel AWGN channel as well: we can split the
information bits so that we communicate over each sub-channel separately. The only choice
remaining is how to split the total power budget amongst the sub-carriers, say power P, to

the n' sub-carrier, so that
Ne—1

> P, =P (4)

where P is the total power budget for reliable communication. With a transmit power
constraint of P,, the overall SNR of the n'* sub-channel is

72
P,h?
o2

(5)

Thus, with an appropriate coding and decoding mechanism reliable communication is
possible (cf. Lecture 7) on the n'® AWGN sub-channel at rate

<1+Pah2>, (6)

measured in bits/symbol. The factor of 1/N. in the rate appears because each of the sub-
channels is available for use only a fraction 1/N, of the time. The total rate of reliable

communication is
Ne—1 Ne—1 P, h2
ZR 2N Zlog2 <1+ ) (7)

We can now split the power to mazimize the rate of reliable communication over the parallel
AWGN channel:
h
) (8)

R, =

2N

Ne—1
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P,>0Neo 1 p, P2N



The optimal power split can be derived explicitly and is explored in a homework exercise.
The main property of this optimal power split is that

the larger the “quality” of a sub-channel, the more the power that is allocated to
it, and hence the larger the corresponding data rate of reliable communication.

In the rest of this lecture, we will see how to get from the frequency-selective channel we
have (Equation (1)), to the parallel AWGN channel (Equation (3)) we find easy to work with.
We will be able to make this transition by some very simple signal processing techniques.
Interestingly, these signal processing techniques are universally applicable to every wireline
channel, i.e., they do not depend on the exact values of channel coefficients hg, ..., hy_1. This
makes OFDM a very robust communication scheme over the frequency-selective channel.

Cyclic Prefix

Suppose we have mapped our information bits into V. voltages. We will revisit the issue of
how these voltages were created from the information bits at a slightly later point in this
lecture. For now, we write them as a vector:

d= [d[O], d[l]a s 7d[NC - 1]]t
We use these N, voltages to create an N. 4+ L — 1 block of transmit voltages as:
x = [d[N. — L +1],d[N. — L +2],...,d[N. — 1],d[0],d[1],...,d[N. — 1]*, (9)

i.e., we add a prefiz of length L — 1 consisting of data symbols rotated cyclically (Figure 1).
The first L —1 transmitted symbols contain the “data” symbols d[N.—(L—1)],...,d[N.—1].
The next N, transmitted voltages or symbols contain the “data” symbols d[0], d[1], ..., d[N.—
1]. In particular, for a 2-tap frequency-selective channel we have the following result of cyclic
precoding:

z[l] = d[N.—1]

2[2] = d[0]

z[3] = d[1]
%[Nc—l—l] : d[Nc_l]

With this input to the channel (1), consider the output

y[m]:ihg:v[m—f]—l—w[m], m=1,...,N.+2(L—1).
=0



The first L—1 elements of the transmitted vector x were constructed from circularly wrapped
elements of the vector d, which are included in the last N. — 1 elements of x. The receiver
hence ignores the first L — 1 received symbols y[1],...,y[L — 1]. The ISI extends over the
first L — 1 symbols and the receiver ignores it by considering only the output over the time
interval m € [L, N. + L — 1]. Let us take a careful look at how the N receive voltages
(received at times L through N.+ L —1) depend on the transmit voltages d[0], ..., d[N. —1]:
L—1
ylm] = hed[(m — L — £) modulo Ne| + w[m]. (10)
=0
See Figure (1).

x[L-1]=d[N-1]

x[L]=4d|[0]

x[L+1]=d[1]

x[N+L-1]=d[N-1]

Figure 1: Convolution between the channel (h) and the input (x) formed from the data sym-
bols (d) by adding a cyclic prefix. The output is obtained by multiplying the corresponding
values of x and h on the circle, and outputs at different times are obtained by rotating the
a-values with respect to the h-values. The current configuration yields the output y[L].

Denoting the received voltage vector of length N, by
y = [lL],...,y[Ne+ L —1]]",
and the channel by a vector of length N,

h = [ho, hy,...,hy_1,0,...,0], (11)
(10) can be written as
y=hod+w. (12)
Here we denoted
w = [w[L],...,w[Nc+ L —1]J", (13)

as a vector of i.i.d. N ~ (0, 0?) random variables. The notation of ® to denote the cyclic con-
volution in (12) is standard in signal processing literature. The point of all this manipulation
will become clear when we review a key property of cyclic convolution next.
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Discrete Fourier Transform

The discrete Fourier transform (DFT) of a vector (such as d) is also another vector of the
same length (though the entries are in general, complex numbers). The different components
of the discrete Fourier transform of the vector d, denoted by DFT(d), are defined as follows:

Nl —j2mnm
d, = Zd exp(JT>, n=0,...,N,— 1. (14)

Even though the voltages d|-] are real, the DF'T output d, are complex. Nevertheless, there
is conjugate symmetry: N 3
dy=dy 1, n=0,.. . No—1 (15)

—_n>)

DFTs and circular convolution are crucially related through the following equation (perhaps
the most important of all in discrete time digital signal processing):

DFT(h®d), = /N.DFT(h), - DFT(d),, n=0,...,N,— L. (16)

The vector [ho, . .., hx,—1]" is defined as the DFT of the L-tap channel h, multiplied by v/Ng,

thg exp( JQW"E) (17)

Thus we can rewrite (12) as
Un = hodp + W,  n=0,...,N.— 1. (18)

Here we have denoted 1y, . . ., Wy,_1 as the N-point DFT of the noise vector w[l], ..., w[N,].
Observe the following.

e Even though the received voltages y[] are real, the voltages at the output of the DFT
Un are complex. Thus it might seem odd that we started out with N real numbers and
ended up with 2N real numbers. But there is a redundancy in the DFT output g[-].
Specifically,

?jn = g}k\fc—l—n' (19)
In other words, the real parts of ¢, and gy._1_, are the same. Further, the imaginary
parts of 4, and yn_._1_, are negative of each other.

e Even though the noise voltages w|-] are real, the noise voltages at the output of the
DFT w, are complex. Just as before, there is a redundancy in the noise voltages:

Wy = W1y 1 =0,...,No—1. (20)
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We know that the noise voltages w[m] were white Gaussian. What are the statistics

of the DFT outputs? It turns out that they are also white Gaussian: the real and

imaginary parts of wy,...,wx._; are all independent and identically distributed as
2

Gaussian with zero mean and variance o (here we supposed for notational simplicity

that N, is even, so £ is an integer).

e Even though the channel coefficients hy are real (and zero for £ = L,..., N, — 1), the
values at the output h,, of the DFT are complex (and, in general, non-zero for all values
n=20,...,N.—1). Again, observe that

hp=h[N.—1—n]*, ,n=0,...,N.—1. (21)

x[1]1=d[N=-L+1]

x[L-1]=d[N-1]

dy d[0] Cyclic x[L]=d[0]
—_— |

[ | prefix |

|

I : :

: IDFT | :

I ! !

7 _ N+ L-1]=d[N-1

-1 d[N-1] x[N+ 1=dIN-1]

Figure 2: The cyclic prefix operation.

The result that we get from this precoding is the following: the DFT of the received
vector y and the DF'T of our initial “data” vector d have the relationship that the received
and transmitted vectors have in an AWGN channel with no ISI (given a suitable definition
for the noise vector and it’s DET as given earlier). This seems to suggest that if we put the
actual data that we want to transmit on the DFT, and take the DFT of what we receive,
then we can perform something similar to traditional AWGN style decoding. Note that this
scheme uses L — 1 extra time instants. This yields the block diagram in Figure (3). A careful
and detailed derivation of this step is carried out next. At the end of that calculation, we
will have also shown how we arrive at the parallel AWGN channel (cf. Equation (3)).



x[1]=d[N-L+1] y[1]
x[L-11=d[N-1] YIL-1]
d, d[0] Cycl.ic x[L]=d[0] Channel y[L] Rem('>ve y[L] Yo
, ' prefix prefix
i | IDFT § § § § DFT
%’ —
dy_ dIN-1] C[N+L—1]=d[N-1] YIN+L-1] yIN+L—1] N-1

Figure 3: The OFDM transmission and reception schemes.

Packaging the Data

In this section we will see how to connect the AWGN modulation techniques with the OFDM
transmission scheme. Suppose we start out with N, real voltages £[0], ..., Z[N.—1]. These are
the transmit voltages on the N, sub-channels using the separate communication architecture
(they are generated by efficient coding techniques — such as LDPC codes — for the AWGN
channel). Let us suppose that N, is an even number. This will simplify our notations. We
generate half of the data vector d as follows:

R [Jn} &l 3 on] (22)

7 € A~ Nc
%[dn} Eoin+1, n=0.., 5L (23)

The second half is simply conjugate symmetric of the first part (so as to respect Equa-
tion (15)):
. . N,
dn :d}k\/c—l—n7 n = 7,...,NC— 1. (24)
Since d is conjugate symmetric by construction, the inverse discrete Fourier transform
(IDFT) vector d is composed only of real numbers. The cyclic prefix is then added on and
the transmit voltages z[m] are generated. Observe that we need an extra L — 1 time instants

to send over the N, voltages z[0],...,Z[N, — 1].

Unpacking the Data

At the output of the DFT of the received voltage vector y we have the complex vector y.
Taking complex conjugate operation on both sides of Equation (16):

gy o= hd + @, (25)
= thflfnchflfn + chflfn (26)
= YNe-1-n- (27)



Here we used Equations (15),(21), (20) to verify Equation (19). This means that half the
DFT outputs are redundant and can be discarded. Using the first half, we arrive at the
following N, received voltages 9[0], ... g[N. — 1]:

~ ef [ BZ ~ ]
jlon] € R e (28)
= |hn|2[2n] + @[2n] (29)
. o | R ]
j2n+1 = 9 T (30)
o i N.
= |hy|Z[2n + 1] + w[2n + 1], n:O,...,T—l. (31)

Here 0[] is also white Gaussian with zero mean and variance o (explored in a homework
exercise). Putting together Equations (29) and (31), we can write

A~

gln] = hpiln] +wln), n=0,...,N,—1 (32)

Where we have Writlen
A e hn n even
h d—f { ’ 2 ’ (33)

" |l~znT4| n odd.

We can repeat the OFDM operation over the next block of N, symbols (taking up an extra
L — 1 time instants, as before) and since the wireline channel stays the same, we have the
end-to-end relation (as in Equation (32)):

y[N. +n] = hpy&[Ne 4+ n] + [N, +n], n=0,...,N,— 1. (34)

By repeating the OFDM operation over multiple N, blocks, we have thus created the par-
allel AWGN channel promised in Equation (3). This packaging and unpacking of data as
appended to the basic OFDM scheme (cf. Figure 3) is depicted in Figures 4 and 5.



z(0] Io = &[0] + ja[1]

#[1] h = #[2] + ji[3]
Packaging

#[N, — 2] ' dy,—2 = £[2] — j&[3]

[N, — 1] d,—1 = #[0] — j&[1]

Figure 4: The packaging at the transmitter maps AWGN coded voltages of the sub-channels
to the transmit voltages on the ISI channel.

_ ) e
do il = R |30

_ ) i

b il =7 | 30|

. Unpackage .
. : ) e
YN.—2 y[NC - 2] =R |~£Q |y%—1
e —1

. R 71*1\;7671 _
YN.—1 y[NC - ]‘] =7 |E%_1‘y%—l

Figure 5: The unpacking at the receiver maps the DFT outputs into the outputs suitable
for decoding the coded voltages of the sub-channels.



