
Passband Wireless Communication

Introduction

Beginning with this lecture, we will study wireless communication. The focus of these
lectures will be on point to point communication. Communication on a wireless channel
is inherently different from that on a wireline channel. The main difference is that unlike
wireline channel, wireless is a shared medium. The medium is considered as a federal resource
and is federally regulated. The entire spectrum is split into many licensed and unlicensed
bands. An example of the the point to point communication in the licensed band is the
cellular phone communication, whereas wi-fi, cordless phones and blue tooth are some of the
examples of communication in the unlicensed band.

The transmission over a wireless channel is restricted to a range of frequencies (fc −
W
2
, fc + W

2
) around the central carrier frequency fc. The wire is a low pass filter and hence

the carrier frequency for the wireline channel is fc = 0.
This restriction immediately poses some questions about the design of the wireless com-

munication systems. The foremost question being how is reliable communication related to
the carrier frequency? Is the communication strategy and hence the transmitter-receiver
design particular to the specific carrier frequency? Do we have to design the system based
on fc?

It turns out that we can always work in with the baseband signal (i.e., the signal with
fc = 0) even for the wireless communication and then convert the baseband signal to the
passband signal (a signal that is centered around some nonzero carrier fraquency) with the
desired carrier frequency. This makes the design of the transmitter and receiver transparent
to the carrier frequency. Thus, only the front end of of the sytem needs to be changed if
we change fc. Also since the bandwidth of the signal W (typically in KHz) is much smaller
than the carrier frequency fc (typically in MHz), the design of DAC and ADC becomes much
easier and modular.

The focus of this lecture will be on the conversion of the baseband signal to the passband
signal and vice-versa. Also, the actual wireless channel affects the passband signal. How do
these effects translate in the baseband domain, i.e., is there a baseband equivalent of the
wireless channel? We will also address this question.

Baseband Representation of the Passband Signals

As mentioned before, most of the processing such as coding/decoding, modulation/ demod-
ulation etc. is done at the baseband. At the transmitter, the last stage of the operation
is to “up-convert” or ”mix” the signal with the carrier frequency and transmit it via the
antenna. Similarly, the first step at the receiver is to “down-convert” the RF signal to the
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Figure 1: Magnitude spectrum of the real baseband signal and its passband signal

baseband before processing. Therefore it is most important to have a baseband equivalent
representation of signals.

Let’s begin with the real baseband signal xb(t) (of double sided bandwidth W ) that we
want to transmit over the wireless channel in a band centered around fc. In wireline channel,
xb(t) would be the signal at the output of the DAC.

We know that we can up-convert this signal by multiplying it by cos 2πfct.

x(t) = xb(t) ·
√

2 cos 2πfct (1)

The resulting signal x(t) has spectrum centered around fc and −fc. Figure 1 shows this
transformation diagramatically. We scale the carrier by

√
2 as cos 2πfct has power 1

2
. Thus,

by scaling, we are keeping the power in xb(t) and x(t) same. Note that since xb(t) is real,
the magnitude of its Fourier transform, Xb(f) is symmetric in f and hence the magnitude
of the spectrum of the RF signal, X(f) is symmetric around fc and −fc. We note that to
get real x(t), we need not have X(f) symmetric around fc and −fc. This is a consequence
of xb(t) being real.

To get back the baseband signal, we multiply x(t) again by
√

2 cos 2πfct and then pass
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Figure 2: Down-conversion at the receiver

the signal through a low pass filter with bandwidth W .

x(t)
√

2 cos 2πfct = 2 cos2(2πfct).xb(t) (2)

= (1 + cos 4πfct)xb(t) (3)

The low pass filter will discard the signal xb(t) cos 4πfct as it is the bandpass signal centered
around 2fc. Figure 2 shows this transformation diagramatically.

One can see that if we multiply x(t) by
√

2 sin 2πfct instead of
√

2 cos 2πfct, we get
xb(t) sin 4πfct and low pass filter will discard this signal completely. There will be a similar
outcome had we modulated the baseband signal on

√
2 sin 2πfct and try to recover it by

using
√

2 cos 2πfct. Thus,

1. Since the only difference in
√

2 cos 2πfct and
√

2 sin 2πfct is the phase lag of π
2
, syn-

chronization of carrier phase is crucial in up-conversion and down-conversion.

2. We also note that the signals modulated on
√

2 cos 2πfct and
√

2 sin 2πfct never get
mixed up in the process of down-conversion. Though both the signals share same
frequency band, they are orthogonal to each other. Thus, we could have transmitted
two real baseband signals in the same frequency band and doubled the data rate. This
is possible as now we are using total double sided bandwidth of 2W instead of W as
in wireline channel. The resulting RF signal is still real. However, the magnitude of
the spectrum of the RF signal need not be symmetric around fc and −fc.

Thus, we can now have the RF signal x(t) which is

x(t) = xb1(t)
√

2 cos 2πfct− xb2(t)
√

2 sin 2πfct (4)

The baseband signals xb1(t) and xb2(t) are obtained at the receiver by multiplying x(t) by√
2 cos 2πfct and

√
2 sin 2πfct separately and then passing both the outputs through the low

pass filters. Here we are modulating the amplitude of the carrier by the baseband data. Such
a scheme is called amplitude modulation. When we modulate both sin and cos parts of the
carrier by two undependent baseband signals, the scheme is called Quadrature Amplitude
Modulation (QAM). 1

1Can we up-convert one more baseband signal and still be able to recover it at the receiver? The answer
is negative. This is because, we can express cos(2πfct+θ) as cos θ cos 2πfct− sin θ sin 2πfct. Thus any phase
change θ is uniquely determined by the amplitudes of cos 2πfct and sin 2πfct.
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The baseband signal xb(t) is now defined in terms of the pair (xb1(t), xb2(t)). In literature,
this pair is denoted as (xI

b(t), x
Q
b (t)), where I stands for “in phase” signal and Q stands for

“quadrature phase” signal. To make the notation compact we can think of xb(t) as a complex
signal defined as follows:

xb(t)
def
= xI

b(t) + jxQ
b (t) (5)

We will follow this notation hereafter.
If the wireless channel is just the AWGN channel, then we know how to recover the

baseband signal from the RF signal at the receiver and we are done. However, wireless
channel is not AWGN channel. If h(t) denote the impulse response of the (time-invarient)
wireless channel, the received RF signal is

y(t) = h(t) ∗ x(t) + w(t) (6)

where w(t) is the RF noise. We will ignore the noise for the time being. Then, y(t) =
h(t) ∗ x(t). x(t) is obtained by up-converting the baseband signal xb(t). We obtain the
baseband signal yb(t) at the receiver by down-converting the received RF signal y(t).

The question we want to address now is

How does the channel impulse response manifests itself in baseband? How are
the the baseband signals yb(t) and xb(t) related?

It turns out that there is an baseband equivalent filter hb(t) of the channel filter h(t).
The transmitted baseband signal xb(t) is filtered through the baseband channel filter hb(t)
to give the received baseband signal yb(t).

2

yb(t) = hb(t) ∗ xb(t) (7)

To understand the relation between h(t) and hb(t), let’s consider a few examples.

1. Let’s take the simple case when h(t) = δ(t). Then, y(t) = x(t) and hence yb(t) = xb(t).
Hence, hb(t) = δ(t).

2. Let’s consider h(t) = δ(t− t0). In this case,

y(t) = x(t− t0) = xI
b(t− t0)

√
2 cos 2πfc(t− t0)− xQ

b (t− t0)
√

2 sin 2πfc(t− t0) (8)

2The intuition behind this relation can be obtained by representing the signals in frequency domain. We
know that in frequency domain, Y (f) = H(f)X(f). We have also seen from Figure 1 that the X(f) and
Xb(f) are related by translation in frequency domain and so are Y (f) and Yb(f). Thus, if we translate H(f)
appropriately, we will have Hb(f) so that Yb(f) = Hb(f)Xb(f), i.e., in time domain, yb(t) = hb(t) ∗ xb(t).
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We obtain the baseband signal yb(t) as

yI
b (t) = LPF

(
y(t)

√
2 cos 2πfct

)
(9)

= LPF
(
(2 cos 2πfc(t− t0) cos 2πfct)x

I
b(t− t0)

−(2 sin 2πfc(t− t0) cos 2πfct)x
Q
b (t− t0)

)
(10)

= LPF
(
(cos 2πfc(2t− t0) + cos 2πfct0)x

I
b(t− t0)

−(sin 2πfc(2t− t0)− sin 2πfct0)x
Q
b (t− t0)

)
(11)

= xI
b(t− t0) cos 2πfct0 + xQ

b (t− t0) sin 2πfct0 (12)

= R{
xb(t− t0)e

−j2πfct0
}

(13)

Similarly, we obtain yQ
b (t) as

yQ
b (t) = LPF

(
−yb(t)

√
2 sin 2πfct

)
(14)

= I {
xb(t− t0)e

−j2πfct0
}

(15)

Thus,
yb(t) = xb(t− t0)e

−j2πfct0 (16)

Hence,
hb(t) = e−j2πfct0δ(t− t0) (17)

Thus, the baseband signal also gets delayed by the same amount as the passband signal.
However, its phase also changes. This phase lag depends on the delay t0 as well as on
the carrier frequency fc.

We can generalize the second example to obtain the baseband equivalent representation of
a generalized channel. Suppose the wireless channel is given by

h(t) =
L−1∑

l=0

alδ(t− tl) (18)

Then, the baseband equivalent of the channel will be

hb(t) =
L−1∑

l=0

ale
−j2πfctlδ(t− tl) (19)

We will see in the next lecture that the wireless channel can actually be modeled as Equation
18.

Looking Ahead

In this lecture, we have seen the baseband representation of the RF signal. Writing baseband
signal as a complex number simplifies the notation a lot. In next few lectures, we will see
that this notation will enable us to use many of the results from the wireline channel.

We have also obtained the baseband equivalent of the channel given by Equation 18. In
the next lecture we will see that this is a reasonable model for the wireless channel. We will
also see that how the wireless cannels are different from the wireline channels.
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