
ECE 461: Digital Communications

Lecture 2: Statistical Channel Model

Introduction

We began our study of reliable communication last lecture with a very simple model of
the additive noise channel. It works fine, except that one may haver a very conservative
value for the noise fluctuations ±σth. This will lead to a correspondingly poor performance
(in terms of number of reliable bits communicated for a given energy constraint). In this
lecture, we take a more nuanced look at the additive noise channel model. Our basic goal
is to have a statistical model of the additive noise. This will allow us to talk about reliable
communication with a desired level of reliability (as opposed to the “fully reliable” notion
of the previous lecture).

Statistical models can be arrived at by plain experiments of how the additive noise looks
like and taking the histogram as the statistical model. Based on what this model and a
desired reliability level, we could work out the appropriate value of σth. We could then
directly use this choice of σth to our communication strategies from the previous lecture
(transmit voltages as far apart from each other). While this already gives a significant
benefit over and above the conservative estimates of the worst-case fluctuation σth, this may
not be the optimal communication strategy (in terms of allowing largest number of bits for
a given energy constraint and reliability level). We will see that depending on the exact
shape of the histogram one can potentially do better. We will also see when the performance
cannot be improved beyond this simple scheme for a wide range of histograms. Finally,
we will see that most histograms that arise in nature are indeed of this type. Specifically,
it turns out that most interesting noise models have the same statistical behavior with
just two parameters that vary: the mean (first order statistics) and variance (second order
statistics). So, we can design our communication schemes based on this universal statistical
model and the performance only depends on two parameters: the mean and variance. This
streamlines the communication design problem and allows the engineer to get to the heart of
how the resources (power and bandwidth) can be used to get maximum performance (rate
and reliability).

We start out with a set of properties that most additive noise channels tend to have.
Next, we will translate these properties into an appropriate mathematical language. This
will allow us to arrive at a robust universal statistical model for additive noise: it is Gaussian
or normally distributed. We will see that our understanding of transmission and reception
strategies using the deterministic model from the previous lecture extends naturally to one
where the model is statistical.

Histogram Models and Reliable Communication Strategies

Suppose we make detailed measurements of the noise values at the location where we expect
communication to take place. Suppose we have made N separate measurements, where N is
a large value (say, 10,000): v1, . . . , vN . The histogram of the noise based on the measurements
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Figure 1: A exemplar histogram.

at a resolution level of ∆ is simply a function from voltage levels to the real numbers: for
every a ∈ (m∆, (m + 1) ∆),

fδ(a)
def
=

1

N

N∑

k=1

1vk∈(m∆,(m+1)∆), (1)

where we have denoted the indicator function

1·
def
=

{
1 if the parameter is true
0 else.

(2)

One important property of the histogram function is that the area under the histogram curve
is equal to unity. For example, with N = 5 and v1 = 0.2V, v2 = −0.25V, v3 = 0.45V, v4 =
−0.27V, v5 = 0.37V , the histogram at a resolution of ∆ = 0.1V is depicted in Figure 1. In
the limit of very large number of samples N and very small resolution ∆, the histogram
function is called the density of the noise. Henceforth we will use the term density to denote
the histogram created from the noise measurements. As any histogram, the density function
is always non-negative and the area under it is unity. The density function of a noise that
takes any voltage value in the range [−0.5V, 0.5V ] equally likely is depicted in Figure 2.

Now suppose we are willing to tolerate errors in communication a fraction η of the time.
Then we can pick the smallest value of σth such that the area under the density function
over the range ±σth is at least 1 − η. This ensures that the noise is within σth at least a
fraction 1 − η of the time. For the density function in Figure 2, a value of η = 0.1 means
that σth = 0.45V ; a pictorial depiction is available in Figure 3.

We can now pick the transmission and reception schemes as in Lecture 1 using this new
value of σth = 0.45V . We are now guaranteed reliable communication at a level of tolerable
unreliability η = 0.1. This corresponds to a saving in energy of a fraction

0.05V

0.5V
= 10%. (3)
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Figure 2: A uniform density function.
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Figure 3: Choosing a threshold based on the reliability level.
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Figure 4: The threshold based on the reliability level can be significantly smaller than one
based on worst-case.

While this might seem modest, consider the density function in Figure 4, where σth in the
usual sense of Lecture 1 would be 10V . On the other hand with η = 0.1, the new value of
σth is only 1.0V . This corresponds to a savings in energy of a fraction

9V

10V
= 90%, (4)

a remarkably large fraction!
In the transmission scheme of Lecture 1, we picked the different possible transmit voltage

levels to be spaced by at least 2σth. This seems reasonable since we know a bound for how
much the noise can fluctuate. But we have more knowledge about how the noise fluctuates
based on the density function. This provokes us to think along the following natural thought
process:

Question: Given the noise density function and energy and reliability con-
straints, is the scheme of keeping the different transmit voltages apart by 2σth

the best one, in terms of giving maximum number of bits?
It turns out that the answer is no. A homework question explores this subject in detail;

there we see that it might be rather sub-optimal to keep the spacing between different
transmit voltages as large as 2σth, even when σth is chosen appropriately based on the
density function and the reliability constraint. But for a large class of density functions,
this is not the case: the natural approach of extracting the appropriate σth from the density
function to use in the design of Lecture 1 suffices. Interestingly, it turns out that most
density functions for additive noise have this property. In the rest of this lecture, we will
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study some canonical properties of the density of additive noise; we start with some simple
physical properties.

Physical Properties of Additive Noise

An enumeration of some reasonable properties we may anticipate the additive forms of noise
to take is the following.

1. The noise is the overall result of many additive “sub-noises”. Typical sub-noises could
be the result of thermal noise, device imperfections and measurement inaccuracies.
additive noise w can be written as

2. These sub-noises typically have little correlation with respect to each other. We suppose
the stronger statement: they are statistically independent of each other.

3. No sub-noise is particularly dominant over the other. In other words, they all contribute
about the same to the total noise.

4. Finally, there are many sources of sub-noises.

We will work to convert these physical properties into more precise mathematical statements
shortly.

Representation of Additive Noise

Using some notation, we can write the total additive noise w as

w = n1 + n2 + · · ·+ nm, (5)

the sum of m sub-noises n1, . . . , nm. Furthermore, the sub-noises n1, . . . , nm are statistically
independent of each other. Let us denote the densities of the sub-noises as fn1(·), . . . , fnm(·),
respectively. An important result from your prerequisite probability class is the following
result:

The density of the total noise w is the convolution of the densities of the sub-
noises.

This result is best understood in the Laplace or Fourier domain. Specifically, the Laplace
transform of a density function fw(·) is defined as

Fw(s) =

∫ ∞

−∞
e−safw(a) da ∀s ∈ C. (6)

Here C is the complex plane. In terms of the Laplace transforms of the densities of each of
the sub-noises,

Fw(s) =
m∏

k=1

Fnk
(s), ∀s ∈ C. (7)
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We know what the density function of a noise is from an engineering stand point: it is simply
the histogram of a lot of noise measurements at a fine enough resolution level. How does one
understand the Laplace transform of the density function from an engineering and physical
view point? We can do a Taylor series expansion around s = 0 to get a better view of the
Laplace transform of a density function:

Fw(s) = Fw(0) + sF
′
w(0) +

s2

2
F
′′
w(0) + o(s2), (8)

where the function o(s2) denotes a function of s2 that when divided by s2 goes to zero as s
approaches zero itself. The first term

Fw(0) =

∫ ∞

−∞
fw(a) da (9)

= 1, (10)

since the area under a density function is unity. The second term can be calculated as

d

ds
Fw(s) =

∫ ∞

−∞
−ae−safw(a) da, (11)

F
′
w(0) =

∫ ∞

−∞
afw(a) da (12)

def
= E [w] . (13)

The quantity E [w] is the mean of the noise w and is a readily measured quantity: it is just the
average of all the noise measurements. In the sequence above, we blithely interchanged the
differentiation and integration signs. mathematically speaking this step has to be justified
more carefully. This will take us somewhat far from our main goal and we will not pursue
this too much here.

Now for the third term:

d2

ds2
Fw(s) =

∫ ∞

−∞
a2e−safw(a) da, (14)

F
′′
w(0) =

∫ ∞

−∞
a2fw(a) da (15)

= E
[
w2

]
. (16)

Here the quantity E [w2] is the second moment of the noise w and is a readily measured
quantity: it is just the average of the square of the noise measurements. Again, we have
interchanged the differentiation and integration signs in the calculation above.

In conclusion, the first few terms of the Taylor series expansion of the Laplace transform
of the density of the additive noise w involves easily measured quantities: mean and second
moment. Sometimes the second moment is also calculated via the variance:

Var(w)
def
= E

[
w2

]− (E [w])2 . (17)

These two quantities, the mean and variance, are also referred to simply as first and second
order statistics of the measurements and are fairly easily calculated. Let us denote these
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two quantities by µ and σ2
th, respectively henceforth. While we may not have access to the

densities of the individual sub-noises, we can calculate their first and second order statistics
by using the assumption that each of the sub-noises contributes the same level to the total
noise. This means that, since

E [w] =
m∑

k=1

E [nk] , (18)

we can say that

E [nk] =
µ

m
, ∀k = 1 . . .m. (19)

Similarly for statistically independent sub-noises n1, . . . , nm we have

Var (w) =
m∑

k=1

Var (nk) , (20)

we can say that

Var (nk) =
σ2

m
, ∀k = 1 . . .m, (21)

E
[
n2

k

]
=

σ2

m
+

µ2

m2
. (22)

Here we used Equation (17) in arriving at the second step.
Now we can use an approximation as in Equation (8), by ignoring the higher order terms,

to write

Fnk
(s) ≈ 1− µs

m
+

σ2s

2m
+

µ2s2

2m2
, ∀k = 1 . . . m. (23)

Substituting this into Equation (7), we get

Fw(s) ≈
(

1− µs

m
+

σ2s2

2m
+

µ2s2

2m2

)m

, ∀s ∈ C. (24)

We are interested in the density function of the noise w for large number of sub-noises, i.e.,
when m is large. From elementary calculus techniques, we know the limiting formula:

lim
m→∞

Fw(s) = e−µs+ s2σ2

2 , ∀s ∈ C. (25)

Remarkably, we have arrived at a universal formula for the density function that is param-
eterized by only two simply measured physical quantities: the first order and second order
statistics (mean µ and variance σ2, respectively). This calculation is known, esoterically, as
the central limit theorem.

It turns out that the density function whose Laplace transform corresponds to the one
in Equation (25) is

fw(a) =
1√

2πσ2
e−

(a−µ)2

2σ2 , ∀a ∈ R. (26)

This density function is called Gaussian, in honor of the first person who discovered it. It is
also called the normal density since it also shows up in many real world situations which are
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entirely unrelated to additive noises (all the way from temperature measurements to weights
of people to the eventual grades of the students in this course (hopefully!), are all “normally”
behaved).

There are some important modern day data that are famously not normal: size of packets
on the internet and the number of goods bought in an online store. I recommend the recent
books

C. Anderson, The Long Tail: Why the Future of Business is Selling Less of More,
Hyperion, 2006;

and

Nassim Nicholas Taleb, The Black Swan: The Impact of the Highly Improbable,
Random House, 2007,

that make for quite interesting reading (unrelated to the scope of this course). You can
also get a broader feel for how such measurements are harnessed in making engineering and
economic decisions.

Looking Forward

In the next lecture we will see how to use this particular structure of the density function in
choosing our communication transmit and receive strategies.
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