ECE 461: Digital Communication

Lecture 3: Histogram to Optimum Receiver

Introduction

In this lecture we focus our study on how to use the detailed statistical knowledge available
in the histogram of the noise in doing reliable communication at a desired level of reliability.
Though our specific interest will be on the Gaussian statistics, it helps (for later lectures)
to study the more general situation. For a fixed transmission strategy, we will derive the
optimum receiver in terms of minimizing the unreliability of communication. Towards doing
this, we formally define what unreliability means by carefully looking at the different sources
of randomness and what statistical assumptions we make about them. We conclude with a
fundamental relation between the variance of the noise o2, the transmit energy constraint
E, and the reliability of communication.

Sources of Randomness

There are two sources of randomness from the perspective of the receiver: one intrinsic (the
information — bits — itself is unknown) and the other extrinsic (the additive noise introduced
by the channel). The receiver typically knows some statistical information about these
sources of knowledge.

o Statistics of the bit: this is the fraction of bits that are 0. If there is some prior
information on how likely the transmitted information bit is say, 1, then that could
factor in the decision rule. In the extreme instance, if we somehow knew before the
communication process that the information bit is 1 for sure, then we don’t need to
worry about the received voltage. We just decide at the receiver that the information
bit is 1. Many a time, no such prior knowledge is available. In this case, we suppose
that the information bit is equally likely to be 1 or 0.

e Noise Statistics: knowing whether the noise is more likely to be small or large will
help the receiver make the decision. For instance, if the noise is more likely to be near
zero than large, the receiver would likely pick the nearer of the two possible transmit
voltages as compared to the received voltage (the so-called nearest-neighbor rule). One
of the main conclusions at the end of Lecture 2 is that additive noise in the physical
world is (far) more likely to be near its mean than away from it.

Figure 1 illustrates the action taken at the receiver.

Formal Definition of Reliable Communication

Consider a single bit to be communicated reliably. Figure 2 diagrammatically illustrates the
familiar bits-to-voltages mapping at the transmitter.
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Figure 1: The basic block diagram of a receiver.
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Figure 2: Mapping for sending 1 bit across an AGN channel.

The main job at the receiver is to decide on the information bit transmitted, denoted
by say, 13, based on the received voltage y. The correct choice of the decision rule at the
receiver is the one that maximizes the reliability of communication. Alternatively, we want
to minimize the unreliability of communication. We will say an error occurs whenever
communication is unreliable. In this case, the transmitted information is just one bit and
there is only one way an error can occur. More generally, when we get around to sending
multiple bits of information we will follow the convention that an error occurs even if a single
bit is communicated erroneously. This convention is a natural byproduct of the nature of
the digital world of information around us.

Actual sources of information (such as voice, images and video) have features that range
the whole gamut from being very important to hardly any. For instance, if we consider
digitizing voice with a 16-bit A/D converter the most significant bits (MSBs) are (almost
by definition!) more important than the least significant bits (LSBs). Indeed, when commu-
nicating the 16-bit digital representation of the analog voice sample, we need to pay more
attention to the reliability of the MSBs as compared to the LSBs.

On the other hand, the digital world around is organized very differently. Information
collection is typically at a very different engineering level than information transmission:
Information collection is done typically by microphones, cameras and camcorders. Informa-
tion transmission is done typically over the ethernet or wireless. There are so many layers of
separation between the engineering devices that do these two operations. Specifically, there
are, starting from information collection and moving down to information transmission:

e the application layer, that decides whether the digital format for the voice is .wav or



.mp3;

e the transport layer, that decides whether the TCP/IP protocol is being used or a pro-
prietary one used by cell phones and the corresponding impact on the digital represen-
tation of the analog voice sample;

e the networking and physical layers, that decide what format to finally package the
digital voice data in.

So by the time the transmission of communication is initiated, the “analog” nature of the
digital information (MSBs and LSBs) is entirely lost (or at least hidden underneath a whole
lot of protocol layers). So, the communication problem is usually stated as trying to equally
reliably send all the bits (whether they are MSBs, or LSBs, or formatting information cor-
responding to the different protocols involved). We will follow this tradition in this course
by considering all the bits to be equally important.

We now have a formal definition of how reliable communication is. It is the average
probability (averaged over the a priori probabilities with which the information bits take
different values) with which all the bits are correctly received. We will next see the decision
rule at the receiver that is optimal in the sense of allowing the most reliable communication.

The Optimal Decision Rule: MAP

To begin with, let us list all the information that the receiver has.

1. The a priori probabilities of the two values the information bit can take. We will
normally consider these to be equal (to 0.5 each).

2. The received voltage y. While this is an analog value, i.e., any real number, in engineer-
ing practice we quantize it at the same time the waveform is converted into a discrete
sequence of voltages. For instance if we are using a 16-bit ADC for the discretization,
then the received voltage y can take one of 26 possible values. We will start with this
discretization model first.

3. The encoding rule. In other words we need to know how the information bit is mapped
into voltages at the transmitter. For instance, this means that the mapping in illus-
trated in Figure 2 should be known to the receiver. This could be considered part of the
protocol that both the transmitter and receiver subscribe to. In engineering practice,
all widespread communication devices subscribe to a universally known standard. For
example, Verizon cell phones subscribe to a standard known as CDMA.

Assuming L possible discrete received voltage levels, Figure 3 illustrates the two possible
transmit voltages and the chance that they lead to the discrete shows a plot of possible
transmitted and the chance with which they could lead to the L possible received voltages
(here L = 3). The additive Gaussian noise channel model combined with the discretization
of the received voltage level naturally leads to a statistical characterization of how likely a



certain received voltage level is given a certain transmit voltage level. In Figure 3, we have
written these probabilities in the most general form; in a homework exercise you are asked
to calculate these values for a specific way of discretization of the received voltage.
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Figure 3: Sent and received voltage pairs along with their conditional probabilities

The probability that the information bit is i (either 1 or 0) and the received voltage is a
(one of L possible values, denoted by ay, ..., a;) is simply

Plo=iy=a=Pb=ily=aPly=ad, (1)
where the unconditional probability that the received voltage is a,
Ply=a]=Pb=0,y=a+Pb=1y=ad], (2)

does not depend on the actual value of the information bit b. The quantity P [b = i|y = a]
in Equation 1 is known as the a posterior: probability of the information bit being equal to
1. This captures the role of the communication process: the received voltage level alters our
perception of what the information bit could possibly be.

The decision rule at the receiver then is to map every possible received voltage level to
a particular estimate l;(a) of what was sent. The reliability of communication conditioned
on a specific receieved voltage level (say, a) is simply the a posteriori probability of the
information bit b being equal to the estimate b:

P[Cly = a) =P [b=b(a)ly = a . (3)

We want to maximize P [C|y = a], so we should just choose b(a) to be that value (1 or 0)
which has the larger a posteriori probability.

But how does one calculate this quantity at the receiver, using the three quantities that
the receiver has access to (enumerated at the beginning of this lecture)? For any recieved
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voltage level a in the set {ay,...,ar}, the a posteriori probability for the information bit b
being equal to, say 1, can be written using the Bayes rule as:
Ply=alb=1]P[b=1]

Pb=1ly =a] = Ply=d : (4)

Similarly the a posteriori probability for the information bit b being equal to 0, given that
the received voltage is the same a, is
Ply=alb=0]P[b=0]

ly = d]

Pb=0ly=a] =

Since the denominator is common to both the two a posteriori probabilities and the decision
rule is only based on the relative comparison, we only need the numerators to form the
decision rule. The a priori probabilities P[b = 1] and P [b = 0] sum to unity and is part of
the information the receiver has ahead of time. The likelihoods

Ply=alb=1] and P[y=alb=0] (6)

is to be calculated based on the statistical knowledge of the channel noise. We will do this
shortly for the Gaussian noise, but a couple of quick digressions are in order before we do
that.

ML Decision Rule

As we discussed earlier, a common situation in communication is that that the a priori
probabilities of the information bit are equal to each other. In this (typical) situation, the
MAP rule simplifies even more. It now suffices to just compare the two likelihoods (the two
quantities in Equation 6). The decision rule is then to decide that bis 1if

Ply =alb=1] > Py = alb = 0], (7)

and 0 otherwise. This rule is called the maximum likelithood rule. Due to its typicality, this
will be the decision rule we will use throughout this course at the receiver.

MAP and ML Rules for the AGN Channel

Given the universality of the Gaussian statistics for additive noise models, it is of immediate
interest to calculate these rules for such a statistical channel model. The only potential hurdle
is that the statistics are described for analog valued noise (and hence received voltage) levels.
In our setup so far, we only considered a discrete set of voltage levels. We now have one of
two options: either generalize the previous description to analog values (a whole continuous
range of voltage levels than a finite number) or deduce the statistics of the discrete noise
levels as induced by the Gaussian statistics on the analog noise level and the ADC. We take
the former approach below.



The generalization required is only a matter of calculating the a posteriori probabilities
conditioned on a whole continuous range of received voltage levels, than just a finite number.
Following the earlier calculation in Equation 4, we see the main technical problem:

Ply=alb=1] and P[y=a] (8)

are both zero: the chance that an analog noise level is exactly a value we want is simply zero.
So we cannot use Bayes rule naively. Since we only need the ratio of these two quantities
(cf. Equation 8) in the MAP rule, we can use the L'Hopital’s rule:

Ply = alb=1] :hmP[yE (a—€a+e€)b=1] _ fy(a|b:1)‘ )

Ply = a] 0  Plye€(a—eate) fy(a)

Here f,(-) is the PDF of the analog received voltage y and f,(-|b = 1) is the PDF of the
received voltage conditioned on the event that the information bit b is 1. So, the MAP rule
when the received voltage is equal to a is:

decide b = 1 if
Pb=1] fy(alb=1) > P[b= 0] f,(alb = 0) (10)

and 0 otherwise.

The ML rule is simpler, as usual:

decide b = 1 if
fylalb=1) = f,(alb =0) (11)

and 0 otherwise.

For the additive noise channel, it is a straightforward matter to calculate the conditional
PDF's of the received voltage. Indeed

fy(alb=1)

fylalz = —l—\/E) (12)
fw(a_\/E’x:"i_\/E) (
= fula—VE). (14)

—_
w
~—

In the first step we used the knowledge of the mapping between the information bit to
transmit voltage levels (cf. Figure 2). The second step is simply using the fact that w =
y — x. The third step used the statistical independent of the additive noise and the voltage
transmitted. So, the MAP and ML rules for the additive noise channel are:

MAP: decide b = 1 if
Plb=1] fu(a+VE)>P[b=0]f,(a— VE) (15)

and 0 otherwise;



and

ML: decide b = 1 if

and 0 otherwise.

We can simplify the rules even further given some more knowledge of the statistics of
the noise. For example, suppose we know that the noise w is more likely to be small in
magnitude than large (since the the mean was supposed to be zero, this means that the
noise is more likely to be near the average value than farther away):

fw(a) = fu(b), |af = [0]. (17)

This property is definitely true for the Gaussian statistics. Then the ML rule simplifies
significantly: decide b = 0 if

fola+VE) > fula—VE)
(a+x/§)2—02 < (a—\/E)Z—OZ
4V FEa < 0
a < 0.

In other words, the ML decision rule take the received voltage y = a and estimates:

a < 0= 0 was sent
Else, 1 was sent.

Figure 4 illustrates the ML decision rule when superposed on the “bits to voltage” map-
ping (cf. Figure 2). The decision rule picks that transmitted voltage level that is closer to
the received voltage (closer in the usual sense of Euclidian distance). Hence, the maximum
likelihood (ML) rule is also known as the minimum distance rule or the nearest neighbor
rule.

. 5 .
a < 0: 0 was sent [ a > 0:1 was sent

Figure 4: The ML rule superposed on Figure 2.

In the rest of this lecture we look at two natural extensions of the material developed
painstakingly so far:



1. an evaluation of the performance of the ML rule and the reliability to communication it
affords. Our focus will be on understanding the relation between the energy constraint
at the transmitter and the noise variance in deciding the reliability level.

2. move forward towards sending multiple bits at the same time instant. There is a natural
generalization of the nearest-neighbor rule and the corresponding level of reliability to
communication.

Reliability of Communication

The receiver makes an error if it decides that a 1 was sent when a 0 was sent, or vice versa.
The average error is a weighted sum of the probabilities of these two types of error events,
with the weights being equal to the a priori probabilities of the information bit:

PE] =P[E]b=0]P[b= 0]+ P[E]b=0]P[b=1]. (18)

We suppose the a priori probabilities are equal (to 0.5 each). Let us focus on one of the
error events by supposing that the information bit was actually 0. Then with the nearest
neighbor rule,

PEb=0] = Plb=1|b=0]
= Ply>0b=0]
= Plz+w>0|b=0]
[

= Plw> VE]

E
o)
o
Due to the complete symmetry of the mapping from the bit values to the voltage levels and

the decision rule, the probability of the other error event is also the same:

PlEb=1 = P



SNR and Reliability of Communication

The first observation we make from the expression for the unreliability of communication is
that it depends only on the ratio, of the transmit energy E and the noise variance o?: the

error probability is
Q (VSNR). (19)

We have already seen this phenomenon before in Lecture 1, albeit in a deterministic setting.
This ratio is called the signal to noise ratio, or simply SNR. Basically, the communication
engineer can design for a certain reliability level by choosing an appropriate SNR setting.
While the Q(-) function can be found in standard statistical tables, it is useful for the
communication engineer to have a rule of thumb for how sensitive this SNR “knob” is in
terms of the reliability each setting offers. For instance, it would be useful to know by how
much the reliability increases if we double the SNR setting. To do this, it helps to use the
following approximation (cf. Question 3(e) in Homework 1):

Q) ~ e (-5 ). (20)

This approximation implies that the unreliability level
1 -
Q (x/SNR) ~ e d (21)

Equation (21) is saying something very interesting: it says that the SNR has an exponential
effect on the probability of error. For instance, supposing we double the SNR setting the
error probability

0 (2\/SN_R> ~ (Q (\/SN_R>>2, (22)

is a square of what it used to be before.

Transmitting Multiple Bits

Let us consider the same transmit energy constraint as before and see by how much the
reliability is reduced when we transmit multiple bits in the same single time sample. As in
Lecture 1, let us start with mapping the bits to voltage levels that are as far apart from each
other: this is illustrated in Figure 5 for 2 bits (and hence 4 voltage levels).

The ML rule is the same nearest neighbor one: pick that transmit voltage level that is
closest to the received voltage level. Figure 6 provides a short justification.

Reliability of Communication

A look at the bits-to-voltage mapping in Figure 5 suggests that the inner two voltage levels
(d and #) are less reliable than the outer ones (O and <»): the inner levels have neighbors
on both sides while the outer ones have only one neighbor. We can calculate the probability
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Figure 5: Sending 2 information bits across an AGN channel.

k information bits < 2* voltage levels v, vs, . . ., Vok

Recgiving voltage ¥, the likelihood of the m!" voltage level is f,(y — {v,,)

Compare likelihoods: Only |y — v,,,| matters, since the PDF of Gaussian with zero mean is symmetric about 0

ML rule: = Pick m such that |y — v,,]| is smallest = Nearest Neighbor Rule

Figure 6: ML Rule for k£ information bits is the nearest neighbor rule.

of making an error with the ML rule given the transmission of an outer voltage level (say,
the ©) exactly as in the earlier part of this lecture:

PIE|V] = PP>§] (23)

o), "

On the other hand, the probability of making an error with the ML rule given the transmis-
sion of an inner voltage level (say, the #) is:

e = 2[fus 1Yo fue )] -

o) "
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Finally, the average probability of making an error (averaged over all the 4 different voltage

levels) is
PlE] = 2xix@<§—f)+2x%x2@(§—f) (27)
3 (VE
- 5@ (3_0> : (28)

We have done this analysis for transmitting £ = 2 information bits. The same analysis carries
over to larger k. Indeed, the error probability is readily calculated to be, as an extension of

Equation (28):
plel= (2= 5 ) Q55 ). (29

where the minimum distance between two of the equally spaced voltage levels is
_ VE

S22k —17

As before the error probability is determined only by the SNR of the channel.

d (30)

An Engineering Conclusion

At the end of Lecture 1, we noted a relationship between completely reliable communication
of number of bits, transmit energy, bounds to the additive noise: the required energy to
maintain the same reliability essentially quadrupled when we looked to transmit one extra
bit. We have relaxed our definition of reliability, and replaced the noise bounds by a statistical
quantity (an appropriate multiple of the standard deviation o). But the essential relationship
between transmit energy and the number of information bits you can reliably transmit (at
any reliability level) is unchanged: a linear increase in the number of transmit bits requires an
exponential increase in the required transmit energy while maintaining the same reliability
level.

Looking Ahead

We notice from Equation (29) that the reliability goes down to zero as the number of infor-
mation bits sent k increases. This picture suggests that increasing the rate of communication
invariably leads to a degradation of the reliability. We will see in the next few lectures that
this is only an artifact of the specific communication scheme we have chosen and not a fun-
damental relation. Specifically, we will see that buffering the information bits and jointly
communicating them over multiple time instants will improve the reliability significantly,
as compared to sending the bits on a time-sample-by-time-sample basis. Sure, there is no
free lunch: the cost paid here is the delay involved in buffering the information and then
communicating them jointly.
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