
ECE461: Digital Communications

Lecture 5: Energy Efficient Communication

Introduction

So far, we have seen that block communication (using the simple repetition coding) can
improve the reliability of communication, significantly over and above that possible with
sequential communication. This is particularly true when we want to communicate a large
amount of data. But this has come at a high cost: specifically we can get arbitrarily reliable
communication, but

• the data rate (number of bits per unit time sample) goes to zero. Specifically, we know
from Lecture 4 that the data rate is

B

n
= o

(
log2 n

2n

)
, (1)

where we used the notation o(f(n)) to denote a function of n that has the property
that

lim
n→∞

o(f(n)) = 0. (2)

Simply put we can think of the data rate of reliable communication with repetition
coding as approximately

log2 n

2n
(3)

which is very small for large n. For a large data packet (of size, say B), we need an
amount of time approximately 22B to communicate it reliably using repetition coding!

• it is very energy inefficient. Here, we have defined the energy efficiency is defined
as the amount of energy (in Joules) consumed per bit that is reliably communicated.
In the repetition coding scheme, using n time instants we are using a total energy
nE. Further, we need 22B time samples to send B bits reliably. So we use up energy
proportional to 22B and thus the energy efficiency is

22BE

B
. (4)

For large data size B, this goes to infinity: the repetition coding scheme is hardly
energy efficient.

In summary,

repetition coding significantly improved the reliability of communication over
sequential communication, particularly for large data packets, but at the cost of
zero data rate and zero energy efficiency.
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This is in stark contrast to sequential communication that had non-zero data rate and energy
efficiency: after all, we keep transmitting new information bits at every time sample (so the
data rate is non-zero) and we only use a finite energy at any time sample (so the energy
efficiency is also non-zero).

Question: Can we have the desirable features of sequential communication, non-zero data
rate and energy efficiency, while ensuring that the reliability is very good? In other words,
is there a free breakfast, lunch and dinner?

Well, the short answer is yes. The long answer is that the block communication scheme
that does it is quite involved. It actually is rocket-science (almost!). We will spend several
lectures trying to figure out what it takes to reliably communicate at non-zero data rates
and non-zero energy efficiency. It is a remarkable success story that has drawn various
aspects of electrical engineering: role of modeling, asking the right questions, mathematical
abstraction, mathematical legerdemain, algorithmic advances and finally advances in circuits
to handle the computational complexity of the algorithms involved.

We take a small step towards this story in this lecture by focusing on reliably communi-
cating at non-zero energy efficiency (while not worrying about non-zero data rate).

Peak Energy vs Average Energy Constraints

Before we introduce our energy-efficient communication scheme, it helps to consider a slightly
different type of energy constraint. So far, our constraint has been that our voltage level at
any time sample is bounded in magnitude (i.e., it has to be within a limit of ±

√
E Volts in

our previous notation). This comes from a constraint on the instantaneous energy at every
time sample. In several communication scenarios, the constraint is on the average energy,
averaged over many time instants. This is the constraint whenever an electronic device is
rated in Watts (unit of power) measured in Joules/second. For instance, we could restrict
the total power transmitted to P and this would mean that the sum of the square of the
voltages transmitted in n time samples is no more than nP . In this lecture, we will focus
on reliable block communication when there is a power constraint (or an average energy
constraint), as opposed to instantaneous (or peak) energy constraint.

Suppose we want to transmit B bits reliably and energy efficiently. This means that we
want to use a finite amount of energy per bit transmitted: so the total energy allowed to
transmit bits is directly proportional to B. Let us denote the energy allowed per bit to be
Eb (a finite value), so the total energy allowed is BEb.

Since the data rate is not the focus here, let us consider using a lot of time samples to
transmit the bits (just as we needed to do in the repetition coding scheme). Specifically,
suppose we use 2B time instants (still an improvement over the repetition coding scheme
which required 22B time instants). The data rate is surely very small for large B, but as
we said, let us not worry about that now. Let us number the time samples from 0 through
2B − 1. Now every data packet with B bits can be made to correspond exactly to an integer
between 0 and 2B − 1: one way to do this is think of the data packet (string of bits) as the
binary expansion of an integer. That integer is surely somewhere between 0 and 2B − 1.

Now we see the possible reason for choosing the number of time samples equal to the
number of different possible realizations (2B) of B bits. It is to allow for the following
position modulation scheme: look at the information packet of B bits and convert it to
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an integer between 0 and 2B − 1, say denoted by k. Now we transmit nothing (or zero in
mathematical terms) at all except the kth time samples when we use up all the energy we
have: we do this by transmitting the voltage +

√
BEb.

This type of modulation is very different from the types of modulation schemes seen
in earlier lectures: here the information is in the position of a large voltage rather than the
specific amplitude of a voltage. As such, this type of communication is referred to as position
modulation and is in contrast to the earlier amplitude modulation schemes. In terms of the
transmit voltage vector (of length 2B), it looks like a vector(

0, 0, . . . ,
√

BEb, 0, . . . , 0
)

(5)

where the only non-zero entry BEb is at the kth location in the vector. Figure illustrates
the position modulation scheme for B = 2.
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Figure 1: Position modulation: horizontal axis represents time samples and the vertical axis
the voltages transmitted.

ML Rule

How do we expect the receiver to decide on which position the voltage might have been sent?
Clearly, taking the average of the voltages (like we did earlier for repetition coding) is not
going to help. A natural idea is that since Gaussian noise is more likely to be small (near
its mean of zero) than large, we just pick that time when the received voltage is the largest.
This very intuitive rule is indeed what the ML rule also is. We work this out below, for
completeness and as a formal verification of our engineering intuition.

The receiver receives 2B voltages

y[m] = x[m] + w[m], m = 1, 2, . . . , 2B. (6)
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The ML rule involves calculating the likelihood of the voltages received for each possible
position of where the non-zero voltage was transmitted. Suppose k = 1 is the index where
the non-zero voltage is transmitted, i.e., the transmit voltage vector is

x[m] =

{ √
BEb m = 1

0 else.
(7)

The likelihood of receiving the voltages a1, . . . a2B is

L1 = fw1

(
a1 −

√
BEb

)
fw2 (a2) . . . fw

2B
(a2B) (8)

=

(
1√

2πσ2

)2B

exp

(
−(a1−

√
BEb)

2
+

∑2B

m=2 a2
m

2σ2

)
(9)

=

(
1√

2πσ2

)2B

exp

(
−
∑2B

m=1 a2
m

2σ2
− BEb

2σ2

)
exp

(
a1

√
BEb

σ2

)
. (10)

By the symmetry of the modulation scheme in the transmit index k, we have (following
Equation 10)

Lk =

(
1√

2πσ2

)2B

exp

(
−
∑2B

m=1 a2
m

2σ2
− BEb

2σ2

)
exp

(
ak

√
BEb

σ2

)
. (11)

The ML rule picks that index k which has the largest likelihood Lk. The first two terms in
the formula (cf. Equation 11) for Lk are independent of the index k. So, we can focus on
just the third term. There we see that maximizing it is simply a matter of picking k such
that ak is the largest.

Reliability with Position Modulation

Suppose, again, that the index k where the non-zero voltage was transmitted is 1. Since there
is complete symmetry of the modulation scheme with respect to k, we can just calculate the
probability of error for this value of k and it will be the same unreliability level for all other
choices. Now, the ML rule makes a mistake whenever at least one of the received voltages
a2, . . . , a2B is larger than a1. Denoting the event

Error Event1j = {aj > a1} , j = 2 . . . 2B (12)

we see that the error event when k = 1 is their union:

Error =
2B⋃
j=2

Error Event1j. (13)

It turns out that the probability of the error event is somewhat complicated to calculate
directly. We can find an upper bound to it easily enough though, which itself will be easier
to evaluate.
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The probability of making an error is now upper bounded by the sum of the probabilities
of the pair-wise events: indeed,

P [Error] ≤
2B∑
j=2

P [Error Event1j] . (14)

The idea is that if we can bound the right-hand side of this equation by a small enough
number, then the unreliability level of communication with position modulation itself is less
than that small enough number. Such a way of bounding the error probability is known as
the union bound.

How do we calculate the pair-wise error event probability P [Error Event1j]? We only
need to focus on what happens at the time samples 1 and j. The received voltages at these
two time samples look as follows:

y[1] =
√

BEb + w[1], (15)

y[j] = w[j]. (16)

Now the pair-wise error probability is

P [Error Event1j] = P [y[j] > y[1]] (17)

= P
[
w[j]− w[1] >

√
BEb

]
. (18)

Observe that the difference of two independent Gaussian noises (with the same mean and
variance) also has Gaussian statistics but has twice the variance as the original ones. So, the
difference w[j]− w[1] is Gaussian with zero mean and variance 2σ2. Now we have a simple
expression for the pair-wise error probability: continuing from Equation 18

P [Error Event1j] = Q

(√
BEb√
2σ2

)
, j = 2 . . . 2B. (19)

We can substitute Equation 19 in Equation 14 to arrive at an upper bound to the unre-
liability level of communication with position modulation:

P [Error] ≤
(
2B − 1

)
Q

(√
BEb√
2σ2

)
. (20)

Using the usual upper bound to the Q(·) function (cf. Homework 1), we can get a further
upper bound to the error probability:

P [Error] <
(
2B − 1

) 1

2
exp

(
−BEb

4σ2

)
(21)

< 2B exp

(
−BEb

4σ2

)
(22)

= exp

(
B loge 2− BEb

4σ2

)
(23)

= exp

(
−B

(
Eb

4σ2
− loge 2

))
. (24)
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So, is the unreliability small for large packet sizes B? The answer depends on how large the
energy per bit Eb we invest in: if it is large enough:

Eb > 4σ2 loge 2, (25)

then for large values of B the probability of error goes to zero.

Reprise

We have seen a very different type of block communication, position modulation, that is
arbitrarily reliable and energy efficient. It came about by relaxing the instantaneous energy
constraint to an average energy constraint. A few key questions arise naturally at this point.

1. In engineering practice, it may not be possible to transmit a large voltage (as the
packet size B grows, the voltage magnitude also grows without bound). Indeed, most
electronic devices come with both an average and peak power rating. If the peak power
allowed is finite, the pulse modulation scheme described here will not work anymore. In
this case, there are no known simple ways to get energy efficient reliable communication
and we will address this issue in the lectures to come.

2. Is there something fundamental about the threshold for energy per bit given in Equa-
tion (25)? Perhaps there are other schemes that promise arbitrarily reliable communi-
cation and yet allow lower energy per bit than the threshold in Equation (25)?

(a) We will see in a homework exercise that the threshold in Equation (25) can be low-
ered by a factor of 2 by doing a more nuanced calculation of the error probability
(as compared to the crude union bound used in Equation (14)).

(b) It turns out that the improved threshold of half of that in Equation (25) is truly
fundamental:

any communication scheme promising arbitrarily reliable communication
over an AWGN channel has to expend energy per bit of at least 2σ2 loge 2.

In this sense 2σ2 loge 2 is a fundamental number for reliable communication over
the AWGN channel. We will get more intuition on where this comes from shortly.

Apart from these aspects, position modulation is important on its own right.

• We will see position modulation shows up naturally in deep spacecommunication (where
data rate is much less an issue than energy efficiency). Deep space communication
covers both satellite communication and earth’s communication with remote inter-
planetary space missions.

• It is conjectured (based on experimental data) that the human nervous system com-
municates using position. Apparently the entire image captured by the human eye
needs just three “spikes” (synapses) or so and all the visual information is said to be
contained in the spacing between the synapses. The book
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Spikes: Exploring the Neural Code by Fred Rieke, David Warland, Rob
deRuytervanSteveninck, and William Bialek, MIT Press, 1999,

makes for fascinating reading.

Looking Ahead

We have delivered on one of the free food promised earlier: reliable communication in an
energy efficient manner. But this still entailed very small data rates. In the next lectures, we
will see what it takes to do arbitrarily reliable communication with non-zero rates as well.
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