
ECE461: Digital Communications

Lecture 6: Rate Efficient Reliable Communication

Introduction

We now move to rate efficient reliable communication (energy efficiency tends to come for free
in this scenario). In this lecture we see that there are block communication schemes smarter
than the naive repetition coding seen earlier that promise arbitrarily reliable communication
while still having a non-zero data rate. We begin by setting the stage for studying rate
efficient reliable communication by carefully dividing the transmitter strategy of mapping
the information bits to transmit voltages into two distinct parts:

1. maps information bits into coded bits by adding more redundancy: the number of coded
bits is larger than the number of information bits and the ratio is called the coding
rate. This process is generally called coding.

2. map coded bits directly into transmit voltages. This is done sequentially: for in-
stance, if only two transmit voltages are allowed (±

√
E) then every coded bit is se-

quentially mapped into one transmit voltage. If four possible transmit voltages are

allowed (±
√

E,±
√

E
3

), then every two consecutive coded bits are mapped into a single
transmit voltage sequentially. This mapping is typically called modulation and can be
viewed as a labeling of the discrete transmit voltages with a binary sequence.

The receiver could also be potentially broken down into two similar steps, but in this lecture
we will continue to focus on the ML receiver which maps the received voltages directly into
information bits. Focusing on a simple binary modulation scheme and the ML receiver, we
see in this lecture that there are plenty of good coding schemes: in fact, we will see that
most coding schemes promise arbitrarily reliable communication provided they are decoded
using the corresponding ML receiver!

Transmitter Design: Coding and Modulation

We are working with an energy constraint of E, so the transmit voltage is restricted to
be within ±

√
E at each time instant. For simplicity let us restrict that only two transmit

voltages are possible: +
√

E and −
√

E.1

If we are using T time instants to communicate, this means that the number of coded
bits is T , one per each time instant. With a coding rate of R, the number of information
bits (the size of the data packet) is B = RT . Surely, R ≤ 1 in this case. The scenario of
R = 1 exactly corresponds to the sequential communication scheme studied in Lecture 4. As
we saw there, the reliability level approaches zero for large packet sizes. The point is that
even though we have spaced the transmit voltages far enough apart (the spacing is 2

√
E in

this case), the chance that at least one of the bits is decoded incorrectly approaches unity
when there are a lot of bits. The idea of introducing redundancy between the number of
information bits and coded bits (by choosing R < 1) is to ameliorate exactly this problem.

1We will explore the implications of this restriction in a couple of lectures from now.
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Linear Coding

As we have seen, coding is an operation that maps a sequence of bits (information bits,
specifically) to a longer sequence of bits (the coded bits). While there are many types of
such mappings, the simplest one is the linear code. This is best represented mathematically
by a matrix C whose elements are drawn from {0, 1}:

[
vector of
coded bits

]
= C

 vector of
information
bits

 . (1)

Here the vector space operations are all done on the binary field {0, 1}: i.e., multiplication
and addition in the usual modulo 2 fashion. The dimension of the matrix C is T ×RT and
it maps a vector of dimension RT × 1 (the sequence of information bits) into a vector of
dimension T × 1 (the sequence of coded bits). The key problem is to pick the appropriate
code C such that the unreliability with ML decoding at the receiver is arbitrarily small. In
this lecture we will see that almost all matrices C actually have this property!

A Novel Approach

To study this we will consider the set C of all possible binary matrices C: there are 2RT 2

number of them (each entry of the matrix can be 0 or 1 and there are RT 2 entries in the
matrix). We will show that the average unreliability, averaged over all the matrices C:

P [E ]
def
=

1

2RT 2

∑
C∈C

P [E|C] , (2)

is arbitrarily small for large packet sizes B (and hence large time T ). In Equation (2) we have
used the notation P [E|C] to denote the unreliability of communication with the appropriate
ML receiver over the AWGN channel when using the code C at the transmitter.2 If P [E ]
is arbitrarily small, then most code matrices C must have an error probability that is also
arbitrarily small. In fact, only at most a polynominal (in RT ) number of codes can have
poor reliability.

Calculating Average Unreliability

This unreliability level is the average unreliability experienced, averaged over all possible
information bit sequences:

P [E|C] =
1

2RT

2RT∑
k=1

P [E|Bk, C] , (3)

where Bk is the kth information packet B (there are 2B = 2RT possible information packets).
The error event E occurs when the likelihood of the T received voltages is larger for some

2Keep in mind that the ML receiver will, of course, depend on the code C used at the transmitter.
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other packet Bj with j 6= k. The probability of this event will depend on the nature of the
code C and is, in general, quite complicated to write down precisely. As in the previous
lecture, we will use the union bound to get an upper bound on this unreliability level:

P [E|Bk, C] <
2RT∑

j 6=k,j=1

P2 [Bk, Bj|C] , (4)

where we have denoted P2 [Bk, Bj|C] as the probability of mistakenly concluding that Bj is
the information packet when actually Bk was transmitted using the code C.

Substituting Equations (4) and (3) into Equation (2) we get

P [E ] <
1

2RT

2RT∑
k=1

2RT∑
j 6=k,j=1

(
1

2RT 2

∑
C∈C

P2 [Bk, Bj|C]

)
. (5)

The Key Calculation

We now come to the key step in this whole argument: evaluating the value of the expression

1

2RT 2

∑
C∈C

P2 [Bk, Bj|C] . (6)

From our derivation in Lecture 4, we know that the error probability

P2 [Bk, Bj|C] = Q

(
d

2σ

)
(7)

where d is the Euclidean distance between the vectors of transmitted voltages corresponding
to the information packets Bk, Bj using the code C. Since we have only a binary transmit
voltage choice, the distance d simply depends on the number of time instants where the
coded bits corresponding to the information packets Bk, Bj using the code C are different.
Suppose the coded bits are different at ` of the possible T locations. Then the Euclidean
distance squared

d2 = `4E. (8)

The idea is that for each time where the coded bits are different, the square of the distance
is 4E (since the corresponding transmit voltages are ±

√
E leading to a distance of 2

√
E).

So we can write the key expression in Equation (6) using Equations (7) and (8) as

1

2RT 2

∑
C∈C

P2 [Bk, Bj|C] =
T∑

`=0

f
(k,j)
` Q

(√
`E

σ

)
. (9)

Here we have denoted f
(k,j)
` as the fraction of the codes that lead to exactly ` mismatches

in the T coded bits for the pair of information packets Bk and Bj.
While the value of ` depends on the code C and the pair of packets Bk, Bj, we can

calculate f
(k,j)
` readily. In fact, it is the same for all pair of information packets Bk, Bj.
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Towards this calculation, let us focus on the coded bit at any specific time instant, say the
first one. Since we are considering all possible codes C, there is no special bias towards this
bit being a 1 or a 0. In other words, the fraction of codes that result in this coded bit being
1 (or 0) is exactly 0.5. This is true for every information packet. Furthermore, there is no
special bias for this coded bit to be the same or different for any pair of information packets
(Bk and Bj in our notation). In other words, the fraction of codes for which the coded bit of
interest (say, the first one out of the total T ) is the same for any pair of information packets
Bk, Bj is exactly 0.5. So, the fraction of codes that lead to exactly ` mismatches in the T
coded bits for any pair of information packets Bk, Bj is

f
(k,j)
` =

(
T
`

)(
1

2

)T

. (10)

The fraction is the same for all pairs (k, j). To elaborate a bit more on how we arrived at
the expression in Equation (10), we see that:

1. there are

(
T
`

)
possible ways of choosing the ` mismatches in a sequence of T coded

bits;

2. the term
(

1
2

)T
is simply a normalization term – the sum of all the fractions of codes

that lead to exactly ` mismatches, summed over all `, should be unity:

T∑
`=0

f
(k,j)
` = 1. (11)

Using the binomial formula
T∑

`=0

(
T
`

)
= 2T (12)

we see that the normalization term has to be
(

1
2

)T
.

Now substituting Equation (10) in Equation (9) we arrive at

1

2RT 2

∑
C∈C

P2 [Bk, Bj|C] =
T∑

`=0

(
T
`

)(
1

2

)T

Q

(√
`E

σ

)
. (13)

We can use the upper bound on the Q (·) function

Q(a) ≤ 1

2
e
−a2

2 , a ≥ 0, (14)

in Equation (13) to write

1

2RT 2

∑
C∈C

P2 [Bk, Bj|C] <

T∑
`=0

(
T
`

)(
1

2

)T

e−
`E
2σ2 . (15)
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Using the binominal formula

T∑
`=0

(
T
`

)
e−

`E
2σ2 =

(
1 + e−

E
2σ2

)T

(16)

in Equation (15) we come to

1

2RT 2

∑
C∈C

P2 [Bk, Bj|C] <
(
1 + e−

E
2σ2

)T
(

1

2

)T

(17)

= 2
T log2

(
1+e

− E
2σ2

)(
1

2

)T

(18)

= 2−TR∗ (19)

where we have defined

R∗ def
= log2

(
2

1 + e−
E

2σ2

)
(20)

= 1− log2

(
1 + e−

E
2σ2

)
. (21)

Reliable Rate of Communication

The denouement is near now. Substituting Equation (19) into Equation (5) we see the
average unreliability, averaged over all possible linear codes C is no more than

P [E ] <
1

2RT

2RT∑
k=1

2RT∑
j 6=k,j=1

2−R∗T (22)

< 2RT 2−R∗T . (23)

As long as the data rate R is strictly less than R∗ (defined in Equation (21)), the average
unreliability level becomes arbitrarily small for large T (and hence large information packet
sizes). The term R∗ is a simple function of the SNR (defined, as usual, to be the ratio
of E to σ2) and is strictly positive. It can be interpreted as the threshold below which
arbitrary reliable communication data rates are possible. Further more, this performance is
guaranteed by many linear codes C when coupled with the appropriate ML decoder at the
receiver end.

Finally, any linear code C that guarantees reliable communication is also energy efficient.
This is explored in a homework exercise.

Looking Ahead

In this lecture we focused primarily on the design of the transmitter so that we can communi-
cate reliably while still being rate efficient. We supposed the availability of the corresponding
ML decoder at the receiver end. The ML decoder involves finding that information packet
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yielding the largest likelihood of the T received voltages. We have to calculate the likeli-
hood for each possible information packet, 2RT of them: the number of such choices grows
exponentially with the number of information bits RT . Supposing a constant computation
complexity to calculate the likelihood the total computation complexity of the ML receiver
grows exponentially with the size of the information packet. Even with moderate sized data
packets (say 1000s of bits) this is just too expensive (in fact, widely considered to be im-
possible) to implement in digital circuitry. In the language of CS (computer science) we say
that the ML decoder algorithm is NP (non-polynomial time).

To complete the story of rate efficient reliable communication, we turn to simplifying the
receiver design. While the ML decoder is indeed the optimal receiver, there are suboptimal
decoders that perform about just as well in practice. This is the focus of the next lecture.
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