
ECE461: Digital Communications

Lecture 7: Reliable Communication with Erasures

Introduction

So far, we have seen that arbitrarily reliable communication is possible at non-zero rates
provided the receiver is well designed. In this lecture we will take a closer look at simplifying
(in a computational sense) the complexity of the receiver design. We break up the receiver
into two steps:

1. Demodulation: Map the analog received voltage to a finite number of discrete levels.
To be concrete, we focus on the following situation: let the transmit voltages be binary
(just as in the previous lecture). Then we map the analog voltage into one of three
possible levels. Two of them correspond to the two levels of the binary modulation at
the transmitter. The third, called an erasure, models the scenario when the received
analog voltage is not enough to make a decision one way or the other.

2. Decoding: The second step involves taking the erasures into careful account and recov-
ering the original information bits.

Receiver Design in Two Steps

For concreteness, the discussion in this lecture is limited to binary modulation on the AWGN
channel:

y[m] = x[m] + w[m], m = 1 . . . T ; (1)

i.e., the transmit voltage is restricted to be ±
√

E. Further, the transmitter is assumed to
be broken up into the two steps described in the previous lecture (sequential modulation
and linear coding). For concreteness let us suppose that −

√
E is transmitted when the

corresponding coded bit is 0 and
√

E is transmitted when the corresponding to when the
coded bit is 1.

The ML receiver (from the previous lecture) took the T received voltages and mapped
them directly to the information bits. While this is the optimal design, it is also prohibitively
expensive from a computational view point. Consider the following simpler two-stage design
of the receiver.

1. Demodulation: At each time m the received voltage y[m] is mapped into one of three
possible choices: Let us fix c ∈ (0, 1).

(a) If

y[m] ≤ −c
√

E (2)

then we map into a 0.

(b) If

y[m] > c
√

E (3)

then we map into a 1.

1

Figure 1: Demodulation Operation.

(c) In the intermediate range, i.e.,

−c
√

E ≤ y[m] ≤ c
√

E (4)

we map into an “e” (standing for an erasure).

The process is described in Figure 1 and is a very easy step computationally.

2. Decoding: We now take the T outputs of the demodulator (one ternary symbol – 0, 1,
e – at each time instant) and map them into the information bits.

In the following, we will study each of these two stages carefully and analyze the end-to-end
performance.

Demodulation

The idea of making erasures is that when the received voltage is in the intermediate range,
we are less sure of whether +

√
E was transmitted or −

√
E was transmitted. For instance,

if we receive a voltage of 0, then the corresponding transmit voltage could equally likely be
±
√

E. What is the probability of the demodulation event at any time m resulting in an
erasure? It is simply equal to

p
def
= P

[
−c
√

E ≤ y[m] ≤ c
√

E
]

= Q
(
(1− c)

√
SNR

)
−Q

(
(1 + c)

√
SNR

)
. (5)

Here we have denoted SNR to be the ratio of E to the variance of the additive Gaussian
noise (σ2).

Even with the unclear intermediate range marked by erasures, it is possible that a coded
bit of 0 (corresponds to a transmit voltage of −

√
E) could result in a demodulated symbol

of 1 (corresponds to a received voltage larger than c
√

E). The probability of this event

P
[
w[m] > (1 + c)

√
E

]
= Q

(
(1 + c)

√
SNR

)
, (6)

gets smaller as c is made larger. We could decide to set c large enough so that this probability
is made desirably small. In the following, we will suppose this is small enough that we can
ignore it (by setting it to zero).1

Let us summarize the demodulation output events:

1It is important to keep in mind that no matter how small this probability is, the chance that at least
one of such an undesirable event occurs in the transmission of a large packet grows to one as the packet size
grows large. This is the same observation we have made earlier in the context of the limitation of sequential
communication.

2

1. When the coded bit is a 0, the output of the demodulated step takes on one of two
possible values:

0 with probability 1− p(cf. Equation (5))
e with probability p.

(7)

2. Analogously, when the coded bit is a 1, the output of the demodulated step takes on
one of two possible values:

1 with probability 1− p
e with probability p.

(8)

Decoding

We now have T demodulation outputs (each one of them being either 0, 1 or e). Whenever
we get a 0 (1), we are confident that the corresponding code bit could only have been a 0
(1). This is based on our assumption that the chance that a coded bit of 0 will result in a
demodulated symbol of 1 is very small; so small, that we have modeled it as zero. Thus the
only time instants where the decoder has to do some work is in the erased locations. For T
large, what fraction of the locations do we expect to be erasures? Since we are supposing
that the coded bits are equally likely to be 0 or 1 and are statistically independent from time
to time, the fraction of erasures is p. Indeed, by the law of large numbers,

P
[∣∣∣∣Number of erasures over time T

T
− p

∣∣∣∣ > δ

]
→ 0, as T →∞. (9)

So, we have approximately (1 − p)T of the coded bits recovered correctly at the output of
the demodulation step.

The job of the decoder is to use these as inputs and figure out the original information
bits. At this point it is useful to take a close look at the coding operation at the transmitter
that mapped the information bits into the coded bits (cf. Equation (1) from Lecture 6):[

vector of
coded bits

]
= C

 vector of
information
bits

 . (10)

The size of the coding matrix C is T × RT where R < 1 is the coding rate. Now at the
decoder we have available a fraction (1− p)T number of the coded bits with a fair degree of
certainty.2 Thus we can rewrite Equation (10) as vector of

demodulated
bits

 = C̃

 vector of
information
bits

 . (11)

Here the matrix C̃, of dimension (1− p)T ×RT , is a sub-matrix of the original linear coding
matrix C: it is formed by choosing (1 − p)T of the T rows of C (exactly which rows are

2Exactly which fraction of the coded bits are available is unclear; all is known is that a total of (1− p)T
coded bits are available.

3

chosen depend on which of the demodulated outputs were not erasures). Now, to recover
the information bits from the linear set of equations in Equation (11), we need at least as
many equations (1− p)T as variables (RT). Further we need at least RT of these equations
to be linearly independent. Putting these conditions into mathematical language, we need:

• R < 1− p.

• The matrix C̃ has rank at least RT .

The first condition is simply a constraint on the coding rate R. This is readily satisfied by
choosing the data rate appropriately at the transmitter. The second condition says something
about the linear coding matrix C. We need every subset of RT rows of the matrix C to be
linearly independent.

How does one construct such linear codes? This has been the central focus of research
for several decades and only recently could we say with some certainty that the final word
has been said. The following is a quick summary of this fascinating research story.

1. Consider the random linear code (we studied this in the previous lecture as well): each
entry of C is i.i.d. 0 or 1 with probability 0.5 each. It turns out that almost surely the
random matrix C has the desired rank property. Thus it is easy to construct linear
codes that work for the erasure channel(almost every random linear code works). This
is a classical result:

P. Elias, “Coding for two noisy channels,” Information Theory, 3rd London
Symposium, 1955, pp. 6176.

The problem with this approach is the decoding complexity – which involves inverting
a (1− p)n× (1− p)n matrix – is O(n3).

2. Reed-Solomon Codes: These are structured linear codes that guarantee the decod-
ability condition. They have the additional property that their decoding complexity is
smaller: O(n2). Reed-Solomon codes are used in several data storage applications: for
example, hard disks and CDs. You can learn about these codes from any textbook on
coding theory. Unfortunately one cannot get nonzero data rates from these structured
codes.

3. Digital Fountain Codes: These are a new class of random linear codes that satisfy
the decodability condition with very high probability. The distinguishing feature is
that the matrix C is very sparse, i.e., most of its entries are 0. The key feature is a
simple decoding algorithm that has complexity O(n log(n/δ)) with probability larger
than 1− δ. For a wide class of channels, a sparse linear code admits a simple decoding
algorithm, called the message passing algorithm. This is a very recent development
that has revolutionized coding theory, both theoretically and from a practical point of
view. Here are a few references for you to learn more about this exciting area. Anytime
there is a such a significant breakthrough, you can expect some entrepreneurial activity
surrounding it. The interested student might want to check out
http://www.digitalfountain.com.

4

Looking Ahead

We have looked at erasures as an intermediate step to simplify the receiver design. This
does not however, by itself, allow arbitrarily reliable communication since the total error
probability is dominated by the chance that at least one of the coded bits is demodulated
in error (i.e., not as an erasure). To get to arbitrarily reliable communication, we need to
model this cross-over event as well: coded bits getting demodulated erroneously. A detailed
study of such a model and its analysis is a bit beyond the scope of this course. So, while we
skip this step, understanding the fundamental limit on the reliable rate of communication
after such an analysis is still relevant. This will give us insight into the fundamental tradeoff
between the resource of energy and performance (rate and reliability). This is the focus of
the next lecture.

5

